News

Scientists pave way for nanodiamonds to trace early cancers


12 October 2015


The EQUS research team. From Left: David Waddington, Thomas Boele, Torsten Gaebel, Professor David Reilly and Lead author Ewa Rej
The EQUS research team. From Left: David Waddington, Thomas Boele, Torsten Gaebel, Professor David Reilly and Lead author Ewa Rej

Research published in Nature Communications reveals how nanoscale 'diamonds' can light up early-stage cancers in MRI scans

Physicists at the ARC Centre of Excellence for Engineered Quantum Systems have devised a way to use diamonds to target tumours before they become life threatening. Published in Nature Communications, the findings show how a nanoscale, synthetic 'diamond' can light up early-stage cancers in MRI scans

This is a great example of how quantum physics tackles real-world problems—opening the way for us to image and target cancers - Professor David Reilly

Their findings, reveal how a nano-scale, synthetic version of the precious gem can light up early-stage cancers in non-toxic, non-invasive Magnetic Resonance Imaging (MRI) scans.

Targeting cancers with tailored chemicals is not new but scientists struggle to detect where these chemicals go since, short of a biopsy, there are few ways to see if a treatment has been taken-up by a cancer.

Led by Professor David Reilly from the School of Physics, researchers from the University investigated how nanoscale diamonds could help identify cancers in their earliest stages.

"We knew nano diamonds were of interest for delivering drugs during chemotherapy because they are largely non-toxic and non-reactive," says Professor Reilly.

"We thought we could build on these non-toxic properties realising that diamonds have magnetic characteristics enabling them to act as beacons in MRIs. We effectively turned a pharmaceutical problem into a physics problem."

Professor Reilly's team turned its attention to hyperpolarising nano-diamonds, a process of aligning atoms inside a diamond so they create a signal detectable by an MRI scanner.

"By attaching hyperpolarised diamonds to molecules targeting cancers the technique can allow tracking of the molecules' movement in the body - Lead author Ewa Rej

"This is a great example of how quantum physics research tackles real-world problems, in this case opening the way for us to image and target cancers long before they become life-threatening," says Professor Reilly.

The next stage of the team's work involves working with medical researchers to test the new technology on animals. Also on the horizon is research using scorpion venom to target brain tumours with MRI scanning.

Scanning Electron Microscopy (SEM) images of nanodiamonds
Scanning Electron Microscopy (SEM) images of nanodiamonds

The research documented in the paper Hyperpolarized Nanodiamond with Long Spin Relaxation Times was done by the ARC Centre of Excellence for Engineered Quantum Systems at the University's School of Physics.

The original paper can be read in the journal Nature Communications

EQUS is an Australian Research Council Centre of Excellence for Engineered Quantum Systems.


Contact: Verity Leatherdale

Phone: 02 9351 4312

Email: 1a0e06461b1819580e2c36180d10075504350e2a3b522103336533101d175731