CHEM3X17
 Spectroscopy and Quantum Theory 2013

Assignment 1

(Symmetry)
Due Date: 10AM Wednesday Week 9 (at lecture)
Submitted to:

This assignment is worth 5\% of your assessment for this Unit of Study*
1.\&selected 2. What are the point groups of:
(a) $\mathrm{HCl} \quad \mathrm{C}_{\infty \mathrm{v}}$
(b) eclipsed ferrocene $\quad \mathbf{D}_{5 h}$

Symmetry elements: E, $2 \mathrm{C}_{5}, 2 \mathrm{C}_{5}^{2}, 5 \mathrm{C}_{2}$, $, \mathrm{\sigma}_{\mathrm{h}}, 2 \mathrm{~S}_{5}, 2 \mathrm{~S}_{5}^{2}, 5 \sigma_{\mathrm{v}}$

(c) allene $D_{2 d}$

Symmetry elements: $\mathrm{E}, 2 \mathrm{~S}_{4}, \mathrm{C}_{2}, 2 \mathrm{C}_{2}{ }^{\prime}, 2 \sigma_{\mathrm{d}}$

(d) allyl radical $\quad \mathrm{C}_{2 \mathrm{v}}$

Symmetry elements: $\mathrm{E}, \mathrm{C}_{2}, 2 \sigma_{\mathrm{v}}$

$\sigma_{\mathrm{v}}(\mathrm{yz})$ and $\sigma_{\mathrm{v}}(\mathrm{xz})$ planes
(e) The Great Pyramid of Giza (ideally...) $\mathrm{C}_{4 \mathrm{v}}$

Symmetry elements: $\mathrm{E}, 2 \mathrm{C}_{4}, \mathrm{C}_{4}{ }^{2}, 2 \sigma_{\mathrm{v}}, 2 \sigma_{\mathrm{d}}$

(f) The ion cis-[Co(en) $\left.)_{2} \mathrm{Cl}_{2}\right]^{+}$ Symmetry elements: E, C_{2}

2 marks each for point group, 8 marks for list and draw all symmetry elements
$2+4+2+2+12+4+6+4+4$
3. Propadienylidene, : $\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$, is a known interstellar molecule. It is a carbene - a carbon molecule with a divalent carbon atom, in this case bearing a lone pair. We may consider the valence orbitals of the carbon atoms to be $2 \times \mathrm{sp}$ and $1 \times \mathrm{sp}^{2}$ hybridized:
(a) What is the point group of: $\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$? $\quad \mathrm{C}_{2 \mathrm{v}}$ (2 marks)
(b) Sketch the symmetry adapted combinations of the 1 s orbitals of the H atoms in : $\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ and label the symmetries of these orbitals (molecule in $y z$ plane).

(4 marks, $\mathbf{2}$ for diagrams, 2 for labels; you should know this it is just like the $\mathbf{H}_{\mathbf{2}} \mathbf{O}$ example in the lectures and you can just draw them and write down the symmetries by inspection)
(c) Determine the symmetries of the unhybridized $2 \mathrm{p}_{x}$ and $2 \mathrm{p}_{y}$ orbitals of the C atoms.
$\mathbf{2 p}_{\mathrm{x}}$ orbitals have symmetry B_{1}. $\mathbf{2} \mathbf{p}_{\mathrm{y}}$ orbitals have symmetry \mathbf{B}_{2}. You can read the symmetries straight from the character table in terms of the symmetries of the x and y vectors.

ASIDE:

There are $\mathbf{3} \mathbf{2} p_{x}$ orbitals and $\mathbf{3} \mathbf{2} p_{y}$ orbitals with symmetry B_{2}. One of the $\mathbf{2} p_{y}$ orbitals (on the bottom \mathbf{C} atom) helps form the σ-bonds with the two hydrogen atoms, interacting with the \mathbf{B}_{2} symmetry orbital above.

Four of the remaining $2 p_{x}$ and $2 p_{y}$ orbitals must make the π and π^{*} bonding and antibonding orbitals. The "left over" $2 p_{x}$ orbital goes into an approximately non-bonding orbital. (ie the three $\mathbf{2} \mathbf{p}_{\mathrm{x}}$ orbitals form the combinations +++, +.-, and +-+).
(2 marks for $\mathbf{2} p_{x}$ as B_{1} and $\mathbf{2} p_{y}$ as \mathbf{B}_{2}, both of which should be read straight from the character table)
(d) How many valence electrons are there? How many of these are tied up in σ bonds?

Each carbon has 4 valence electrons (ie $2 s^{2} 2 p^{2}$) and each hydrogen has 1 valence electron (ie $1 \mathrm{~s}^{1}$) so there are 14 valence electrons total.

The σ bonding framework has 4 bonds, each bond has 2 electrons so 8 electrons are tied up in σ bonds. (TIP: read the question!)
(2 marks total)
(e) The first excited state, S_{1}, has A_{2} electronic symmetry. Construct a molecular orbital diagram of : $\mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ which includes the lone pair, and the MOs which arise from the unhybridized 2 p orbitals (i.e. exclude the σ-bonding and σ^{*}-antibonding orbitals). Label all symmetries, and indicate relative orbital energies. There should be 6 MOs in this diagram, and it should be consistent with a HOMO-LUMO transition giving rise to an A_{2} electronic state.

The lone pair orbital on the end carbon atom has \mathbf{A}_{1} symmetry (ie comes from part of the $\mathbf{2} \mathbf{p}_{z}$ orbital). As per the diagram of the propadienylidene molecule, there is a lone pair and this orbital must therefore be one of the three occupied orbitals. (This is analogous to the ketene example I did for you in the lectures!). The other two occupied orbitals must be the two π bonds, which must be different symmetry, so must be B_{1} and B_{2} symmetry. The unoccupied $\pi *$ orbitals must therefore also be two B_{1} and one B_{2}.

Symmetry does not tell you the energetic order of these orbitals... You need to either use your chemical intuition (eg count the number of nodes), do a calculation or refer to experiment...

However, the only two ways a HOMO-LUMO transition can give rise to an A_{2} electronic state are HOMO is b_{1} and LUMO is $b_{2} O R$ HOMO is b_{2} and LUMO is b_{1} (ie $b_{1} \otimes b_{2}=b_{2} \otimes b_{1}=a_{2}$ and thus the a_{1} orbital cannot the HOMO).

At this point either option would have received full marks because of the way the question was worded.

Jumping ahead to part (g), however, you are told that the second excited state (which is either the transition SHOMO to LUMO or HOMO to SLUMO, ie transitions involving the second HOMO or the second LUMO) has symmetry B_{1}.

The only way you can get B_{1} from a_{1}, b_{1} and b_{2} orbitals is $a_{1} \otimes b_{1}$, so one of the SHOMO or SLUMO orbitals has to have a_{1} symmetry. But the a_{1} orbital is the lone pair and we have already reasoned that this is an occupied orbital. Thus, the SHOMO must have a a_{1} symmetry and the LUMO must therefore have b_{1} symmetry. Working backwards, the HOMO must thus have b_{2} symmetry. This gives rise to the MO diagram below. In this diagram I have included all 14 valence orbitals (with pictures) and all 14 valence electrons. The σ / σ^{*} orbitals are black and the $\mathbf{6}$ you are asked to draw are red. (I've taken red lobe as +ve and blue lobe as -ve).

For this diagram (or with the HOMO and LUMO symmetries reversed) 12 marks Lose 2 marks for drawing the a_{1} lone pair orbital as an unoccupied orbital Lose 2 marks for any other error...
(f) Is the transition to the lowest excited state, S_{1}, electronically allowed? Why, or why not?

