Professor David Reilly

A28 - Physics Building
The University of Sydney

Telephone +61 2 9351 8167
Fax +61 2 9351 7726

Biographical details

Biographical Details

Professor David Reilly is an experimental physicist working at the interface of quantum science, nanoscale condensed matter systems, and cryogenic electronics and hardware. Professor Reilly completed his Ph.D at UNSW in 2002 on correlated electron phenomena in low-dimensional nanoelectronic devices. From 2005-2008 he was a Postdoctoral Fellow at Harvard University with Professor Charlie Marcus, working on spin qubits. He returned to Australia in 2008 to lead a new research group, the Quantum Nanoscience Laboratory, in the School of Physics at Sydney. He is a member of the Quantum Science Group in the School and a CI in the ARC Centre of Excellence for Engineered Quantum Systems.

Education

2003: Ph.D. in Physics, University of New South Wales (UNSW), Australia.

1998: Bachelor of Applied Science (Physics) Class I Honours, University of Technology, Sydney Australia.

Employment History

August 2013 - Present: Academic Director for Strategy, The Australian Institute of Nanoscience.

April 2013 - Present: Professor, School of Physics, The University of Sydney.

2012 - April 2013: Associate Professor, School of Physics, The University of Sydney.

2008 - 2011: Senior Lecturer, School of Physics, The University of Sydney.

2005 - 2008: Post-Doctoral Fellow, Department of Physics, Harvard University, Cambridge, MA, USA.

2002 - 2005: Hewlett-Packard Fellow, HP Palo Alto and Centre for Quantum Computer Technology, University of New South Wales, Australia.

Research interests

Quantum Nanoscience. Quantum information processing in condensed matter systems. Quantum control and measurement technology, cryogenic high frequency electronics and hardware. Interacting electron systems in nanoscale devices. Spin-based sensors and imaging technology. Mesoscopic transport. Nanofabrication.

Teaching and supervision

Teaching:

Lecturer and Course Coordinator for subjects (current):

- Senior Condensed Matter Physics.

- Honours Advanced Condensed Matter Physics.

- Director, Senior Physics Laboratory.

Student Supervision

2014: Thomas Boele, Steven Waddy, Christine Beer (Honours).

2014: Sebastian Pauka, Ph.D

2013: Joanna Guse, Sam Baran, Sebastian Pauka, Ian Conway-Lamb (Honours).

2012-present Xanthe Croot, Ph.D.

2012-present Alice Mahoney, Ph.D.

2012-present David Waddington, Ph.D.

2012-present Prashant Kumar, Ph.D.

2011 Xanthe Croot, Alice Mahoney, Hannah Edwards Honours in Physics.

2010-present James Colless, Ph.D.

2010-present Ewa Rej, Ph.D.

2010 Matthew Collins, Honours in Physics.

2009 James Colless, Ewa Rej, Charles Davis Honours in Physics.

2008-present John Hornibrook, Ph.D.

Current projects

Spin Qubits based on Semiconductor Quantum Dots

With the advent of nanofabrication techniques that can create mesoscale structures comparable in size to electron wavefunctions, there has been the realization that technology based on quantum mechanics can be uniquely powerful; computers that would solve certain problems exponentially more efficiently, secure communications systems, and vastly improved precision measurement devices. The new field of quantum information science aims to push the boundaries of our understanding of quantum mechanics and to develop these new quantum technologies by learning how to engineer complex quantum systems. We are developing multi-qubit devices and new methods to enable scale-up of spin qubits based on gate-defined quantum dot systems.

Hyperpolarized Nanoparticles for MRI

We aim to develop new bio-probes based on the detection and tracking of nontoxic nanoparticles in biological environments. By manipulating electron and nuclear spin-states in nano-crystalites of diamond and ruby, our goal is to establish and demonstrate novel in-vivo imaging modalities that combine the techniques of single fluorescence with hyperpolarized magnetic resonance imaging (MRI). This multifaceted approach, which builds on recent breakthroughs in the manipulation of spins on the nanoscalel, enables nanoparticles to act as beacons within living tissue, both at the intracellular level and on the macroscopic scale of organs.

