Medicinal chemistry of ρ GABA$_C$ receptors

The inhibitory neurotransmitter, GABA, is a low-molecular-weight molecule that can achieve many low-energy conformations, which are recognized by GABA receptors and transporters. In this article, we assess the structure–activity relationship profiles of GABA analogs at the ionotropic ρ GABA$_C$ receptor. Such studies have significantly contributed to the design and development of potent and selective agonists and antagonists for this subclass of GABA receptors. With these tools in hand, the role of ρ GABA$_C$ receptors is slowly being realized. Of particular interest is the development of selective phosphinic acid analogs of GABA and their potential use in sleep disorders, inhibiting the development of myopia, and in improving learning and memory.

GABA is a flexible, low-molecular-weight molecule that can achieve a large number of low-energy conformations [1], that are recognized by three major classes of receptors in the mammalian brain: the ionotropic GABA$_A$ and ρ GABA$_C$ receptors, and the metabotropic GABA$_B$ receptors. The GABAergic system is involved in a variety of physiological processes, such as memory [2,3], cognition [4,5], vision [6–9], pain management [10–12], sleep [13–15] and cardiovascular regulation [16,17]. Defects and deficits of this system have been implicated in the development of neurological and psychiatric conditions such as epilepsy [18,19], anxiety [2,20–22], mood disorders [23], schizophrenia [5,24,25], Alzheimer’s disease [26,27] and Huntington’s chorea [28,29]. Thus, agents that can modify the GABAergic system have the potential to become important therapies. This article concentrates on a subclass of ionotropic GABA receptors, the ρ GABA$_C$ receptor, a topic of previous reviews [30–34].

The ρ GABA$_C$ receptors belong to the nicotinic superfamily or cys-loop superfamily [35], which includes nicotinic acetylcholine receptors, GABA$_A$ receptors (see review [36]), serotonin 5-HT$_3$ receptors, strychnine-sensitive glycine receptors and invertebrate anionic glutamate receptors. These receptors are all structurally related [35,37,38] possessing four transmembrane domains (TM1–4) connected by variable lengths of intracellular and extracellular loops. The TM2 domain of each subunit lines the ion pore and, in the case of ρ GABA$_C$ receptors, is permeable to chloride ions. Each subunit contains a large extracellular N-terminal domain for ligand binding, as well as a short extracellular C-terminus [39,40]. Another common physical feature shared throughout the family members is the signature-conserved disulfide-bridged loop in the extracellular domain, formed by a pair of cysteines at a 15-residue spacing at a fixed position [35,41,42].

Subunit composition, distribution & function of GABA$_C$ receptors

The first indication of a possible new class of ionotropic GABA receptors arose from a study that evaluated cis- and trans-4-amino-5-crotonic acid (CACA and TACA, respectively; Figure 1) on the firing cat spinal interneurons [43]. It was found that CACA, a folded analog of GABA, depressed the firing of the interneurons and this action could not be antagonized by the GABA$_A$ antagonist bicuculline; while the effect of TACA, the extended form of GABA, was antagonized by bicuculline [43]. This was followed by the discovery that CACA had no influence on the binding against radiolabelled baclofen in rat cerebellum. Results from these studies led to the term ‘GABA$_C$ receptors’ for a class of ‘bicuculline- and baclofen-insensitive receptors’ [44].

It was not until the early 1990s that the so-called ‘GABA$_C$ receptor’ was shown to be functional [45]. Isolated bovine retinal mRNA, when expressed in Xenopus oocytes, was found to form two receptors: a bicuculline-sensitive GABA$_A$ receptor and a novel receptor type that was both bicuculline and baclofen insensitive [45]. Subsequently, Cutting and coworkers [46] cloned and sequenced a new subunit, termed ‘rho 1 (ρ_1) subunit’ from human retinal cDNA. The sequence of the ρ_1 subunit displayed approximately 30–38% amino acid similarity to previously identified GABA$_A$ subunits and when expressed in Xenopus oocytes, was able to form a homooligomeric receptor, 50-times more sensitive to picrotoxin than GABA$_A$ receptors [46].
These results were further supported by studies carried out by Feigenspan et al. on rat retinal bipolar cells [47], and Qian et al. on rod-driven horizontal cells isolated from white perch retina [48].

To date, five different subtypes of the ρ subunit have been cloned from different species, which include human (ρ₁), mouse (ρ₁), rat (ρ₂), chicken (ρ₂) and white perch (ρ₂A, ρ₂A and ρ₂; see the review by Enz [49]). The ρ subunits share approximately 70% to over 90% amino acid similarity within the subunit family and between different species [50–52].

Most ρ subunits form functional homopentameric chloride channels [46,51,53–57]. This concept is supported by various Hill coefficient studies of both native and recombinant receptors that show Hill coefficients of 3–4, indicating that at least three GABA molecules are required to activate the receptor [8,50,58]. Studies on recombinant and native receptors have also provided evidence that GABA₅ receptors may consist of a combination of ρ₁, ρ₂ and/or ρ₃ subunits, forming ‘pseudo-homomeric’ GABA₅ receptors [49,59,60]. Although some studies have reported the possible coassembly of the ρ subunits with other GABA₅ subunits, for example the α₁ and γ₂ subunits, this remains controversial and it is still unknown if these heteromeric receptors exist in vitro [8,61–65].

Immunohistochemical and electrophysiological studies have shown that, in most species, the ρ subunits are predominately expressed in bipolar cells [66–71] and horizontal cells in the retina; while the ρ subunits are found not only in the retina but also in the spinal cord [72] and in several brain regions, such as the hippocampus, cortex, pituitary, cerebellum and thalamus [49,60]. The ρ subunits are reported to be found mainly in the retina and in all regions of the brain, except the superior colliculus [59,73]. GABA₅ receptors have also been found outside the CNS, such as the GI tract [74,75]. McCall et al. found that the absence of the ρ subunit in knock-out mice led to the abolishment of the GABA-evoked response in the mouse retina normally mediated by GABA₅ receptors [76], and signaling from rod bipolar cells to third order cells was altered [76,77], while Schlicker et al. observed an alteration, rather than a complete elimination, in GABA₅-mediated responses in the superior colliculus, suggesting that ρ₁ or ρ₂ GABA₅ receptors are functional in this tissue [77]. In addition, Zheng and colleagues demonstrated a role for GABA₅ receptors in maintaining both homeostasis and balance of retinal neurotransmitter function as knockout of the retinal ρ₃ GABA₅ subunit led to changes in vascular permeability similar to the pathological changes induced by retinal hypoxic conditions [78]. Interestingly, Zheng and coworkers saw a decrease in pain threshold in ρ₁-mutant mice [79]. Knock-out studies also showed that ρ₁ GABA₅ receptors mediate inhibitory modulation on the olfactory bulb [80]. Knock-out studies on the GABA₅ receptors in mice also suggest the involvement of these receptors in pain pathways [201].

Both ρ₁ and ρ₂ GABA₅ receptors are found in the hippocampus where there is evidence for a functional role, as extrasynaptic receptors activated via spillover of synaptically released GABA [81] and in paired-pulse depression of inhibitory postsynaptic currents [82]. GABA₅ receptors may also be involved in the regulation of thyrotropin release from the pituitary [83] and in synaptic transmission in the spinal cord [72]. GABA₅ receptors have also been described on neurons in the gastrointestinal system [75] where they may increase the release of nitric oxide from nonadrenergic, noncholinergic inhibitory neurons [84].

The localization of the various ρ GABA₅ receptors, knock-out and pharmacological studies show the receptor’s critical roles in visual processing and myopia development [85,86], olfactory senses [80], learning and memory [3,87], sleep patterns [87,88], nociception [79] and hormone secretion [89].

Agonists at ρ GABA₅ receptors

The pharmacology of ρ GABA₅ receptors is distinctive and seemingly less complex compared with that of GABA₅ receptors, possibly due to its simpler subunit composition. GABA₅ receptors are approximately eightfold more sensitive to GABA than GABA₅ receptors [31], and have a smaller chloride conductance.
(8 vs 27 pS); a longer mean channel-opening time (150 vs 25 ms); and are not prone to desensitization [33,49,90,91]. Over the last 15 years, conformationally restricted analogs of GABA have been employed to investigate the preferred conformation of GABA at these ‘novel’ receptors, thereby assisting with the characterization of the binding site.

The known GABA\textsubscript{A} agonist muscimol is not selective as it is found to be a potent partial agonist at \(\rho\) GABA\textsubscript{A} receptors [53,92], while isoguvacine also acts as weak partial agonist at \(\rho\) GABA\textsubscript{A} receptors, with a higher efficacy at \(\rho_2\) than at \(\rho_1\) receptors [92]. CACA is a partial agonist at both \(\rho_1\) and \(\rho_2\) GABA\textsubscript{A} receptors with little activity at GABA\textsubscript{C} receptors. However, it acts as a substrate for GABA uptake transporters that are sensitive to \(\beta\)-alanine and nipecotic acid [93]. CACA activates GABA\textsubscript{C} receptors with an efficacy approximately one-quarter of that of GABA. By contrast, CACA only weakly activates homomeric \(\rho_1\) receptors [94]. TACA, an isomer of CACA and an analog of GABA in the ‘extended’ form, is a nonselective agonist at \(\rho_1\) and \(\rho_2\) receptors that is almost equipotent to GABA [95]. TACA is the most potent GABA\textsubscript{A} agonist described to date, being approximately 120 and 40-times more potent than CACA at homomeric \(\rho_1\) and \(\rho_2\) and \(\rho_1\) recombinant receptors expressed in Xenopus oocytes, respectively [33,94]. However, TACA is also a potent GABA \textsubscript{C} receptor agonist [53,92].