No

For an allowed transition from Ψ_{0} to Ψ_{1} we must have $\left\langle\Psi_{1}\right| \mu\left|\Psi_{0}\right\rangle \neq 0$.
From the MO diagram above the ground state, Ψ_{0}, has A_{1} symmetry, ie 7 of the valence orbitals are filled and:
$\left(a_{1}\right)^{2} \otimes\left(a_{1}\right)^{2} \otimes\left(a_{1}\right)^{2} \otimes\left(b_{2}\right)^{2} \otimes\left(b_{1}\right)^{2} \otimes\left(a_{1}\right)^{2} \otimes\left(b_{2}\right)^{2}=A_{1}$,
(ie the 3 "important" highest occupied orbitals in red).
The excited state, Ψ_{1}, has \mathbf{A}_{2} symmetry so we need $\Psi_{1} \otimes \mu=\mathbf{A}_{2}$ for the transition moment integral to be non-zero. That is, one of the components of $\mu: \mu_{x}, \mu_{y}, \mu_{z}$, must transform as \mathbf{A}_{2} for integral to be $\neq 0$. However, there is no vector component with A_{2} symmetry so the electronic transition to S_{1} is forbidden.
(4 marks 1 for no, 1 for $\mathbf{A 1}$ ground state 1 for transforms as vector)
(g) Combining the A_{2} electronic state with vibrational states of which symmetries give rise to allowed vibronic transitions?
we need $\Psi_{1} \otimes \Gamma_{\text {vib }}$ to have the same symmetry as $\mu_{\mathrm{x}}, \mu_{\mathrm{y}}$ or μ_{z}, ie $\mathbf{B}_{1}, \mathbf{B}_{2}$ or \mathbf{A}_{1}. Now:
$\mathbf{A}_{2} \otimes \mathbf{A}_{1}=\mathbf{A}_{2}$ - forbidden
$\mathbf{A}_{2} \otimes \mathbf{A}_{2}=\mathbf{A}_{1}$ - allowed
$A_{2} \otimes B_{1}=B_{2}$ - allowed
$A_{2} \otimes B_{2}=B_{1}$ - allowed
Thus vibrations with $\mathbf{A}_{2}, \mathbf{B}_{1}$ or \mathbf{B}_{2} symmetry may give rise to a vibronic transition. (6 marks, 2 each for the allowed vibrational symmetries)
(h) The next lowest excited state, S_{2}, has B_{1} symmetry. On your MO diagram, indicate which electronic transition(s) could contribute to this state.

See part (e) for reasoning of orbital order and the transitions are drawn in with an arrow and red electron spin.

There are 2 possible transition from the a_{1} occupied lone pair orbital to either of the b_{1} unoccupied orbitals. We do not know the energies of the orbitals (they may be very close in energy...) so we cannot judge whether the lower energy transition dominates and we have to assume that the \mathbf{S}_{2} state has some character from both of these configurations. (4 marks, 2 each)
(i) The transition to the S_{1} state is indeed observed, due to intensity borrowing (stealing) from the S_{2} state. Thus, which vibrational symmetry is responsible for the coupling?

Need $\Psi_{1} \otimes \Gamma_{\text {vib }}$ to have the same symmetry as S_{2} (ie B_{1} symmetry). $\mathbf{A}_{2} \otimes \mathbf{B}_{2}=B_{1}$, so vibration responsible for the coupling must have B_{2} symmetry.
(4 marks 2 for need to be same symmetry as S_{2}, and 2 for identifying B_{2} vibration)
4. Vibrational spectroscopy can be used to help determine or confirm molecular structures: For example, and your entertainment, the structure of hydrogen peroxide can be figured out from its gas-phase infrared spectrum.
a) Draw trans, cis and gauche structures of $\mathrm{H}_{2} \mathrm{O}_{2}$, and assign these structures to point groups.

trans	cis	gauche

(6 marks, 2 marks each)
b) Two infrared transitions are observed in the O-H stretching region, the symmetric and antisymmetric O-H stretches. Draw these two modes for each of the three structures (draw six modes, using arrows to indicate relative motion).
c) What are the symmetries of these six modes in the respective point groups? Which are IR active?

trans	cis	gauche

((b): $\mathbf{6}$ marks, one mark for each stretch; (c) $\mathbf{1 2}$ for symmetries of stretches, $\mathbf{2}$ marks each, $\mathbf{6}$ marks for IR active or inactive, 1 mark each)
d) Which structure can you now rule out? Why?

