Objectives

- Understand the different types of food production and distribution systems
- Recognise the different cook chill systems available
- Understand the advantages and disadvantages of different production and distribution systems

Cook Fresh, Cook/Hot hold, Cook Serve

Foods are prepared > Held for a short time > Served

Advantages
- ‘In house’ quality control
- Less specialised equipment
- Less prepared storage
- Regional buys

Disadvantages
- Daily, busy meal times
- Workloads vary
- Production occurs over the whole day, every day

Cook Fresh

Salads, sandwiches, fresh/cold dairy desserts also in cook chill systems

Cook Chill

Foods are prepared > Chilled > Hot or Cold Plating/Retherm

Advantages
- Uniform workflow
- Menu variety
- Reduced production costs
- 5 day production
- Area wide menus
- Quality control

Disadvantages
- Specialised equipment
- Storage requirements
- Some recipes aren’t suited
- Some foods not suitable - grills
Equipment

Short shelf life

Equipment

Long shelf life

Cook Chill

(Cold plating, retherm)

Cook Chill Delivery Systems

Food Service Systems

Williams, PG. Journal of the American Dietetic Association 1996; 96(5): p491
Cook Freeze
Foods are prepared > Frozen > Hot or Cold Plating/Retherm

- Advantages
 - As for cook chill

- Disadvantages
 - As for cook chill
 - Recipe modification re: thickeners
 - Thawing step

Food service systems in NSW hospitals (%)

<table>
<thead>
<tr>
<th>System</th>
<th>1993 All</th>
<th>2001 All</th>
<th>2001 <100 beds</th>
<th>2001 100 beds +</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cook fresh</td>
<td>81</td>
<td>54</td>
<td>77</td>
<td>29</td>
</tr>
<tr>
<td>Ext Cook chill</td>
<td>6</td>
<td>29</td>
<td>11</td>
<td>47</td>
</tr>
<tr>
<td>Int Cook chill</td>
<td>12</td>
<td>13</td>
<td>9</td>
<td>16</td>
</tr>
<tr>
<td>Combination</td>
<td>1</td>
<td>5</td>
<td>4</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Manager’s satisfaction with their foodservice system Mean rating
(1 = very dissatisfied; 10 = very satisfied)

<table>
<thead>
<tr>
<th>Hospital size (beds)</th>
<th>Cook Fresh</th>
<th>Cook Chill</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-24</td>
<td>8.7</td>
<td>8.0</td>
</tr>
<tr>
<td>25-49</td>
<td>8.0</td>
<td>7.1</td>
</tr>
<tr>
<td>50-99</td>
<td>8.3</td>
<td>6.2</td>
</tr>
<tr>
<td>100-249</td>
<td>7.9</td>
<td>5.6*</td>
</tr>
<tr>
<td>250+</td>
<td>7.0</td>
<td>5.8</td>
</tr>
<tr>
<td>All</td>
<td>8.1</td>
<td>5.9**</td>
</tr>
</tbody>
</table>

Meal plating location – % NSW hospitals

<table>
<thead>
<tr>
<th>Location</th>
<th>1993 All</th>
<th>2001 All</th>
<th>2001 <100 beds</th>
<th>2001 100+ beds</th>
</tr>
</thead>
<tbody>
<tr>
<td>Centralised</td>
<td>96</td>
<td>89</td>
<td>91</td>
<td>87</td>
</tr>
<tr>
<td>Decentralised</td>
<td>4</td>
<td>11</td>
<td>9</td>
<td>13</td>
</tr>
</tbody>
</table>

Meal delivery systems % NSW hospitals 2001

<table>
<thead>
<tr>
<th>Hot delivery systems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulated cover and base</td>
<td>34.5</td>
</tr>
<tr>
<td>Heated pellet</td>
<td>26.9</td>
</tr>
<tr>
<td>Fails cover only</td>
<td>14.3</td>
</tr>
<tr>
<td>Hot and cold delivery cart</td>
<td>4.7</td>
</tr>
<tr>
<td>Heated bulk food trolleys</td>
<td>1.9</td>
</tr>
<tr>
<td>Total</td>
<td>79.1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Chilled or Frozen systems</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Convection ovens</td>
<td>10.5</td>
</tr>
<tr>
<td>Infra-red ovens</td>
<td>4.8</td>
</tr>
<tr>
<td>Microwave ovens</td>
<td>3.8</td>
</tr>
<tr>
<td>Conduction heating</td>
<td>1.9</td>
</tr>
<tr>
<td>Total</td>
<td>21.0</td>
</tr>
</tbody>
</table>