Chebib \textit{et al.} investigated the activities of various mono- and di-substituted TACA analogs on \(\rho_1\) GABA\textsubscript{C} receptors [96]. It was found that a fluoro substituent at the C2 position (\textit{trans}-4-amino-2-fluorobut-2-enoic acid) caused a reduction in agonist activity when compared with GABA and TACA [96]. A methyl substituent at the same position (\textit{trans}-4-amino-2-methylbut-2-enoic acid [2-MeTACA]) gives rise to a competitive antagonist at \(\rho_1\) receptors, while it acts as a partial agonist at \(\rho_2\) receptors [92], and inactive at \(\rho_3\) receptors [94]. Thus, 2-MeTACA can be used to differentiate between \(\rho_1\) and \(\rho_2\) receptors [92].

The saturated, 2-methyl-substituted analog (\textit{S}-)4-amino-2-methylbutanoic acid (\textit{S}-2-MeGABA) is a full but moderate agonist at \(\rho\) GABA\textsubscript{A} receptors [97,98]. The hydroxylated GABA analogs (\textit{S}-) and (\textit{R}-)4-amino-3-hydroxybutanoic acid also act as full agonists at \(\rho_1\) GABA\textsubscript{C} receptors in a stereoselective manner [99]. The sulfinic analog of GABA, homohyptaurine, is a potent partial agonist at \(\rho_1\) receptors [96].

The introduction of a cyclopropane moiety to the GABA backbone gave rise to the conformationally restricted analogs (\textit{S})-\textit{cis}-2-(aminomethyl)cyclopropanecarboxylic acid ([\(\pm\)]-CAMP), and (\textit{S})-\textit{trans}-2-(aminomethyl) cyclopropanecarboxylic acid ([\(\pm\)]-TAMP). The racemic mixtures were first synthesized and their activities studied by Allan \textit{et al.} [100]. (\textit{S})-TAMP, corresponding to the ‘extended’ form of GABA, was found to be a potent and bicuculline-sensitive depressant of firing of cat spinal neurons. (\textit{S})-CAMP, the ‘folded’ form, was less potent than (\textit{S})-TAMP [100]. The enantiomers were isolated and further studied by Duke \textit{et al.} [101] and Crittenden \textit{et al.} [97] at \(\rho\) GABA\textsubscript{C} receptors expressed in Xenopus oocytes. It was revealed that the full agonist activity exhibited by (\textit{S})-CAMP at \(\rho\) GABA\textsubscript{C} receptors resides in (\textit{S})-CAMP, while (\textit{R})-CAMP acts as an antagonist at the same receptors (\textbf{Figure 2}). Both (\textit{S})-TAMP and (\textit{R})-TAMP are partial agonists at \(\rho\) GABA\textsubscript{C} receptors with significant agonist activities at the GABA\textsubscript{A} receptors. The superior selectivity of (\textit{S})-CAMP for \(\rho\) GABA\textsubscript{C} receptors over (\textit{S})- and (\textit{R})-TAMP further demonstrates that the ‘folded’ form of GABA is preferred at these receptors.

The effects of a series of racemic cyclopentane analogs of GABA were evaluated for their ability to inhibit the firing of hippocampal pyramidal neurons in rats [102] and motoneurons on isolated frog spinal cord [103]. The (\textit{S})-\textit{trans}-3-amino cyclopentane carboxylic acids ([\(\pm\])-TACP) rather than the (\textit{S})-\textit{cis}-isomers ([\(\pm\])-3-CACP) were the most potent depressants of neuronal firing and the effects were bicuculline sensitive. Syntheses of the pure enantiomers were later reported by Allan \textit{et al.} [104] and these compounds were subsequently investigated for their effects on GABA\textsubscript{C} receptors in guinea pig ileum, in binding studies using rat brain membranes.
and in GABA uptake using rat brain cortical slices [106]. The activities of the resolved isomers were also studied on recombinant ρ1 and ρ2 GABA_C receptors [97,106] and were found to have a range of activities as either agonists or antagonists, indicating that the compounds were not selective for either GABA_A or GABA_C receptors. Nevertheless, these molecules became leads for the development of selective ρ GABA_C antagonists [85,107].

A series of cyclopentane carboxylic acid analogs of GABA was also found to be antagonists at ρ GABA_C receptors [106]. However, increasing the size of the cyclopentane ring to a cyclohexane ring or reducing the size to a cyclobutane ring led to analogs with markedly reduced activity at either the GABA_A or GABA_C receptors [102,103,107,108].

Imidazole-4-acetic acid (I-4AA; Figure 3), a naturally occurring bioisostere of GABA, possesses a mixed pharmacological profile at the various ρ receptors: at ρ1 receptors, I-4AA is a potent antagonist possessing low intrinsic activity; at ρ2 receptors, it is a potent partial agonist with a 12-fold higher intrinsic activity than at ρ1 receptors; while it was found to be a potent antagonist at ρ3 receptors. Thus, I-4AA can be used to distinguish between the ρ1, ρ2, and ρ3 receptors [34,92,94,109]. More recently, substituted analogs of I-4AA analogs have been developed. Among the series of analogs synthesized, more lipophilic and selective agonists were identified for the GABA_A receptor (Figure 3). It was found that substituents in the 5-position were tolerated while the same substituent in the 2-position led to inactive molecules [110]. Table 1 summarizes the activities of selective agonists known for the ρ GABA_C receptor.

