Diabetes Mellitus

Ian Caterson
Boden Professor of Human Nutrition

Islets of Langerhans

- 3 cell types
 A Glucagon
 B Insulin
 D Somatostatin

Insulin

- 2 chains (A + B)
- 51 aas
- (minor) differences between species
- Preproinsulin, proinsulin
- Stored in granules (insulin + c-peptide)

Insulin Secretion Stimulation

- Sugars
 • Glucose
 • Fructose
 • Sucrose
 • Ribose
- Amino Acids
 • Leucine
 • Arginine
- Fats
 • MCT in man
- Hormones
 • Glucagon
 • Gut glucagon
 • GIP
 • ß adrenergic
 • Secretin
- Vagal Stimulation
- Drugs
 • Sulphonylureas
 • (Nucleotides)
 • Adenosine in man

Insulin Secretion Inhibition

- Alpha adrenergic stimulation
- Drugs
 • ß blockers (Propranolol)
 • Dianatin
 • Diazoxide
 • Thiazide diuretics

Insulin Action

1. Glucose transport into cells
2. Stimulation of lipogenesis
3. Inhibition of lipolysis
4. Amino acid transport
5. Protein Synthesis
6. Growth Factor
Insulin Secretion

- Hyperinsulinaemia
 - Marker of insulin resistance
- Early abnormality in animal models of diabetes
- Impaired in Type 2 diabetes
 - Loss of first phase
 - Reduced secretion to glucose load
 - “Glucose toxicity”

Insulin

- Receptor
 - Cell surface
 - Dimer (2 chains)
- Binding
- Phosphorylation of receptor
- IRS
- Kinases & phosphorylases alter enzymes

Glucose transporters

- Family
- Single polypeptide chain about 500 residues
- 12 transmembrane domains (alpha helices)
- Transport achieved by conformational change
- Some in membrane
- On insulin stimulation, recruited from intracellular pool

Glucose Transporters

- Liver and islets non-insulin sensitive transporters
 - GLUT2
 - High Km (15mM) – glucose enters in “time of plenty”
- Insulin responsive tissues (muscle, adipose tissue)
 - GLUT4
 - Km 5mM
- Basal Transport
 - GLUT 1 and 3
- small intestine
 - GLUT 5
 - Plasma membrane side of the enterocyte
 - Works in conjunction with Na-glucose symporter (luminal surface)

Classification of Diabetes Mellitus

- Type 1
- Type 2
- Other specific types
 - MODY (glucokinase)
 - Starvation/malnutrition
 - Proinsulin, receptor mutations
- Gestational (GDM)

Diabetes Mellitus

- Type 1
 - Insulin Deficient
 - Younger (<35)
 - Thin
 - Auto-immune
 - Not as strongly inherited
 - Mainly caucasian
- Type 2
 - Insulin Resistant
 - + Relative Insulin deficiency
 - Older (>40)
 - adolescents now
 - Obesity
 - Strongly inherited
 - All ethnic groups
Diabetes Diagnosis

• Fasting plasma glucose > 7.0 mmol/L
• Random blood sugar > 11.1 mmol/L
• Impaired fasting glucose (IFG) > 5.5 and < 7.0

• Glucose Tolerance Test (oGTT)
 – 75g glucose
 – Fasting < 7.0
 – 2h < 7.8
 – Max < 11.1

• IGT
 – 1 point abnormal

3. Insulin Resistance
• Obesity, inherited
• Illness/operation, pregnancy

Aetiology

1. Genetic
• Runs in families
• Twin studies
• Islet cell surface antibodies
• Insulin gene polymorphism
• Chlorpropamide/alcohol flush

2. Environment
• Viruses
• Nutrition
• Urbanisation

5. Gestational

6. Other
• Pancreatic damage
• Low K

Viruses & Diabetes

• Coxsackie B4
• Mumps
• EB Virus
• Rubella
• ? EMC

Diabetes prevalence

• Varies country to country
• Increasing !!!