Mibey R, Williams P. Food Service Technology 2002; 2:95-103
St Vincent’s Campus

Distribution Systems

Delivered in Bulk heated using a van
Plated on Site

Delivered in bulk Plated on site

D & A

Delivered in bulk Plated on site

SVPH Kitchen

Delivered in bulk Plated on site

Mental Health

Palliative care & Rehab

Centralised Plating
- Hot metal
- Wax pellet in base
- Insulated plate base & cover
- Insulated tray
- Trolley cart with heat/refrigeration

Decentralised Plating
- Bulk food in chilled/heated trolleys
- Bulk food in insulated containers
- Frozen/chilled food distributed

Decentralised System

Advantages
- Labour saving
- Allows meal checking/staff supervision
- Economies of space and equipment
- Saving in overheads – maintenance, fuel, cleaning
- Allows batch cooking
- Reduced food waste
- Improve menu variety

Disadvantages
- More pressure on staff at meal periods
- Must stagger meal hrs
- Issues with communication between ward and kitchen
- Physical location of some wards impacts on meal aesthetics

Trends

Outsourcing Food Production
Room Service
Retail Outlets in Hospitals
- McCafe RPAH,
- Gloria Jeans RNSH

Distribution Systems cont.

- Semi centralised – food plated centrally and distributed for reheating
 - Central tray setting
 - Decentralised heating
 - Specialised Trolleys

Centralised System

Advantages
- Labour saving
- Allows meal checking/staff supervision
- Economies of space and equipment
- Saving in overheads – maintenance, fuel, cleaning
- Allows batch cooking
- Reduced food waste
- Improve menu variety

Disadvantages
- More pressure on staff at meal periods
- Must stagger meal hrs
- Issues with communication between ward and kitchen
- Physical location of some wards impacts on meal aesthetics
Food Service Systems

- Cook Fresh
- Cook Chill
- Cook Freeze

- Advantages and disadvantages
- Types of equipment

NUTRIENT LOSSES

Objectives

- Understand the how different cooking and preparation methods affect the nutrient content of foods

Nutrient losses

Natural vs Processed

- Climate
- Soil
- Handling
- Maturity
- Feeding regimes (for animals)
- Genetic
- Preparation, milling
- Heating
- Drying
- Chilling
- Freezing
- Irradiation
- Packaging
- Storage

Why process foods?

1. Raw foods are perishable. Processed to preserve, pack or for storage (e.g. canned foods).
2. To produce a desired product (e.g. baked goods).
3. To prepare food for service.

Nutrients can be destroyed when food is processed due to:
- Sensitivity to the pH of the solvent
- Oxygen
- Heat
- Light and/or any combination.

6 processing principles that preserve

1. Removing moisture (e.g. drying)
2. Treating with heat (e.g. pasteurisation, cook)
3. Cold temperature (e.g. fridge, freezer)
4. Acidity control
5. Chemical additives
6. Irradiation
Effects of Processing

Positive vs Negative

- Anti-digestive factors may be destroyed
- Increased starch digestibility
- Bioavailability increased
- Reduced microbial load
- Addition of antioxidants
- Reduction of heat sensitive vitamins
- Vitamins & minerals leached
- Reduced availability of some minerals and amino acids

Stability of nutrients

- **Losses of 60-100% (Unstable)**
 - Vitamin C, folate, biotin, niacin, riboflavin, thiamin

- **Losses of 20-60% (Moderately stable)**
 - Vitamin A, B6, D, E, pantothenic acid

- **Losses of < 20% (Stable)**

Critical nutrients

- **Vitamins**
 - Vitamins A, B6, C, thiamin, riboflavin and folate
 - Vitamin C and folate most unstable

- **Minerals**
 - Iron, zinc and calcium

- **Dietary fibre**

Primary sources of nutrient losses

Animal products
- Thaw drip
- Cooking drip
- Leaching
- Cooking & holding losses

Plant products
- Trimming, slicing, soaking
- Leaching
- Heat losses
- Storage
- Reheating

Processing steps in large scale food service

- **Purchasing**
- **Storage**
- **Preparation**
- **Cooking**
- **Texturing modification**
- **Chilling**
- **Chilled storage**
- **Reheating**
- **Hot holding**
Processing steps and losses

Purchasing (fresh*/frozen/canned*)
- Can occur with any type. Greater vitamin loss with canned, although ‘fresh’ depends on storage time. (e.g. Spinach can lose >50% Vitamin C if at 20°C for 2 days).
- Drying causes significant losses, especially as more water is removed.

Storage
- Depends on the time, temperature* and the stability of temperature.
- Frozen & canned products can continue to lose nutrients (e.g. Vitamin C) in storage, but lower than the initial processing losses.