Table 1. Summary of the activities of GABA_C-selective agonists.

<table>
<thead>
<tr>
<th>Compound</th>
<th>GABA_A</th>
<th>GABA_B</th>
<th>GABA_C</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>CACA</td>
<td>Inactive <500 µM</td>
<td>Partial agonist</td>
<td>Inactive</td>
<td>[94,96]</td>
</tr>
<tr>
<td>(+)-CAMP</td>
<td>Weak antagonist</td>
<td>Full agonist</td>
<td>Inactive</td>
<td>[101]</td>
</tr>
<tr>
<td>5-Me-I-4AA</td>
<td>> 1mM</td>
<td>ρ1 EC50 = 40 µM</td>
<td>Not determined</td>
<td>[110]</td>
</tr>
</tbody>
</table>

CACA: Cis-aminocrotonic acid; CAMP: Cis-2-(aminomethyl)cyclopropanecarboxylic acid.

Antagonists at ρ GABA_C receptors

There are reports showing that some GABA_A receptor antagonists are also antagonists at ρ GABA_C receptors including GABAzine (SR-95531), while other reports show certain GABA_A receptor agonists act as antagonists at GABA_C receptors. These include isonipecotic acid, 4,5,6,7-tetrahydrooxazolo[4,5-c]pyridin-3-ol (THIP; gaboxadol) and piperidin-4-ylsulfonic acid. Picrotoxin is a noncompetitive GABA_A and GABA_C antagonist [33].

Krehen et al. evaluated a series of THIP analogs and found that iso-THIP is a more potent GABA_C antagonist than THIP, while azathiophene was found to be a more potent competitive antagonist at human ρ GABA_C receptors that is virtually inactive at GABA_A receptors [111].

The methyl-substituted TACA analog, 2-MeTACA, is a competitive ρ GABA_C antagonist. The (R)-isomer of methyl-substituted GABA, (R)-2-MeGABA is also a moderate antagonist at ρ1 and ρ2 GABA_C receptors [97].

The GABA homolog δ-aminovaleric acid, a GABA_A antagonist, and the isoalliouronium CACA analog Z-3-[(aminomethyl)thio]prop-2-enolic acid, a GABA_A agonist [112], are both moderate GABA_C antagonists [33,113].

A series of cyclopentene analogs of GABA was synthesized [114] and their activities at GABA receptors studied [105,106]. Double-bond insertion at the C2–3 position gives the cis-pair of isomers (+) and (–) cis-4-amino-2-cyclopentene-1-carboxylic acid ((±)-4-CACPCA), and the trans-pair of isomers (+) and (–) trans-4-amino-2-cyclopentene-1-carboxylic acid ((±)-4-TACPCA). The cis isomers were found to be weak agonists at human ρ1 and ρ2 GABA_C receptors expressed in Xenopus oocytes [106]. Double-bond insertion specifically at the C1–2 position restricts the movement of the carboxylic acid group and thus gives the isomers...

Figure 3. I-4AA, 5-Ph I-4AA and 5-Me I-4AA.

I-4AA: Imidazole-4-acetic acid.
(+)-4-aminocyclopent-1-enyl carboxylic acid ([+]-4-ACPCA) and (−)-4-aminocyclopent-1-enyl carboxylic acid ([−]-4-ACPCA). (+)-4-ACPCA is a GABA_A antagonist; while (−)-4-ACPCA is largely inactive. This suggests that the (S)-configuration at the amino terminal is preferred at GABA_A receptors [97,106].

During the initial characterization of GABA_A receptors, Woodward et al. found that certain phosphonic acid analogs of GABA, which are potent GABA_A receptor agonists, are also potent GABA_A receptor antagonists, while the phosphonic acid analogs were less potent [113]. Consequently, phosphonic acid analogs of GABA, CACA and TACA that were originally developed as potent GABA_A receptor ligands [115,116], were subsequently studied at GABA_A receptors expressed in Xenopus oocytes [108]. The bioisosteres of GABA, 3-aminomethylphosphonic acid (3-APPA; Figure 4) and 3-aminomethyl(methyl) phosphinic acid (3-APMPA; Figure 4) are among the most potent competitive antagonists at GABA_A receptors. Introduction of unsaturation between C2 and C3 appear to reduce the affinity for GABA receptors, while methyl phosphonic acid analogs are more potent and selective at GABA_A over GABA_B receptors than the H-phosphinic acid counterparts. Nonetheless, despite their activity for the GABA_A receptor, these compounds are also potent GABA_B agonists or antagonists. The poor affinity of phosphinic acids for GABA_A receptors indicates such a bioisostere could be used to differentiate the GABA_A receptors from the GABA_B receptors.

