Associate Professor Daniel Daners

F07 - Carslaw Building
The University of Sydney

Telephone 9351 2966
Fax 9351 4534

Website Personal web page
Profile on MathSciNet
Complete list of publications

Research interests

I am a member of the Nonlinear Analysis Group. My interests are partial differential equations (particularly elliptic and parabolic boundary value problems), spectral theory, analytic semigroup theory, operator theory.

For more details see

Teaching and supervision

Timetable

Selected publications

Download citations: PDF RTF Endnote

Book Chapters

  • Daners, D. (2008). Domain perturbation for linear and semi-linear boundary value problems. In Michel Chipot (Eds.), Handbook of Differential Equations: Stationary partial differential equations; volume 6, (pp. 1-81). Amsterdam: Elsevier Science.

Journals

  • Daners, D. (2013). Eigenvalue Problems for a Cooperative System with a Large Parameter. Advanced Nonlinear Studies, 13(1), 137-148.
  • Campbell, A., Daners, D. (2013). Linear Algebra via Complex Analysis. American Mathematical Monthly, 120(10), 877-892. [More Information]
  • Daners, D. (2013). Principal Eigenvalues for Generalised Indefinite Robin Problems. Potential Analysis, 38(4), 1047-1069. [More Information]
  • Daners, D. (2012). A Short Elementary Proof of Sum of 1/k(squared) = pi(squared)/6. Mathematics Magazine, 85(5), 361-364.
  • Daners, D. (2012). The Mercator and Stereographic Projections, and Many in Between. American Mathematical Monthly, 119(3), 199-210. [More Information]
  • Daners, D. (2011). Krahn's proof of the Rayleigh conjecture revisited. Archiv der Mathematik, 96(2), 187-199. [More Information]
  • Daners, D., Kawohl, B. (2010). An isoperimetric inequality related to a Bernoulli problem. Calculus of Variations and Partial Differential Equations, 39(3-4), 547-555. [More Information]
  • Daners, D., Kennedy, J. (2010). On the asymptotic behaviour of the eigenvalues of a Robin problem. Differential and Integral Equations, 23(7-8), 659-669.
  • Daners, D., Drabek, P. (2009). A priori estimates for a class of quasi-linear elliptic equations. Transactions of the American Mathematical Society, 361(12), 6475-6500.
  • Bucur, D., Daners, D. (2009). An alternative approach to the Faber-Krahn inequality for Robin problems. Calculus of Variations and Partial Differential Equations, 37(1-2), 75-86. [More Information]
  • Daners, D. (2009). Inverse positivity for general Robin problems on Lipschitz domains. Archiv der Mathematik, 92(1), 57-69. [More Information]
  • Arendt, W., Daners, D. (2008). The Dirichlet problem by variational methods. Bulletin of the London Mathematical Society, 40(1), 51-56.
  • Arendt, W., Daners, D. (2008). Varying domains: stability of the Dirichlet and the Poisson problem. Discrete and Continuous Dynamical Systems - Series A, 21(1), 21-39.
  • Britton, S., Daners, D., Stewart, M. (2007). A self-assessment test for incoming students. International Journal of Mathematical Education in Science and Technology, 38(7), 861-868. [More Information]
  • Arendt, W., Daners, D. (2007). Uniform convergence for elliptic problems on varying domains. Mathematische Nachrichten, 280(1-2), 28-49. [More Information]
  • Daners, D., Kennedy, J. (2007). Uniqueness in the Faber-Krahn inequality for Robin problems. SIAM Journal On Mathematical Analysis, 39(4), 1191-1207.
  • Daners, D. (2006). A Faber-Krahn inequality for Robin problems in any space dimension. Mathematische Annalen, 335(4), 767-785. [More Information]
  • Biegert, M., Daners, D. (2006). Local and global uniform convergence for elliptic problems on varying domains. Journal of Differential Equations, 223(1), 1-32. [More Information]
  • Daners, D. (2005). Perturbation of semi-linear evolution equations under weak assumptions at initial time. Journal of Differential Equations, 210(2), 352-382. [More Information]
  • Daners, D. (2003). Dirichlet problems on varying domains. Journal of Differential Equations, 188(2), 591-624.
  • Daners, D. (2002). A priori estimates for solutions to elliptic equations on non-smooth domains. Proceedings of the Royal Society of Edinburgh Section A (Mathematics), 132(4), 793-813.