*Significant loss is possible

Processing steps and losses

Preparation
- Thawing meat can result in significant vitamin losses, especially if in water. Using the fridge or microwave is best.
- Trimming fruits and vegetables increases losses (e.g. oxidation).
- Soaking* also enhances losses (e.g. leaching). Aim to soak or wash for a short time to minimise loss. (Current trend is to utilise pre-prepared salads etc.)

Processing steps and losses

Cooking**
- Most losses in this stage
- Boiling causes greater losses than steaming (Consider water volume used).
- Grill & roasting have smaller losses than braising.
- Microwaving, stir frying & steaming seem similar when using with minimal water.
- Baking/frying no significant leaching losses, but greater vitamin destruction due to the high temperatures.

Chilling
- Small losses if chilling is rapid (within 2hrs). Significant losses if extended (6hrs)*. IHHC Guidelines recommend within 1.5hrs for a gastronorm tray of food.

Vitamin C loss in chilled storage

![Vitamin C loss in chilled storage graph](image)

Processing steps and losses

Reheating
- Smaller loss with individual microwaving.
- Large scale food service, usually mass reheating.
- Limited data, appears loss is greater when chilled food heated in bulk, rather than individually- due to the time involved?
- There appears to be no significant differences in losses in reheating, considering infrared, convection, conduction.

Processing steps and losses

Chilled storage
- Vitamin C is most labile; has a linear loss with time. Speculation about greater loss in long term cook chill, but lack of D2 may influence.
- Overall, losses still lower in chilled storage, than with hot holding.

Chilled storage
- Significant losses. Even 30 minutes can cause losses.
- Hot holding should be kept to <90 minutes.
Vitamin C and folate in cook-chill and cook/hot-hold systems

- After 1 day chilled storage, then reheating results in a similar effect on Vitamin C to the following hot holding times:
 - 91 minutes for Vitamin C
 - 87 minutes for 5MeTHF
- Plated and reheated after 3 days of being in chilled storage would retain ~28% Vitamin C & 58% 5MeTHF.
- In contrast, hot hold for 2hrs resulted in the retention of ~40.3% Vitamin C and 67.7% 5MeTHF.
- If hot hold <90 minutes, vitamin retention is better in a cook-serve than in a cook-chill system.

Williams, PG et al. 1995

Effects of processing in hospital catering

- Vitamin C losses increase over the 5 days of storage.
- Losses increase with hot holding time, ‘Ideal’ 30 mins.
- Awareness of where losses occur, enables better planning.

West, A et al. 1998; p285

Loss of Vitamin B6 in hot holding

- Riboflavin & niacin fairly stable
- Thiamin usually less than 10% loss, for up to 2hrs
- Vitamin C is lost rapidly
- Vitamin B6 is lost
 - Minimum loss of 10% after 1hr
 - Up to 40% at 3hrs

Williams, PG, 1996

Percentage losses after canning

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Folacin</th>
<th>B1</th>
<th>B2</th>
<th>B3</th>
<th>B6</th>
<th>C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Asparagus</td>
<td>75.2</td>
<td>66.7</td>
<td>55</td>
<td>46.6</td>
<td>64</td>
<td>54.5</td>
</tr>
<tr>
<td>Carrot</td>
<td>58.8</td>
<td>66.7</td>
<td>60</td>
<td>33.3</td>
<td>80</td>
<td>75</td>
</tr>
<tr>
<td>Corn</td>
<td>72.5</td>
<td>80</td>
<td>58.3</td>
<td>47.1</td>
<td>0</td>
<td>58.3</td>
</tr>
<tr>
<td>Tomato</td>
<td>53.75</td>
<td>16.7</td>
<td>25</td>
<td>0</td>
<td>-</td>
<td>26.1</td>
</tr>
</tbody>
</table>

Karmas, E & Harris, RS. 1988; p344
Percent carotene retention in stored canned foods

<table>
<thead>
<tr>
<th>Temperature</th>
<th>10°C</th>
<th>10°C</th>
<th>18°C</th>
<th>27°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months</td>
<td>12</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Apricots</td>
<td>94</td>
<td>91</td>
<td>84</td>
<td>76</td>
</tr>
<tr>
<td>Carrots</td>
<td>94</td>
<td>90</td>
<td>95</td>
<td>91</td>
</tr>
<tr>
<td>Peaches</td>
<td>95</td>
<td>75</td>
<td>64</td>
<td>63</td>
</tr>
<tr>
<td>Spinach</td>
<td>91</td>
<td>80</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>Tomatoes</td>
<td>94</td>
<td>75</td>
<td>75</td>
<td>74</td>
</tr>
</tbody>
</table>

Karmas, E & Harris, RS. 1988: p345-347

Percent ascorbic acid retention in stored canned foods

<table>
<thead>
<tr>
<th>Temperature</th>
<th>10°C</th>
<th>10°C</th>
<th>18°C</th>
<th>27°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Months</td>
<td>12</td>
<td>24</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td>Apricots</td>
<td>96</td>
<td>94</td>
<td>90</td>
<td>56</td>
</tr>
<tr>
<td>Pineapple</td>
<td>100</td>
<td>83</td>
<td>78</td>
<td>53</td>
</tr>
<tr>
<td>Peaches</td>
<td>98</td>
<td>98</td>
<td>80</td>
<td>53</td>
</tr>
<tr>
<td>Asparagus (Gr)</td>
<td>97</td>
<td>93</td>
<td>91</td>
<td>86</td>
</tr>
<tr>
<td>Beans (Gr)</td>
<td>92</td>
<td>88</td>
<td>81</td>
<td>74</td>
</tr>
</tbody>
</table>

Karmas, E & Harris, RS. 1988: p345-347

Vitamin C in fresh & frozen vegetables

Peas, Broccoli, Green beans, Spinach, Carrots

Day 0 Garden fresh
Day 3 Ambient Day 3-7 Ambient
Day 2-3 Chilled Day 3-7 Chilled
Day 3-7 Chilled/Ambient

Favell, D.J. Food Chemistry, 1998: p59-64
Thiamin content of frozen steak (mg/100g)

<table>
<thead>
<tr>
<th>Temp (+ 1°C)</th>
<th>Constant</th>
<th>Fluctuating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Initial</td>
<td>3.0</td>
<td>3.0</td>
</tr>
<tr>
<td>-10°C</td>
<td>2.8</td>
<td>1.8</td>
</tr>
<tr>
<td>-20°C</td>
<td>2.9</td>
<td>2.1</td>
</tr>
<tr>
<td>-30°C</td>
<td>3.0</td>
<td>2.6</td>
</tr>
</tbody>
</table>

Karmas, E & Harris, RS. 1988: p561

Method of cooking broccoli vs phenolic compound contents

- Compared the influence of cooking methods on phenols in broccoli. 150g broccoli, 150ml water
 - (A) High pressure 3 min
 - (B) Low pressure 5 min
 - (C) Steaming 3.5 min
 - (D) Microwaving 5 min

Microwave > Highest losses?
Overcooked
Steaming superior- short time & no water contact

Valejo, F et al. 2003: p1515

Irradiation

- **Uses**
 - Controls insects in spices, herbs, nuts & grains
 - To reduce the level of bacteria in meat
 - Minimise sprouting in fruits & vegetables

- **Influence on nutrition**
 - Similar vitamin losses to heat processing
 - No significant impact on carbohydrates, protein and minerals
 - May increase fat oxidation

Further research required on phytochemicals & antioxidants

Effect of processing on major flavonoids in onions

- Significant (50%) reduction with peeling & chopping
- 90% of quercetin (flavonoid) is in the 1st & 2nd layers
- Fairly heat stable thereafter

Blanching & freezing on bioactive compounds in vegetables

- 20-30% losses of antioxidant activity & total phenolics
- Up to 30% vitamin C lost with blanching
- Up to 50% folate lost
- Carotenoids & sterols stable

In Summary

Recommendations to maximise nutrient retention

Dry Goods
- Store dry goods at <20°C

Fresh goods
- Minimise the time stored
- Shop 2-3 times per week, if possible, to optimise the retention of the nutrient value and appearance
- Protect from heat and light
- Stable refrigeration temperature
- Always wash before use

Recommendations

Frozen foods
- Keep freezer temperatures stable
- Thaw in the refrigerator

Preparation
- Cut foods just prior to service

Cooking
- Cook larger vegetable portions
- Restrict the time for ‘hot holding’
- Use minimal water to cook vegetables
- Consider steaming, microwaving and stir frying

References

Williams, PG, Ross, H. and Brand-Miller, JC. Ascorbic acid and 5-methyl-tetrahydrofolate losses in vegetables with cook/chill or cook/hot-hold foodservice systems. Journal of Food Science 1995; 60, p541-546

Williams, PG. Food in Hospitals. PhD thesis. 1994

Williams, PG, Ross, H. and Brand-Miller, JC. Ascorbic acid and 5-methyl-tetrahydrofolate losses in vegetables with cook/chill or cook/hot-hold foodservice systems. Journal of Food Science 1995; 60, p541-546

Williams, PG. Food in Hospitals. PhD thesis. 1994