Despite the reduced activity of the phosphonic acid analog of GABA, phosphonic diesters were recently prepared and alkylphosphonic acid analogs of GABA, phosphonic diesters were improved synthetic route by Hanrahan et al. [117] and Dumond et al. [120]. The structure development was based on the observation that isoguvacine is an agonist at both GABA_A and GABA_B receptors but virtually inactive at GABA_A receptors. In stark contrast, 3-APMPA, the methyl phosphinic acid analog of GABA exhibits agonist effects at GABA_A and antagonist effects at GABA_C receptors but is inactive at GABA_A receptors. Therefore, it was reasoned that the incorporation of a tetrahydropyridine ring and the replacement of the carboxylic acid moiety with a methyl phosphonic acid moiety would yield a compound that is inactive at both GABA_A and GABA_B receptors. TPMPA was found to be a potent antagonist at the GABA_A receptors, demonstrating a more than 100-fold selectivity for GABA_A over GABA_B receptors, where it is a weak antagonist. It is approximately 500-times more selective at inhibiting GABA_A than activating GABA_B receptors [118,121]. The saturated pipеридин analog of TPMPA, (piperidin-4-yl)methylphosphinic acid (P4MPA; Figure 5), is also a superior antagonist that is more selective for GABA_A receptors than both GABA_A and GABA_B receptors [122]. The selenic acid analog of P4MPA, piperidin-4-ylseleninic acid (SEPI, Figure 5) is also a potent antagonist at GABA_A receptors [123]. These results suggest that phosphonic and selenic acid analogs of GABA constructed by a ring system are likely to be one of the preferred

![Figure 4. The phosphonic acid analogs of GABA, 3-APPA, 3-APMPA and SGS742 or CGP36742.](image)

APMPA: Aminomethylphosphonic acid; APPA: Aminomethylphosphonic acid; SGS742 (or CGP36742): (3-aminomethyl)-N-butylphosphinic acid.

![Figure 5. TPMPA, P4MPA and SEPI.](image)

P4MPA: (Piperidin-4-yl)methylphosphinic acid; SEPI: Piperidin-4-ylseleninic acid; TPMPA: (1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid.
The investigation of conformationally restricted analogs targeting the GABA_\text{A} receptor continued with the synthesis of a series of alkyl-substituted phosphinic acid cyclopentane analogs. Hanrahan et al. reported the syntheses of the methyl-substituted (±)-cis/trans-3-aminoctylpentane) methylphosphinic acid, ([±]-cis and [±]-trans-3-ACPM, respectively; Figure 6), and the butyl-substituted (±)-cis/trans-3-aminoctylpentane) butylphosphinic acid ([±]-cis and [±]-trans-3-ACP BuPA, respectively; Figure 6) [124]. All of the phosphinic acid analogs are potent GABA\text{A}_C receptor antagonists, with the general trend of being more potent at human \rho_1 and \rho_2 receptors and slightly less potent at rat

\[\rho \text{ receptors expressed in Xenopus oocytes. They are also weak-to-moderate GABA}_{\text{A}} \text{ receptor antagonists and weak GABA}_{\text{B}} \text{ agonists [122]. It was found that (±)-cis-3-ACPM were slightly more potent and, in general, more selective than (±)-trans-3-ACPM at GABA\text{A}_C receptors. A larger substituent on the phosphinic acid moiety led to an increase in selectivity for the GABA\text{A}_C receptor, as activities at both GABA\text{A}_A and GABA\text{A}_B receptors were dramatically diminished, as shown by the N-butyl substituted analogs (Figure 6). However, the larger substituent also caused a reduction in antagonist activity at the same receptor, as compared with the methyl-substituted analogs. The abolishment of activities at both GABA\text{A}_A and GABA\text{A}_B receptors could be attributed to the introduction of the cyclopentane ring system and the phosphinic acid moiety, a similar rationale behind the synthesis of TPMPA. Furthermore, the cis compounds were also observed to be more potent than the trans compounds [125].}

As seen previously, the introduction of unsaturation to the cyclopentane carboxylic acid analogs led to a series of cyclopentene carboxylic acid analogs that converted the compounds from being agonists to potent antagonists. The phosphinic acid moiety, as seen with the straight chain analogs of GABA and the cyclopentane phosphinic acid analogs, also converts the compounds into potent \rho GABA\text{A}_C antagonists. Furthermore, a large alkyl substitution on the phosphinic acid moiety appears to increase a compound’s selectivity for the GABA\text{A}_C receptors, as shown by the cyclopentane butyl phosphinic acid compounds. Therefore, a similar approach was undertaken with some of the cyclopentene analogs, where the carboxylic acid group is replaced with an alkyl phosphinic acid moiety, and the double bond is fixed at the \alpha position of an alkyl phosphinic acid. The synthesis of alkyl-substituted 4-aminoctylpentene-1-ethyl phosphinic acid analogs (4-ACP XPA, where X indicates the alkyl substituent at phosphinic acid; Figure 7) as racemic mixtures and resolved enantiomers, along with their activities at GABA receptors have been reported [107].

In general, all of these analogs are antagonists at both \alpha_1 B_{\text{GABA}_A} \text{ and } \rho_1 \text{ GABA}_{\text{A}} \text{ receptors, with some showing high selectivity for GABA}_{\text{A}} \text{ receptors. These compounds also displayed weak agonist effects at GABA}_{\text{B}} \text{ receptors. An increase in the length of the alkyl substituent led to an increase in selectivity for GABA}_{\text{A}} \text{ receptors, although potencies are reduced. Increasing

Figure 6. The (±)-cis- and (±)-trans-3-ACPM.

