
Orthogonal Polynomials

� Introduction

Mathematically orthogonal means perpendicular� that is� at right angles� For example� the set of vectors
fx� y� zg in three�dimensional sppace are orthogonal� The concept of orthogonality can be formalised� with
respect to vectors� as

x � y � �� x � z � �� y � z � ��

that is� the dot product of two orthogonal vectors is zero� Indeed the set of vectors fx� y� zg is an orthogonal

set� If fx� y� zg are all unit vectors we say that fx� y� zg is an orthonormal set of vectors� Orthogonal vectors
are linearly independent and fx� y� zg therefore spans three�dimensional space� Thus any point in space
may be written in terms of its components in the x� y and z directions �or indeed in terms of components
in the directions of any three orthogonal vectors�� In this way fx� y� zg forms a basis for three�dimensional
space�

��� Orthogonal Functions

Two functions� fi�x� and fj�x�� are orthogonal on an interval �a� b	 if

Z b

a

fi�x�fj�x�dx � � �
�

Mathematically we say that the inner product of the functions fi�x� and fj�x� is zero� The functions are
orthonormal if Z b

a

fi�x�fj�x�dx � �ij ���

where

�ij � 
 i � j

� � i �� j

is the Kronecker delta function�

� Orthogonal Polynomials

A set of orthogonal polynomials is an in�nite sequence of polynomials� p��x�� p��x�� p��x�� � � �� where pn�x�
has degree n and any two polynomials in the set are orthogonal to each other� that is�

Z b

a

fi�x�fj�x�dx � � for i �� j ��

The set of polynomials is orthonormal if

Z b

a

fi�x�fj�x�dx � �ij ���

The interval �a� b	 is called the interval of orthogonality and may be in�nite at one or both ends�






Any in�nite sequence of polynomials fpng� with pn having degree n forms a basis for the in�nite�dimensional
vector space of all polynomials� Such a sequence can be turned into an orthogonal basis using the Gram�

Schmidt orthogonalisation process� by projecting out the components of each polynomial that are orthog�
onal to the polynomials already chosen�

��� Hilbert Space

Hilbert �David Hilbert 
����
��� space generalises the idea of Euclidean space �that is� three�dimensional
vector space etc� to in�nite�dimensional spaces� Mathematically� a Hilbert space is an inner product space
that is complete�

Hilbert spaces typically arise as in�nite�dimensional function spaces� An element of a Hilbert space can
be expressed by its coordinates with respect to an orthonormal basis of the space �directly analogous to
fx� y� zg coordinates in three�dimensional vector space��

Note�

Complete means that as a sequence of functions approaches some limit� then the limit is also part of the
Hilbert space� For example� if a molecular wave function is expanded in terms of orthogonal basis functions
of a Hilbert space� then the molecular wavefunction is also an element of the Hilbert space�

The concept of Hilbert space o�ers one of the best mathematical formulations of quantum mechanics�
Quantum mechanical states �wavefunctions� are described by vectors in a Hilbert space� quantum mechan�
ical observables can be expressed by linear operators and quantum measurement is related to orthogonal
projection�

��� Properties of Orthogonal Polynomials

All sets of orthogonal polynomials have a number of fascinating properties�

� Any polynomial f�x� of degree n can be expanded in terms of p�� p�� � � � pn� that is� there exist
coe�cients ai such that f�x� �

Pn
i�� aipi�x��

� Given an orthogonal set of polynomials fp��x�� p��x� � � �g� each polynomial� pk�x� is orthogonal to
any polynomial of degree � k�

� Any orthogonal set of polynomials fp��x�� p��x� � � �g has a recurrence formula that relates any three
consecutive polynomials in the sequence� that is� the relation pn�� � �anx� bn�pn � cnpn�� exits�
where the coe�cients a� b and c depend on n� Such a recurrence formula is often used to generate
higher order members in the set�

� Each polynomial in fp��x�� p��x� � � �g has all n of its roots real� distinct and strictly within the
interval of orthogonality �ie not on its ends�� This is an extremely unusual property� It is particularly
important when considering the classes of polynomials that arise as quantum mechanical solutions to
a given Hamiltonian �or other Hermitian� operator � see below�

� Furthermore the roots of the nth degree polynomial� pn lie strictly inside the roots of the �n � 
�th

degree polynomial pn���

�



��� Examples of Orthogonal Polynomials

The �eld of orthogonal polynomials was developed in the late 
�th century and many of the sets of orthog�
onal polynomials described arose from descriptions of speci�c physical problems�

Legendre Polynomials

These polynomials are orthogonal on the interval ��
� 
	� They arise as solutions to Legendre�s di�erential
equation �Adrien�Marie Legendre 
����
���

�
� x��
��P �x�

�x�
� �x

�P �x�

�x
� �P �x� � � with � � n�n� 
� ���

This equation is frequently encountered in Physics� particularly when spherical polar coordinates are used
and where the problem has cylindrical symmetry� Legendre polynomials form part of the quantum me�
chanical solution for rotational motion�

P��x� � 


P��x� � x

P��x� �



�
�x� � 
�

P��x� �



�
��x� � x�

P��x� �



�
��x� � �x� � �

P��x� �



�
��x� � ��x� � 
�x�

P��x� �




�
��
x� � 
�x� � 
��x� � �� � � �

Laguerre Polynomials

The Laguerre polynomials� Ln are solutions to Laguerre�s di�erential equation �Edmond Laguerre 
���

�����

x
�L�n
��Ln

� �
� x�
�Ln

�x
� �Ln � � with � � n ���

This equation arises in the radial part of the Hamiltonian for one�electron atoms�

L��x� � 


L��x� � �x� 


L��x� �



�
�x� � �x� ��

L��x� �



�
��x� � �x� � 
�x� ��

L��x� �



��
�x� � 
�x� � ��x� � ��x� ���

L��x� �




��
��x� � ��x� � ���x� � ���x� � ���x� 
��x�

L��x� �



���
�x� � �x� � ���x� � ����x� � ����x� � ���x� ���� � � �

The Laguerre polynomials are orthogonal over the interval ������ with respect to the weight function e�x�
Indeed the radial component of the wavefunction of the one�electron atom is obtained by multiplying the
Laguerre polynomials by e�x





Hermite Polynomials

Hermite polynomials� Hn�x�� arise as part of the solution to the quantum harmonic oscillator Hamiltonian�
They are solutions to Hermite�s equation �Charles Hermite 
����
��
��

�H�
n

��Hn
� �xHn � �Hn � �� with � � n ���

The Hermite polynomials are orthogonal over the interval ������� with respect to the weight function

e�x
���� Indeed the quantum harmonic oscillator wavefunctions are obtained by multiplying the Hermite

polynomials by e�x
����

H��x� � 


H��x� � �x

H��x� � �x� � �x� �

H��x� � �x� � 
�x

H��x� � 
�x� � ��x� � 
�

H��x� � �x� � 
��x� � 
��x�

H��x� � ��x� � ���x� � ���x� � 
�� � � �

� Operators

Every observable physical quantity can be characterised by an operator�

An operator is a mathematical device that converts one function into another� It is one step up from a
function� which is a device that converts one number �or collection of numbers� into another�

In general a caret or hat is used to denote an operator�

The simplest form of operator arises for physical observables that are just functions of position coordinates�
These just multiply the functions on which they operate�

Example� The classical potential energy of a harmonic oscillator is �

�
kx�� The associated quantum

mechanical operator �V just multiplies any function by �

�
kx�� that is

�V��x� �



�
kx���x�

A more interesting type of operator is a di�erential operator�

For instance� the operator d
dx changes the function sinx to cosx�

d

dx
sinx � cosx

If a particle�s position is described by coordinates �x� y� z�� then its momentum in the x direction is given
by the operator

�px � �i�h
�

�x

Where partial derivatives have been used because there are often several coordinates to consider� The form
of the quantum operator for momentum� �px is unusual� it does not appear to have any correspondance with

�



classical momentum� mv� This form represents another of the basic axioms on which quantum mechanics
has been developed�

If we can write some physical quantity in terms of position and momentum variables� then the rules for
constructing operators are�

� All position variables remain unchanged

� A momentum in the direction of a coordinate q is replaced by the operator �i�h �
�q �

Notes�

� We almost always work with momentum in quantum mechanics rather than velocity�

� This second rule applies to angular coordinates as well as Cartesian ones� For example� rotation
about the z axis is often described using a polar coordinate �� Angular momentum about the z axis
is then described by the operator �i�h �

�� �

��� Expectation Values

In quantum mechanics every physical observable� Q� can be characterised by an operator� �Q� and the
expectation value of �Q is calculated as

hQi �

R
�� �Q�d�R
���d�

���

Here
R
� � � d� is a conventional notation meaning that we integrate over all the variables and over all space�

The order of the factors in the numerator is important� operators operate to the right only� so in this
case �Q operates only on �� not on ��� This does not matter for position operators� which operate by
multiplication� but is crucial for di�erential operators�

��� Dirac Notation

The notation j�i is often used for the wavefunction �� Often we abbreviate� writing j�ni as jni� j�ni or
jni is called a ket vector�

h�j is called a bra vector� The bra notation implies the complex conjugate ���

a complete bra�ket expression like h�j�i or h�j �Qj�i implies integration over all space�

Thus

h�j�i �

Z
���d�

�

Z
j�j�d�

h�j �Qj�i �

Z
�� �Q�d�

and

hQi �
h�j �Qj�i

h�j�i

�



��� Eigenfunctions and Eigenvalues

Suppose that we have an operator �Q and a wavefunction �q that satisfy the equation�

�Q�q � q�q ���

where q is just a number �with the appropriate dimensions�� That is� if �q depends on some set of variables
�x�� x�� � � �� then q is independent of all these variables�

Equation ��� is an eigenvalue equation� The wavefunction �q is an eigenfunction and q is the corre�
sponding eigenvalue�

Much of the e�ort in practical quantum chemistry involves �nding eigenfunctions and eigenvalues of inter�
esting operators�

The operator for energy is called the Hamiltonian and its symbol is H� Its eigenvalue equation is
Schr�odinger�s time�independent equation�

H� � E� �
��

In general this equation has many solutions

H�n � En�n� n � 
� �� � � � �

and we have a set of eigenfunctions �n for Hamiltonian� In such cases the symbol � does not carry any
information� and the label n is important� so it is common to use the Dirac notation jni� which gives the
label more prominence�

A general property of the set of eigenfunctions of an operator like the Hamiltonian is that they are or�
thogonal�

hmjni �

Z a

�

��m�ndx � � if m �� n

Another important property is that the eigenfunctions form a complete set� provided that En � � as
n ��� That is� any function of the same variables with the same boundary conditions can be expressed
as a linear combination of the �n�

� �
X
n

cn�n

��� Hermiticity

This is an important technicality� Hermiticity is a generalisation of complex conjugation� under complex
conjugation an operator �Q becomes its Hermitian conjugate� �Qy�

Consider the complex conjugation�

h��j �Qj��i
� �

�Z
���� �Q���d�

��

�

Z
��� �Q���

�d�

� h �Q��j��i

However� we can consider the bra vector� h �Q��j in terms of a new operator� �Qy� Where we de�ne

f �Qj��ig
� � j �Q��i

� � h �Q��j � h��j �Q
y

�



Therefore we can write
h��j �Qj��i

� � h �Q��j��i � h��j �Q
yj��i �

�

Thus every operator �Q has a Hermitian conjugate� �Qy� which can be de�ned using eq� �

�� or its
integral equivalent� Z

���
�Q��d� �

Z
� �Qy���

���d�

An operator that is equal to its Hermitian conjugate is said to be Hermitian�

Example� Find the Hermitian conjugates of the operators d
dx and i d

dxZ �

��

���
d��

dx
dx � ������	

�

�� �

Z �

��

d���
dx

��dx

�

Z �

��

��
d��

dx
����dx

therefore �
d

dx
�y � �

d

dx

Z �

��

���i
d��

dx
dx � ����i��	

�

�� �

Z �

��

��i
d���
dx

���dx

�

Z �

��

�i
d��

dx
����dx

therefore �i
d

dx
�y � i

d

dx

Thus i d
dx is Hermitian �cf the momentum operator� but d

dx is not�

��� Properties of Hermitian operators�

� Their eigenvalues are always real

� Eigenfunctions corresponding to di�erent eigenvalues are orthogonal

Proof� Show the eigenfunctions of a Hermitian operator are real and that eigenfunctions with di�erent
eigenvalues are orthogonal

Suppose �� and �� are eigenfunctions of an Hermitian operator �B with eigenvalues b� and b�� Then� using
Dirac notation�

�Bj��i � b�j��i �a�

�Bj��i � b�j��i �b�

Premultiply eq� �a� by ��� and integrate over all space �this is a standard trick and is used in most proofs
in quantum mechanics��

h��j �Bj��i � b�h��j��i

Now take the complex conjugate�

h��j �Bj��i
� � b��h��j��i

�

�



Now use Hermiticity�

h��j �Bj��i � b��h��j��i

Premultiply eq� �b� by ��� and integrate over all space�

h��j �Bj��i � b�h��j��i

Combining the last two results�

�b�� � b��h��j��i � �

Now� if we had started with �� � �� and b� � b� then we would have

�b�� � b��h��j��i � �

But the integral of j��j
� over all space is non�zero� �the basic postulate of quantum mechanics that j�j� is

proportional to probability� so for the equation to be true we must have b�� � b�� that is� the eigenvalues
must be real�

Alternately� if we had started with b� �� b� then we must conclude that the integral h��j��i � �� Hence the
eigenfunctions of a Hermitian operator with di�erent eigenvalues are orthogonal� This is one side of an if

and only if proof� it can also be shown that if an operator has all its eigenvalues real and its eigenfunctions
orthogonal it must be Hermitian�

Other useful properties of Hermitian operators are� if �A and �B are Hermitian�

� If �A is invertible so is �Ay and � �Ay��� � � �A���y

� � �A� �B�y � �Ay � �By

� �� �A�y � �� �Ay where �� is the complex conjugate of the scalar �

� � �A �B�y � �By �Ay

All observable �measurable� properties of a system must be real and hence the operators associated with
observable properties� like the Hamiltonian� momentum� dipole moment etc� are Hermitian� Thus� when
we deal with such operators� we can make use of all the useful properties of Hermitian operators�

Another property of operators is that� if two observables are to have simultaneously precisely de�ned values�
their corresponding operators must commute� If you would like more details on this please let me know �if
nothing else it will tell me if anyone has actually read this far���

This �non�examinable� description of some of the mathematics behind quantum mechanics touches on the
��th century advances in mathematical theory� �Most of the maths we use is 
�th century or earlier��
The most elegant derivation of quantum mechanics �to me anyway� comes from the recognition that the
quantum mechanical commutator� identi�ed as the Lie bracket� generates a Lie Algebra� The eigenvalues
of the operators are the roots of the Lie Algebra� As such the recurrence relations between the various
eigenfunctions �and step�up and step�down operators� arise as the operators that step from one root of the
Lie algebra to the next�

�


