Nanoscale Device Design and Information Processing

Nanoscale Device Design and Information Processing

The Sydney Nano Foundational Program in Nanoscale Device Design and Information Processing focuses on the design, fabrication and characterisation of nano-engineered device technologies, including next-generation quantum technologies. A major part of this program involves quantum information theory for applications to quantum computing.

Current Research Areas and Projects 
Quantum computing
Spin Qubit Multi-Qubit Coherent Operations David ReillyStephen BartlettAndrew Doherty
Certified Topological Quantum Computation Steven Flammia
Efficient and Device-independent Characterization for Fault-tolerant Quantum Computing Steven Flammia
Photonic Quantum Characterisation, Verification and Validation Stephen Bartlett
Metamaterial devices
Analytical and experimental optimisation of drawing metal-in-dielectric composites to manufacture engineered metamaterials Geoffrey BartonSimon Fleming
Terahertz metamaterial waveguides: a platform to create the next generation of compact THz devices Shaghik Atakaramians
Diagnosing quantum noise sources in quantum information processors via machine learning Steven Flammia
Enabling semiconductor nanowire technologies via 3D atomic-scale insight Simon RingerRongkun Zheng
Hybrid plasmonic waveguide for integrated photonic signal processing Stefano PalombaMartijn De Sterke
Glass micro- and nano-smithing of devices and sensors for extreme environments John Canning

Quantum control for mesoscale quantum machines Michael Biercuk
Enhancing ductility of bulk metallic glasses via nano-structural manipulation Xiaozhou Liao
Combining new concepts in the theory of nonlinear optics with advanced experiments Benjamin Eggleton
Information Processing with Small Quantum Computers Marco Tomamichel