Figure 7. (S)- and (R)-4-ACPM and (S)- and (R)-4-ACPM. ACP BuPA: (Aminoctylpentene)methylphosphinic acid. ACPM: (Aminoctylpentene)methylphosphinic acid.
the bulkiness of the substituent, such as the isopropyl- and benzyl-substituted compounds, causes a major reduction in activity at GABA$_C$ receptors. Interestingly, the isopropyl compound was found to be more selective and potent at the GABA$_C$ receptor. It was revealed from the resolved isomers that the (S)-enantiomer is more potent than the (R)-enantiomer.

Kumar et al. also synthesized and studied the activities of the methyl-substituted cyclobutane phosphonic acid analogs cis/trans-3-amino-cyclobutane)methylphosphinic acid (cis/trans-3-ACBMPA), and evaluated their effects on recombinant GABA receptors. They were found to be weak GABA$_C$ antagonists and were inactive at GABA$_A$ receptors [107].

Recently guanidino analogs have been shown to be potent GABA$_C$ receptor antagonists [126] indicating that structural manipulation of the amino-terminal region of GABA can be modified in the search for selective agents. Indeed combining the guanidine moiety with a cyclic phosphinic acid (3-[guanido]-1-oxo-1-hydroxy-phospholane; K$_2$U$_1$)-enantiomer retained an active GABA$_C$ receptor. It was revealed from the Figure 8 led to a potent and selective GABA$_C$ antagonist as opposed to the amino analog, 3-(aminomethyl)-1-oxo-1-hydroxy-phospholane [127]. Furthermore, ‘muscimol-biotin’ derivatives retain GABA$_C$ activity [128]. This is the first amide reported to show activity at these receptors and it can be tethered directly to the receptor, an invaluable tool for visualizing the receptor on cell surfaces [129]. Table 2 summarizes the activities selective antagonists known for the GABA$_C$ receptor.

Modulators of ρ GABA$_C$ receptor activity

GABA$_C$ receptors are insensitive to many GABA$_A$ allosteric modulators, such as benzodiazepines and barbiturates [31]; however, some GABA$_C$ modulators also allosterically modulate GABA$_C$ receptors [34,93]. Zinc (Zn$^2+$) and some divalent cations were found to be negative modulators of GABA$_C$ receptors; while lanthanides act as positive modulators at ρ GABA$_C$ receptors expressed in Xenopus oocytes [130,131]. Synthetic neurosteroids have been shown to exert both positive and negative modulation at the ρ GABA$_C$ receptors in a stereoselective manner [94,132,133]. Recently, lorecsozole and (+)-ROD-188, both positive modulators at GABA$_A$ receptors, were found to be negative modulators at ρ GABA$_C$ receptors [93,134]. In addition, a limited number of flavonoids have also been found to be modulators of GABA$_C$ receptors [135].

GABA$_C$ agents as future therapies

(1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid and related GABA$_C$ antagonists have been patented for the treatment of myopia [136]. TPMPA but not GABA$_B$ antagonists inhibited the form-deprived myopia by displaying parallel inhibition of retinal elongation in the axial and equatorial dimensions. Both TPMPA and P4MPA have been used to study the role of GABA$_C$ receptors in short-term memory formation in young chicks using a single-trial passive and discriminated avoidance task. In these studies, both TPMPA and P4MPA enhanced weakly reinforced memory in a dose- and time-dependent manner [3].

<table>
<thead>
<tr>
<th>Compound</th>
<th>GABA$_A$</th>
<th>GABA$_C$</th>
<th>GABA$_B$</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>TPMPA</td>
<td>Weak antagonist</td>
<td>K$_B$ = 320 µM</td>
<td>ρ_1, K$_B$ = 2.1 µM</td>
<td>Weak agonist</td>
</tr>
<tr>
<td>P4MPA</td>
<td>K$_B$ >100 µM</td>
<td>ρ_1, K$_B$ = 6 µM</td>
<td>ρ_1, K$_B$ = 4.2 µM</td>
<td>>1 mM</td>
</tr>
<tr>
<td>SEPI</td>
<td>IC$_{50}$ = 200 µM</td>
<td>ρ_1, K$_B$ = 9.95 µM</td>
<td>Inactive</td>
<td>[123]</td>
</tr>
<tr>
<td>(+)-cis-ACPBuPA</td>
<td>Inactive <300 µM</td>
<td>ρ_1, IC$_{50}$ = 5 µM</td>
<td>Weak antagonist</td>
<td>[85]</td>
</tr>
<tr>
<td>(+)-trans-ACPBuPA</td>
<td>Inactive <300 µM</td>
<td>ρ_1, IC$_{50}$ = 73 µM</td>
<td>Weak antagonist</td>
<td>[85]</td>
</tr>
<tr>
<td>(R)-ACPBuPA</td>
<td>Inactive at 600 µM</td>
<td>ρ_1, K$_B$ = 59.3 µM</td>
<td>Inactive <300 µM</td>
<td>[107]</td>
</tr>
<tr>
<td>(S)-ACPBuPA</td>
<td>Inactive <600 µM</td>
<td>ρ_1, K$_B$ = 4.97 µM</td>
<td>Inactive <300 µM</td>
<td>[107]</td>
</tr>
</tbody>
</table>