This project is exploring the use of nanodiamonds as fluorescent, field-sensitive, biomarkers and simultaneous novel MRI contrast agents. Building on the demonstrated biocompatibility of these materials, we are combining hyperpolarized MRI techniques with single fluorescence sensing to enable the detection and tracking of targeted bioagents both at the intracellular level and scale of macroscopic tissue.

Quantum Hardware

We are developing new, scalable methods and hardware to enable large-scale quantum computing. The driver for this major effort is the lack of commercial off-the-shelf hardware well suited to addressing the research challenges posed by quantum science. Recent developemetns include:

- Radio Frequency, cryogenic interconnect solutions.

- Microwave, cryogenic filters.

- Fast, low dissipation, cryogenic, switching technologies.

- Complete control systems that imbed FPGA, DACs, and ADCs at cryogenic temperatures.

- Ultra-low noise cryogenic amplifiers.

Topological Electronics

This project is developing new nanoelectronic devices based on a new phase of matter, the topological insulator. Since their surprising discovery 5 years ago, a wave of new research has positioned topological insulators at the forefront of theoretical condensed matter physics. A worldwide effort is underway to develop these exotic systems and capture the remarkable applications that stem from their unique properties. These include electrical transport without dissipation, the production and control of spin-polarized currents of prime importance in spintronic devices, and ultimately the manipulation of a new type of emergent particle, the Majorana Fermion, which may underpin new approaches to fault tolerant quantum computing.

Our focus is specifically the topological insulator created in thin layers of mercury-cadmium-telluride (MCT), a clean and well-developed material. Predicted in 2006 and experimentally demonstrated in 2007, these layers exhibit inverted bandstructure, a feature that leads to unique electrical properties. By leveraging the techniques of modern lithography, these bulk properties can be brought to the nanoscale and controlled electrically in a quantum device.

Associations

I am a Chief Investigator in the ARC Centre of Excellence for Engineered Quantum Systems (EQuS).

In the media

International links

Denmark

(Neils Bohr Institute, University of Copenhagen.) Research collaboration.

United States

(Harvard University) Research Collaboration

United States

(Purdue University) Research Collaboration.

United States

(University of California Santa Barbara) Research Collaboration.

Selected grants

2014

  • Enhanced Readout Performance for Quantum Dot Spin Qubits; Reilly D, Marcus C, Manfra M; US Army Research Laboratory (USA)/Research Grant.
  • National facility for Cryogenic Photogenics; Clark A, Gibson B, Mitchell A, Monro T, Greentree A, Xiong C, Husko C, Reilly D, Peruzzo A; Australian Research Council (ARC)/Linkage Infrastructure, Equipment and Facilities (LIEF).

2013

  • HYBRID QUANTUM TECHNOLOGY; Houck A, Reilly D; DVC Research/International Research Collaboration Award (IRCA).
  • Research infrastructure for Optical Lithography; Eggleton B, Fleming S, Reilly D, Bland-Hawthorn J; DVC Research/Equipment Grant.
  • Pulsed Electron Paramagnetic Resonance - an enhanced capability for research in quantum physics, materials science, chemistry and biological sciences; McCamey D, Moran G, Brown L, Dzurak A, Reilly D, Mackay J, Hamilton A, Lay P, Schmidt T; Australian Research Council (ARC)/Linkage Infrastructure, Equipment and Facilities (LIEF).

2012

  • Multi qubit systems based on electron spins in coupled quantum dots; Marcus C, Reilly D, Bartlett S, Doherty A; Intelligence Advanced Research Projects Activity (IARPA)/Research Support.
  • Qubit Control Hardware; Reilly D; Microsoft Corporation/Research Support.
  • Epitaxial Growth Facility for Advanced Materials; Dzurak A, Reilly D, Liu Z; Australian Research Council (ARC)/Linkage Infrastructure, Equipment and Facilities (LIEF).

2011

  • ARC Centre of Excellence for Engineered Quantum Systems (EQuS); Milburn G, White A, Doherty A, Tobar M, Twamley J, Bartlett S, Biercuk M, Bowen W, Brennen G, Duty T, Gilchrist A, Molina-Terriza G, Rabeau J, Reilly D, Rubinsztein-Dunlop H, Stace T, Vidal G; Australian Research Council (ARC)/Centres of Excellence (CE).
  • ARC Centre of Excellence for Engineered Quantum Systems (EQuS) ARC ID CE11E0082 [UoQ is the; Bartlett S, Miszczak E, Reilly D; The University of Queensland/Project Support.

2010

  • Multi qubit systems based on electron spins in coupled quantum dots; Marcus C, Reilly D, Bartlett S, Doherty A; Intelligence Advanced Research Projects Activity (IARPA)/Research Support.
  • Quantum control of decoherence in mesoscopic spin systems; Reilly D, Doherty A; Australian Research Council (ARC)/Discovery Projects (DP).
  • Biomedical imaging with spins in nanoparticles: from single cell to whole-body scanning; Reilly D, Rabeau J, Krueger A; Australian Research Council (ARC)/Discovery Projects (DP).

2009

  • Imaging cancer using hyperpolarized nanodiamond; Reilly D, Baldock C, Bailey D; Cancer Institute New South Wales/Research Innovation Grants.

Selected publications

Download citations: PDF RTF Endnote

Journals

  • Hornibrook, J., Colless, J., Mahoney, A., Croot, X., Blanvillain, S., Lu, H., Gossard, A., Reilly, D. (2014). Frequency multiplexing for readout of spin qubits. Applied Physics Letters, 104(10), Article number 103108. [More Information]
  • Colless, J., Croot, X., Stace, T., Doherty, A., Barrett, S., Lu, H., Gossard, A., Reilly, D. (2014). Raman phonon emission in a driven double quantum dot. Nature Communications, 5, Article number 3716. [More Information]
  • Getts, D., Terry, R., Getts, M., Deffrasnes, C., Müller, M., Van Vreden, C., Ashhurst, T., Chami, B., McCarthy, D., Wu, H., Ma, J., Witting, P., Campbell, I., Reilly, D., White, M., Cordwell, S., Chadban, S., Bao, B., King, N., et al (2014). Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Science Translational Medicine, 6(219), Article number 219ra7. [More Information]
  • Colless, J., Mahoney, A., Hornibrook, J., Doherty, A., Lu, H., Gossard, A., Reilly, D. (2013). Dispersive readout of a few-electron double quantum dot with fast rf gate sensors. Physical Review Letters, 110(4), 1-5. [More Information]
  • Stace, T., Doherty, A., Reilly, D. (2013). Dynamical steady states in driven quantum systems. Physical Review Letters, 111(18), 1-5. [More Information]
  • Cano, J., Doherty, A., Nayak, C., Reilly, D. (2013). Microwave absorption by a mesoscopic quantum Hall droplet. Physical Review B (Condensed Matter and Materials Physics), 88(16), 1-12. [More Information]
  • Reilly, D. (2013). Quantum dots: And then there were three. Nature Nanotechnology, 8(6), 395-396. [More Information]
  • Hornibrook, J., Mitchell, E., Reilly, D. (2013). Suppressing dissipative paths in superconducting coplanar waveguide resonators. IEEE Transactions on Applied Superconductivity, 23(3), 1-4. [More Information]
  • Colless, J., Reilly, D. (2012). Cryogenic high-frequency readout and control platform for spin qubits. Review of Scientific Instruments, 83(2), 1-7. [More Information]
  • Blanvillain, S., Colless, J., Reilly, D., Lu, H., Gossard, A. (2012). Suppressing on-chip electromagnetic crosstalk for spin qubit devices. Journal of Applied Physics, 112(6), 1-6. [More Information]
  • Say, J., Van Vreden, C., Reilly, D., Brown, L., Rabeau, J., King, N. (2011). Luminescent nanodiamonds for biomedical applications. Biophysical Reviews, 3(4), 171-184. [More Information]
  • Biercuk, M., Reilly, D. (2011). Quantum computing: Solid-state spins survive. Nature Nanotechnology, 6(1), 9-11. [More Information]
  • Biercuk, M., Reilly, D. (2011). Solid-state spins survive: Quantum-control pulse sequences can suppress errors and significantly extend the lifetimes of spin-based quantum bits in solid-state devices. Nature Nanotechnology, 6(1), 9-11. [More Information]
  • Reilly, D. (2010). Electrons spin in the field. Nature, 468(7327), 1045-1046.