• Genetic susceptibility + Environment
 • Nutrition
 • Sedentary
 • Abdominal adiposity
 • Intrauterine undernutrition (FOAD)

Age-specific Diabetes Prevalence

AUSDIAB 2000

Age & gender prevalence of diabetes

AUSDIAB 2000
Type 1 Diabetes

- Insulin deficiency and absolute insulin requirement
- Loss of weight
- Thirst (polydipsia) and Polyuria
- Diabetes Keto-acidosis

Type 2 Diabetes

- general consensus

 Insulin Resistance + Insulin Deficiency

 needed for Type 2 Diabetes

Insulin Resistance

- difficult to define
- depends on individual experiment
- generally accepted

 “A situation in which more insulin (than in appropriate control) is required to achieve same response.”

Comparison

- Ketoadiogenesis
 - No insulin
 - High glucose
 - High ketone bodies
 - Acidosis
 - Increased HGO
 - Uncontrolled lipolysis
 - Beta-oxidation
 - High glucagon

- Starvation
 - Low insulin
 - Low, normal glucose
 - Some ketones
 - Normal pH
 - Controlled HGO
 - Controlled lipolysis
 - Beta-oxidation
Cause of Insulin Resistance

- Hyperinsulinaemia
- Increased hepatic glucose production (hyperglycaemia)
- Decreased non-oxidative glucose disposal (glycogen synthase)
- Increased lipid availability & oxidation (glucose fatty acid cycle)

Possible Mechanisms of Insulin Resistance

- Intracellular
 - Insulin Signalling
 - Glucose Transporter Induction
 - Enzyme Structure
 - Synthesis
 - Action
 - Response

Insulin Resistance

- Reduced glucose disposal
 - Glycogen synthesised slowly
 - Less glucose oxidation
- Glycogen content normal
- Less lipid oxidation (Zars et al., 1996)
- Increased glycolytic flux
- Recycling to liver of 3C units
- Increased gluconeogenesis

Insulin Resistance

- Excess abdominal fat & fat oxidation
 - Abdominal fat - increased NEFA flux
- Hyperinsulinaemia
- Uncontrolled Hepatic Glucose Output (HGO)
 - Role of leptin
 - Increased lipid oxidation

Insulin Resistance (sensitivity) and abdominal fat.

Type 2 diabetes

- Obesity (abdominal)
- Not a dramatic presentation, insidious
- Often diagnosed on blood testing for something else
- Thirst, polyuria
- Tired, not well
- Infections (thrush)
- May present with complications
Type 2 Diabetes - Metabolic Abnormalities

- High BSL
- Dyslipidaemia
 - High Triglycerides
 - Low HDL cholesterol
- Normal ketones and pH
- Fatty liver

Management of Diabetes

- Eating
- Exercise
- Education
- Oral Hypoglycaemics
- Insulin
- Other medications
- Complications Screening

Eating

- Appropriate caloric intake
 - Growth
 - Obesity etc
- CHO spread
- Reduce saturated fat
- GI

Exercise

- Regular activity reduces BSL
- May need to alter
 - Diet
 - insulin
- Walking, jogging, gym etc.

Diabetes Education

- No evidence that it improves control
 - Blood sugar readings
- Better understanding
- Take control of own disease
- Early presentation with problems
- Reduce complications

Diabetes Centre

- Team
 - physician, educator, dietitian
 - podiatrist, physiotherapist
- Education
- Special Services
 - ambulatory stabilisation
 - complications assessment
 - foot care, vascular care
 - renal clinic, retinopathy treatment
- Data Base
Home Glucose Monitoring

- Urine testing
- Blood Glucose strips
- Glucose meters (memory, ketones)

NB Patient MUST be educated

- Use of strips
- Meters
- Interpretation of results
- Alteration of therapy

Complications of Diabetes

- Macrovacular
 - Heart Disease
 - Hypertension
 - Stroke
 - Peripheral Vascular disease
- Microvascular
 - Renal disease
 - Retinopathy
 - Infections
 - Gangrene

- Neuropathy
 - Peripheral
 - Autonomic
 - Cranial
- The Diabetic Foot
- Diabetic Comas
- Dyslipidaemia
- Skin disease
- Pregnancy

Complications screening

- Yearly
- Check
 - Eyes
 - Kidneys
 - BP
 - Neuropathy (peripheral & autonomic)
 - Vascular disease
 - FEET
- Alter management