3-GOHP: 3-(guanido)-1-oxo-1-hydroxy-phospholane; ACPBuPA: (Aminocyclopentane)methylphosphinic acid; K_I: Equilibrium dissociation constant for the competitive antagonist; K_B: Inhibitory constant of the antagonist; P4MPA: Piperidin-4-yl)methylphosphinic acid; SEPI: Piperidin-4-ylseleninic acid; TPMPA: (1,2,5,6-tetrahydropyridine-4-yl)methylphosphonic acid.
(1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid has also been used to study GABA\textsubscript{C} receptor function in the retina [137], cerebral cortex zone [138], cerebellum [139], hippocampus [82], lateral geniculate nucleus [77], superior colliculus [140], spinal cord [72], anterior pituitary [141] and duodenum [84].

(1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid has been used to study the involvement of \(\rho \) GABA\textsubscript{C} receptors in sleep–waking behavior [142] and in antinociception in the periphery [143]. In the study by Arnaud \textit{et al}., vehicle and various amounts of TPMPA were randomly infused in the fourth ventricle of the rat [142]. TPMPA induced an increase of waking, which was the consequence of enhancement of both active and quiet wakefulness whereas total slow wave sleep and paradoxical sleep were decreased. It was suggested that \(\rho \) GABA\textsubscript{C} receptor modulators could be potential medications acting at low doses with fewer side effects.

It is not clear whether or not TPMPA crosses the blood–brain barrier on systemic administration but it can be used to delineate the role of \(\rho \) GABA\textsubscript{C} receptors in the periphery. Few researchers focus on GABA receptors outside the brain and it is pertinent that research is carried out in these areas to delineate the role they play there. However, the development of prodrugs for TPMPA along with analogs that either are more lipophilic or can ride the transporters will be of significant benefit to study these receptors centrally.

Finally SGS742, (3-aminopropyl)-\(N \)-butylphosphinic acid (also known as CGP36742; \textbf{Figure 4}), is one of a range of phosphinic acid analogs of GABA that act as GABA\textsubscript{C} antagonists [108]. It was developed as an orally active GABA\textsubscript{B} receptor antagonist [116] and showed therapeutic potential for the treatment of cognitive deficits, petit mal epilepsy and depression [136], reaching Phase II trials for the treatment of cognitive impairment due to Alzheimer’s disease. The discovery that it was also a \(\rho \) GABA\textsubscript{C} receptor antagonist approximately half as potent as at GABA\textsubscript{B} receptors [108] led to the development of cyclopentane analogs in which the conformational flexibility of the

Executive summary

Subunit composition, distribution & function of GABA\textsubscript{C} receptors

- The \(\rho \) GABA\textsubscript{C} receptor is a homopentameric chloride channel belonging to the cys-loop class of receptors.
- Three subtypes exist in mammals (\(\rho \), \(\mu \)) and predominantly reside in the retina, although there is growing evidence that this subunit exists throughout the brain and periphery.
- Knock-out mice models and pharmacological studies show that the \(\rho \) GABA\textsubscript{C} receptors play a role in myopia development, visual processes, and learning and memory.

Agonists at \(\rho \) GABA\textsubscript{C} receptors

- The \(\rho \) GABA\textsubscript{C} receptors have a unique pharmacology. These receptors are not blocked by bicuculline or activated by baclofen.
- Selective agonists include cis-aminocrotonic acid (CACA), (+)-(aminomethyl)cyclopropanecarboxylic acid (\(+\)-CAMP) and the imidazole-4-acetic acid (I-4AA) derivatives, 5-Ph-I-4AA and 5-Me-I-4AA.
- The I-4AA derivatives are more lipophilic than other selective agonists and may be important molecules to ascertain the physiological role of \(\rho \) GABA\textsubscript{C} receptors in vivo.

Antagonists at \(\rho \) GABA\textsubscript{C} receptors

- Selective antagonists for the \(\rho \) GABAC receptor include 1,2,5,6-tetrahydropyridine-4-yl)methylphosphinic acid (TPMPA), and substituted 4-aminocyclopent-1-enyl and 3-aminocyclopentanyl alkylphosphinic acids.
- Studies show that the phosphinic bioisostere imparts selectivity to GABA\textsubscript{C} over GABA\textsubscript{A} receptors and the conformationally restricted rings systems, such as piperidine and cyclopentanes impart selectivity for GABA\textsubscript{C} over GABA\textsubscript{B} receptor.