2013

  • Daners, D. (2013). Eigenvalue Problems for a Cooperative System with a Large Parameter. Advanced Nonlinear Studies, 13(1), 137-148.
  • Campbell, A., Daners, D. (2013). Linear Algebra via Complex Analysis. American Mathematical Monthly, 120(10), 877-892. [More Information]
  • Daners, D. (2013). Principal Eigenvalues for Generalised Indefinite Robin Problems. Potential Analysis, 38(4), 1047-1069. [More Information]

2012

  • Daners, D. (2012). A Short Elementary Proof of Sum of 1/k(squared) = pi(squared)/6. Mathematics Magazine, 85(5), 361-364.
  • Daners, D. (2012). The Mercator and Stereographic Projections, and Many in Between. American Mathematical Monthly, 119(3), 199-210. [More Information]

2011

  • Daners, D. (2011). Krahn's proof of the Rayleigh conjecture revisited. Archiv der Mathematik, 96(2), 187-199. [More Information]

2010

  • Daners, D., Kawohl, B. (2010). An isoperimetric inequality related to a Bernoulli problem. Calculus of Variations and Partial Differential Equations, 39(3-4), 547-555. [More Information]
  • Daners, D., Kennedy, J. (2010). On the asymptotic behaviour of the eigenvalues of a Robin problem. Differential and Integral Equations, 23(7-8), 659-669.

2009

  • Daners, D., Drabek, P. (2009). A priori estimates for a class of quasi-linear elliptic equations. Transactions of the American Mathematical Society, 361(12), 6475-6500.
  • Bucur, D., Daners, D. (2009). An alternative approach to the Faber-Krahn inequality for Robin problems. Calculus of Variations and Partial Differential Equations, 37(1-2), 75-86. [More Information]
  • Daners, D. (2009). Inverse positivity for general Robin problems on Lipschitz domains. Archiv der Mathematik, 92(1), 57-69. [More Information]

2008

  • Daners, D. (2008). Domain perturbation for linear and semi-linear boundary value problems. In Michel Chipot (Eds.), Handbook of Differential Equations: Stationary partial differential equations; volume 6, (pp. 1-81). Amsterdam: Elsevier Science.
  • Arendt, W., Daners, D. (2008). The Dirichlet problem by variational methods. Bulletin of the London Mathematical Society, 40(1), 51-56.
  • Arendt, W., Daners, D. (2008). Varying domains: stability of the Dirichlet and the Poisson problem. Discrete and Continuous Dynamical Systems - Series A, 21(1), 21-39.

2007

  • Britton, S., Daners, D., Stewart, M. (2007). A self-assessment test for incoming students. International Journal of Mathematical Education in Science and Technology, 38(7), 861-868. [More Information]
  • Arendt, W., Daners, D. (2007). Uniform convergence for elliptic problems on varying domains. Mathematische Nachrichten, 280(1-2), 28-49. [More Information]
  • Daners, D., Kennedy, J. (2007). Uniqueness in the Faber-Krahn inequality for Robin problems. SIAM Journal On Mathematical Analysis, 39(4), 1191-1207.

2006

  • Daners, D. (2006). A Faber-Krahn inequality for Robin problems in any space dimension. Mathematische Annalen, 335(4), 767-785. [More Information]
  • Biegert, M., Daners, D. (2006). Local and global uniform convergence for elliptic problems on varying domains. Journal of Differential Equations, 223(1), 1-32. [More Information]

2005

  • Daners, D. (2005). Perturbation of semi-linear evolution equations under weak assumptions at initial time. Journal of Differential Equations, 210(2), 352-382. [More Information]

2003

  • Daners, D. (2003). Dirichlet problems on varying domains. Journal of Differential Equations, 188(2), 591-624.

2002

  • Daners, D. (2002). A priori estimates for solutions to elliptic equations on non-smooth domains. Proceedings of the Royal Society of Edinburgh Section A (Mathematics), 132(4), 793-813.

To update your profile click here. For support on your academic profile contact Research Support.