Regular visits

- BP, complications
- Blood
 - Glycated haemoglobin (fructosamine)
 - Glucose (fasting or random)
 - Lipids
- Urine
 - Microalbumin (timed specimen)

Management of Diabetes

- Type 1
 - Diet
 - Appropriate energy
 - Spread through day
 - Exercise
 - Glucose uptake
 - Utilisation
 - Education
 - INSULIN

- Type 2
 - Diet
 - Reduced energy
 - Spread
 - Exercise
 - Education
 - Oral hypoglycaemics
 - Biguanides
 - B cell stimulation
 - 3H sulphonylureas
 - Insulin occasionally

Control

- Awareness of need
- Team Approach
- Medications
 - oral
 - insulin
 - combination
- Complications Assessment
Oral Hypoglycaemics

1. Metformin
2. Sulphonylureas
 - gliclazide
 - glibenclamide
 - glipizide
 - tolbutamide
 - chlorpropamide etc

Oral Hypoglycaemics 2

3. Other agents
 - alpha glucosidase inhibitors
 - Repaglinide etc
4. Thiazolidinediones
5. Adjunctive agents
 - Weight loss agents (orlistat, sibutramine)
6. Incretins (GLPs)

Insulin - Practical Points

- Human Insulin
- Multiple Injections
- Site - Abdomen
- Get used to a few preparations
- ? Need for Premixed Insulins
- ? syringes or "pens"

Insulin Pumps

- Available
 - Better now
 - Need implanted port
- Expensive
- Use leads to good control
- Patient Selection & Education Essential

Insulin in T2DM

- criteria - fasting BSL > 8
 - post prandial BSL > 10
 - Hba1c 2.5% > normal
 - on 3 consecutive occasions 2 months apart
- personal preference - insulin or combined
- no evidence combined therapy gives better control
- some evidence
 - nocturnal insulin less hyperinsulinaemia
 - possibility of “weaning” with combined therapy

Problems

1. Control vs Lifestyle
2. Hypoglycaemia
3. Vascular Disease
4. Obesity
5. Other complications
Insulin Resistance

1. **Weight**
 - fluoxetine
 - sibutramine
 - orlistat

2. **Fat Metabolism**
 - \(\beta\)-oxidation (etomoxir)
 - glitazones

3. **Thermogenesis**
 - \(\beta_3\) agonists

4. **Glucose Metabolism**

Insulin Secretion

1. **Glucose Delivery**
 - Glucosidase inhibitors

2. **Insulin Delivery**
 - pens
 - pumps

3. **Insulin Analogues**
 - LysPro
 - Monomers (B9asp B27glu)
 - Dimers (B10asp)
 - Monomer/dimer (B26asp)
 - Insulin glargine

Implications of DCCT

1. **Intensive therapy**
 - Multiple injections
 - Dietary support / Exercise
 - Frequent contact

2. **Treatment “Group”**
 - ? Centres

3. **Cost**
 - Hypoglycaemia
 - Individual
 - Health System

Type 2 Diabetes - UKPDS

- **Better control**
 - Risk reduction 12% for any diabetes endpoint
 - 25% less microvascular complications

- **GHb 7.0% - down from 7.9%**

- **Adverse**
 - More hypoglycaemia
 - Weight gain

Type 2 Diabetes - UKPDS

- **BP control essential & beneficial**
- **Macrovascular disease important**
- **Treat in multiple ways**
 - Glucose control
 - BP
 - Lipids
 - Weight

UKPDS - Hypertension

- **Tight control**
 - BP 142/88 vs 154/87

- **Results - risk reduction**
 - 32% deaths
 - 44% strokes
 - 24% diabetes, 37% microvascular endpoints

- **Captopril and atenolol similarly effective**
- **Cost effective**

UKPDS - Macrovascular Disease

- Major cause of mortality
- No increase with intensive treatment
- No deleterious effect of type of treatment

Complications

1. Microvascular
 - Retinopathy
 - Nephropathy
2. Macrovascular
 - Coronary
 - Peripheral/Cerebral
 - Hypertension
3. Neuropathy
 - Peripheral
 - Autonomic
 - Cranial
 - Atrophy

Complications 2

4. Metabolic
 - Coma
 - Dyslipidaemia
 - Hyperinsulinaemia
5. The Diabetic Foot
6. Infection
7. Pregnancy
8. Tissue glycosylation

Diabetic Coma

- Hypoglycaemia
 - Most common
 - Iatrogenic
- Hyperglycaemic
 - Ketoacidosis
 - Hypoglycaemic, non-ketotic
 - Lactic Acidosis
 - Stroke
 - Infection
 - Trauma

Hypoglycaemia.