GABA\textsubscript{C} agents as future therapies

- SGS742, the butyrophosphinic acid analog of GABA, is a potent antagonist at both GABA\textsubscript{A} and GABA\textsubscript{C} receptors.
- SGS742 reached Phase II clinical trials for Alzheimer’s disease. It is not clear whether the enhanced learning and memory exerted by SGS742 is via the GABA\textsubscript{B} or GABA\textsubscript{C} receptor.
- Evidence is growing to suggest that \(\rho \) GABA\textsubscript{C}-selective antagonists, including TPMPA and (\(\pm \))-3-(aminocyclopentane)methylphosphinic acid, enhance learning and memory.
- TPMPA and (\(\pm \))-cis-3-(aminocyclopentane)methylphosphinic acid also inhibit myopia development.
- Future studies are required to ascertain the mechanism of action of \(\rho \) GABA\textsubscript{C} receptors in both myopia development and learning and memory.
- The role of \(\rho \) GABA\textsubscript{C} receptors in the periphery remains unexplored.
3-aminopropyl moiety was constrained. These cyclopentane analogs were inactive at GABA$_A$ receptors but retained the GABA$_C$ receptor antagonist activity of SGS742. Of particular interest is (±)-cyclopentyl-3-aminopropyl moieties, which was shown to be a selective GABA$_C$ receptor antagonist with enhanced learning and memory following intraperitoneal injection in rats and inhibited the development of myopia on intravitreal injection in chicks [85]. (±)-cyclopentyl-3-aminopropyl and related cyclopentane and cyclopentene analogs have been patented for use in enhancing cognitive activity [202,203]. Thus, selective GABA$_C$ receptor ligands may become important agents for therapy not only of myopia and learning, and memory-related disorders but also the treatment of pain and sleep disorders.

Financial & competing interests disclosure
The authors have no relevant affiliations or financial involvement with any organization or entity with a financial interest in or financial conflict with the subject matter or materials discussed in the manuscript. This includes employment, consultancies, honoraria, stock ownership or options, expert testimony, grants or patents received or pending, or royalties.

No writing assistance was utilized in the production of this manuscript.

Bibliography
Papers of special note have been highlighted as:
• of interest
•• of considerable interest
4 First report of GABA$_C$ receptors being involved in memory formation. In this report the effects of GABA$_C$ were opposite to those of GABA$_A$ receptors.
The first report of cis-a-aminoacrotic acid (CACA), a conformationally restricted analog of GABA in a folded conformation. The study showed that bicuculline could not inhibit the inhibitory effect of CACA on cat spinal cord neurons and was thus not acting on what became known as GABA_4 receptors.

vascular leakage occurring in GABA rho-1
altered but not eliminated in the superior
GABA
Schlicker K, McCall MA, Schmidt M.
alters visual processing in the mouse retina
abolishes GABA
Peachey NS. Elimination of the
Gene expression and localisation of GABA
Fletcher EL, Clark MJ, Senior P, Furness JB.
J.
Jansen A, Hoepfner M, Herzig K-H,
Ogurusu T, Shingai R. Cloning of a putative
Eur.
Eggers ED, Lukasiewicz PD. GABA(A),
receptor-mediated inhibition in the retina.

Inhibition differentially affects light-evoked
to retinal synaptic responses
receptors confer distinct temporal properties
inhibition in the retina
Eggers ED, Lukasiewicz PD, Sagdullaev BT,
McCall MA. GABA(C) receptor-mediated
inhibition in the retina.

Lukasiewicz PD, Shields CR. Different
combinations of GABA(A) and GABA(C)
receptors confer distinct temporal properties
to retinal synaptic responses.

Rozzo A, Armellin M, Franzot J,
Chiariuttini C, Nistri A, Tongiorgi E.
Expression and dendritic mRNA localization of
GABA1 receptor and subunit
in developing rat brain and spinal cord.

Ogurusu T, Shingai R. Cloning of a putative
GABA(A) receptor subunit

Jansen A, Hoepfner M, Herzig K-H,
Riecken E-O, Schertlüb H. GABA
receptors in neuroendocrine gut cells: a new GABA-
binding site in the gut.

Fletcher EL, Clark MJ, Senior P, Furness JB.
Gene expression and localization of GABA1
receptors in neurons of the rat gastrointestinal tract.

McCall MA, Lukasiewicz PD, Gregg RG,
Peachey NS. Elimination of the
subunit abolishes GABA1 receptor expression and
alters visual processing in the mouse retina.

The development of the
knock-out mouse.
Schlicker K, McCall MA, Schmidt M.
GABA1 receptor-mediated inhibition is altered but not eliminated in the superior colliculus of GABA1 knockout mice.

Zheng W, Zhao X, Wang J, Lu L. Retinal
vascular leakage occurring in GABA rho-1 subunit deficient mice.

119 Design and development of the first potent and selective GABA receptor antagonist, (1,2,5,6-tetrahydropropyridine-4-yl) methylphosphinic acid.

Reis GM, Duarte ID. Involvement of chloride channel coupled GABA(C) receptors in the peripheral antinociceptive effect induced by GABA(C) receptor agonist cis-4-aminocrotonic acid. *Life Sci.* 80, 1268–1273 (2007).

Patents