We can rule out the trans structure as it only has one IR active vibration in the $\mathbf{O H}$ stretching region of the IR spectrum whereas two are observed experimentally.
(2 marks: 1 for trans 1 for why)
e) What symmetry is the HO-OH torsion in each point group? If the torsional mode is observed, what is the structure of hydrogen peroxide, given all the information?

Torsion is the "book opening and closing", with the OH bonds wagging toward or away from each other.

trans	cis	gauche
A_{u} symmetry IR active	A_{2} symmetry IR inactive	A symmetry IR active

(6 marks total, 2 marks each for identifying the symmetry of the torsions for each conformer)

Given we have already eliminated the trans conformer, and we are deciding between cis and gauche, the torsion is only IR active for the gauche conformer, therefore $\mathrm{H}_{2} \mathrm{O}_{2}$ must be gauche. (2 marks)

NB reversing the direction of one of the arrows above actually corresponds to overall rotation of the molecule about the $\mathbf{O - O}$ bond (a lot of you did this...), that is:

trans	cis	gauche
B_{g} symmetry (for molecule in xy plane) Rotation about OO bond	B_{1} symmetry (for molecule in yz plane) Rotation about OO bond	B symmetry Rotation about OO bond

f) Use a basis of vectors and a knowledge about how the $\mathrm{H}_{2} \mathrm{O}_{2}$ translations and rotations transform, in the point group you have figured out, to determine the symmetries of all the vibrations in $\mathrm{H}_{2} \mathrm{O}_{2}$.

C_{2}	E	C_{2}
$\chi\{\mathbf{x}, \mathrm{y}, \mathrm{z}\}$	3	-1
\# atoms that stay	4	0
in the same place		
$\Gamma_{\text {red }}$	12	0

You can reduce $\Gamma_{\text {red }}$ by inspection to $6 \mathrm{~A}+6 \mathrm{~B}$; ie there are only 2 irreducible representations, A and B and both have character 1 for the identity, E, but A has character 1 for C_{2} and B has character -1 . The only way we can get 0 for C_{2} is equal numbers of A and B but we need a total of 12 irreducible representation (ie 12 in the E column above) so we must have 6 each of A and B.

You could also project out the number of A and B irreducible representations.

C_{2}	E	C_{2}	
A	1	1	
B	1	-1	
$\Gamma_{\text {red }}$	12	0	
\#A	$(+12$	$+0) / 2$	$=6$
\#B	$(+12$	$+0) / 2$	$=6$

ie $\Gamma_{\text {red }}=6 A+6 B$
In the \mathbf{C}_{2} point group, reading straight from the character table, the translations transform as $A+2 B$ and the rotations transform as $A+2 B$. Subtracting these, the vibrations transform as $4 A+2 B$ (ie 6 vibrations total; $3 N-6=3 \times 4-6=6$).
(9 marks total, 2 for \# atoms that stay in the same place, 2 for $\Gamma_{\text {red }}, \mathbf{3}$ for reducing to 6 A $+6 B$ and 2 for subtracting off the translations and rotations giving vibrations as $\Gamma_{\text {vib }}=4 \mathrm{~A}+2 \mathrm{~B}$)
g) What are the symmetries of the missing vibrational modes? (i.e., after accounting for the $\mathbf{2} \times$ O-H stretches and torsion) Draw them.

We have counted $\mathbf{A}+\mathbf{B}$ for the $\mathbf{O H}$ stretches and \mathbf{A} for the torsion so there are three vibrations, $2 A+B$, to account for.

One is the $\mathbf{O}-\mathbf{O}$ stretch which is totally symmetric and has A symmetry.
The other two are the $\mathbf{O}-\mathbf{O}-\mathbf{H}$ bending vibrations, one of which is symmetric with A symmetry, the other is antisymmetric with B symmetry.

$O-O$ stretch	$O-O-H$ symmetric bend	$O-O-H$ antisymmetric bend
A symmetry	A symmetry	B symmetry

(6 marks total, $\mathbf{1}$ for each drawing, $\mathbf{1}$ for assigning each symmetry)
Note: It is a condition of submitting this assignment that it is entirely your own work. The University has substantial penalties for plagiarism. You can find further information about plagiarism and University policy from the University's web site.