- Most common diabetic coma
- Iatrogenic
- Educate
 - occurrence
 - symptoms
 - therapy
- Choice of therapy
 - oral agents do cause hypoglycaemia!
- Treatment
 - glucose
 - glucagon

Diabetic ketoacidosis

- No insulin
 - Low glucose transport
 - Increased HCO
 - therefore high plasma glucose
- Uncontrolled lipolysis
 - Beta-oxidation
 - Ketone body production
- Acidosis (short of breath)
 - H/K exchange (buffering)
- Osmotic diuresis
 - Loss of electrolytes
Blood results DKA

- Increased
 - Glucose
 - Na
 - Variable depends on hydration
 - K (usually)
 - Ketones
 - Acetoacetate
 - βOH butyrate

- Decreased
 - pH
 - HCO3
 - Cl

- Creatinine (consider)

DKA - Treatment Principles

1. Fluids
2. Electrolytes
3. Insulin
4. (Bicarbonate - NO!!)
5. Treat Cause
6. Maintenance

Diabetic Nephropathy

- Common - a major cause of death
- Hyperfiltration & Hyperperfusion
 - ? Due to reduced O2 availability & osmotic effect
 - High creatinine clearance; large kidneys
 - Increased albumin excretion
- Basement membrane thickening
 - Altered permeability
 - Creat clearance falls
 - Increased albumin excretion, then overt protein excretion
- Overt Renal disease
 - Inexorable progression

Diabetic Nephropathy

- Investigations
 - Creatinine
 - Creatine clearance
 - Albumin excretion (microalbuminuria)
 - Specific, sensitive assay
 - Timed specimen best
 - Repeated measurements
 - U. Protein
 - Watch lipids

Diabetic Nephropathy

- Therapy
 1. Control of diabetes
 2. Treat “micro” hypertension
 3. Diet
 - Low protein
 4. Dialysis (Haemo or CAPD)
 5. Transplantation

Neuropathy

1. Peripheral
 - Symmetrical
 - Mononeuropathy
2. Autonomic
3. Cranial
4. Diabetic Amyotrophy
Peripheral Neuropathy

- Theories
 1. Metabolic - glucose
 2. Metabolic - sorbitol/inositol
 3. Hypoxic damage
 4. Immunological

Peripheral neuropathy

- Treatment
 1. Protection
 2. Control (7)
 3. Analgesia
 4. Oxygen (7)

Autonomic Neuropathy

- Therapy
 1. Control of diabetes
 2. Diarrhoea
 - Diphenoxylate
 - Metoclopramide
 - tetracycline
 3. Vomiting
 - Metoclopramide
 - Domperidone
 - cisapride
 4. BP
 - mineralocorticoid

The Diabetic Foot

- Major problem
 - “Take off socks” - prevent amputation
 - Regular check
 - Podiatrist - regular care
 - Cast/prostheses
 - Treat infection

The Diabetic Foot 2

- Causes
 - Infection
 - Peripheral Vascular disease
 - Neuropathy

Retinopathy

- Diabetes is major cause of blindness in developed world
- Types
 - Background
 - Proliferative
Retinopathy 2
- Regular screening of all patients
- Good BSL control
- Laser therapy
 - New vessels (possibly specific)
 - Central vessels, Maculopathy (Pancoagulation)

Pregnancy & Diabetes
- High Mortality previously
- Problems
 - Macrosomia
 - Congenital defects
 - Hypoglycaemia
- Good control
 - As early as possible
 - 1st trimester - organ formation

Pregnancy & Diabetes
- Planning
- Screening
- Therapy
 - Diet
 - Insulin
- Close Monitoring
- Admit if Problems
- Labour
 - Insulin infusion + glucose infusion