Quantum Control with Trapped Ions

Summary

This project aims to develop novel techniques for the control of quantum systems using trapped atomic ions.

Supervisor(s)

Dr Michael J. Biercuk

Research Location

School of Physics

Program Type

Masters/PHD

Synopsis

A primary focus of our research on trapped ions is the development of efficient and robust control techniques for arbitrary quantum systems in the presence of environmental noise. Decoherence - the decay of the "quantumness" of a state - is a major challenge for any quantum system, and requires a dedicated effort to produce error-resistant approaches to quantum control.

Open-loop coherent control protocols provide a means to dynamically suppress random errors in quantum systems, addressing a primary challenge in quantum technology. Our work aims to expand the efficacy and applicability of dynamical decoupling for use in any coherent technology - establishing a fundamental role for these techniques as quantum firmware. We have recently formulated an efficient and user-friendly "filter-design" framework to understanding the performance of various open-loop control protocols. Outstanding challenges include the suppression of universal decoherence, the development of new optimization techniques, and the dynamical protection of nontrivial logic operations.

Our experimental efforts employ trapped atomic ions as a model quantum system, and permit detailed studies of quantum dynamics in noisy environments.

The Quantum Control Laboratory, housed in the National Measurement Institute, is a world-class research facility. Experience gained in this project will cover atomic physics, light-matter interaction, magnetic resonance, microwave systems, and quantum control.

Want to find out more?

Contact us to find out what’s involved in applying for a PhD.

Contact Research Expert to find out more about participating in this opportunity.

Browse for other opportunities within the School of Physics .

Keywords

physics, Quantum Physics, Quantum Science, Quantum Information, Quantum Computing, Quantum Control, Ion Trapping, Atomic Physics, Laser Physics, Quantum Simulation

Opportunity ID

The opportunity ID for this research opportunity is: 1432

Other opportunities with Dr Michael J. Biercuk