Protein self-assembly in nature and disease

Summary

The project aims to understand the self-assembly of proteins into stable, fibrillar beta-sheet structures which underlies many amyloid diseases, such as Alzheimer’s disease, as well as many functional processes in microorganisms, such as the development of robust hydrophobic coatings on fungal spore surfaces and the interaction between bacteria and host cell surfaces.

Supervisor(s)

Dr Margaret Sunde

Research Location

School of Molecular Bioscience

Program Type

Masters/PHD

Synopsis

The formation of stable, fibrillar protein assemblies is associated with many disease states, including Alzheimer’s disease and Type II diabetes. These are non-functional deposits. Protein aggregates that have similar structural features but which are functional have been identified in several microorganisms. In these cases the self-assembly of the protein is advantageous to the organism. For example, hydrophobins are fungal proteins that self-assemble in an ordered manner into amphipathic films at air:water interfaces. They reduce the surface tension at air:water boundaries and form very hydrophobic coatings on fungal spore surfaces which facilitate dispersal in air. Hydrophobin assemblies share the ordered beta-sheet structural core that has been characterized in amyloid deposits. We are interested in studying the biophysical and structural basis for the self-assembly of hydrophobins and other amyloidogenic proteins. Hydrophobin monolayer formation is a unique system that combines protein self-assembly with the generation of functional surfaces. These remarkable properties suggest a range of commercial applications, including biocompatibility enhancement of medical implants and emulsion and dispersion applications in foods and pharmaceuticals. This project involves using mutagenesis to probe the effect of sequence on hydrophobin structure and the study of the self-assembly process with techniques such as fluorescence, nuclear magnetic resonance, X-ray fibre diffraction and electron microscopy. Our work aims to develop a detailed picture of hydrophobin organisation within surface films. We hope to manipulate the self-assembly properties of the hydrophobins for the rational design of novel biological polymers and to design molecules that inhibit fungal spore dispersal and colonisation.

Additional Information

Molecular biology, protein expression and purification, nuclear magnetic spectroscopy (NMR), X-ray fibre diffraction, electron microscopy.

Want to find out more?

Contact us to find out what’s involved in applying for a PhD.

Contact Research Expert to find out more about participating in this opportunity.

Browse for other opportunities within the School of Molecular Bioscience .

Keywords

Proteins, self-assembly, hydrophobin, structure, amyloid, Brain & nervous system disorders, Infectious diseases, Cell biology, Human body

Opportunity ID

The opportunity ID for this research opportunity is: 42