  • Reilly, D., Taylor, J., Petta, J., Marcus, C., Hanson, M., Gossard, A. (2010). Exchange Control of Nuclear Spin Diffusion in a Double Quantum Dot. Physical Review Letters, 104(23), 236802-1-236802-4.
  • Bartlett, S., Biercuk, M., Doherty, A., Reilly, D. (2010). The Revolution is coming. Australian Physics, 47(3), 86-88.
  • Barthel, C., Reilly, D., Marcus, C., Hanson, M., Gossard, A. (2009). Rapid Single-Shot Measurement of a Singlet-Triplet Qubit. Physical Review Letters, 103(16), 160503-1-160503-4.
  • Reilly, D., Taylor, J., Laird, E., Petta, J., Marcus, C., Hanson, M., Gossard, A. (2008). Measurement of Temporal Correlations of the Overhauser Field in a Double Quantum Dot. Physical Review Letters, 101(23), 236803-1-236803-4.
  • Reilly, D., Taylor, J., Petta, J., Marcus, C., Hanson, M., Gossard, A. (2008). Suppressing Spin Qubit Dephasing by Nuclear State Preparation. Science, 321(5890), 817-821.
  • Hu, Y., Churchill, H., Reilly, D., Xiang, J., Lieber, C., Marcus, C. (2007). A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nature Nanotechnology, 2(October 2007), 622-625.
  • Reilly, D., Marcus, C., Hanson, M., Gossard, A. (2007). Fast single-charge sensing with an rf quantum point contact. Applied Physics Letters, 91, 162101-1-162101-3.
  • Biercuk, M., Reilly, D., Buehler, T., Chan, V., Chow, J., Clark, R., Marcus, C. (2006). Charge sensing in carbon-nanotube quantum dots on microsecond timescales. Physical Review B (Condensed Matter and Materials Physics), 73(20), 201402-1-201402-4. [More Information]
  • Buehler, T., Chan, V., Ferguson, A., Dzurak, A., Hudson, F., Reilly, D., Hamilton, A., Clark, R., Jamieson, D., Yang, C., et al (2006). Controlled single electron transfer between Si:P dots. Applied Physics Letters, 88(19), 192101-1-192101-3.
  • Chan, V., Buehler, T., Ferguson, A., McCamey, D., Reilly, D., Dzurak, A., Clark, R., Yang, C., Jamieson, D. (2006). Ion implanted Si:P double dot with gate tunable interdot coupling. Journal of Applied Physics, 100(10), 106104-1-106104-3.
  • Reilly, D., Zhang, Y., DiCarlo, L. (2006). Phenomenology of the 0.7 conductance feature. Physica E: Low-Dimensional Systems and Nanostructures, 34(1-2), 27-30.
  • DiCarlo, L., Zhang, Y., McClure, D., Reilly, D., Marcus, C., Pfeiffer, L., West, K. (2006). Shot-Noise Signatures of 0.7 Structure and Spin in a Quantum Point Contact. Physical Review Letters, 97(3), 036810-1-036810-4.
  • Reilly, D., Buehler, T. (2005). Direct measurement of the intrinsic RC roll-off in a radio frequency single electron transistor operated as a microwave mixer. Applied Physics Letters, 87, 163122-1-163122-3.
  • Brenner, R., Buehler, T., Reilly, D. (2005). Double-island single-electron transistor operated at radio-frequency for sensitive and fast charge detection. MICROELECTRONIC ENGINEERING, 78-79, 218-223.
  • Reilly, D. (2005). Phenomenological model for the 0.7 conductance feature in quantum wires. Physical Review B (Condensed Matter and Materials Physics), 72, 033309-1-033309-4.
  • Brenner, R., Buehler, T., Reilly, D. (2005). Radio-frequency operation of a double-island single-electron transistor. Journal of Applied Physics, 97, 034501-1-034501-5.
  • Mitic, M., Andresen, S., Yang, C., Hopf, T., Chan, V., Gauja, E., Hudson, F., Buehler, T., Brenner, R., Ferguson, A., Reilly, D., et al (2005). Single atom Si nanoelectronics using controlled single-ion implantation. MICROELECTRONIC ENGINEERING, 78-79, 279-286.
  • Buehler, T., Reilly, D., Starrett, R., Greentree, A., Hamilton, A., Dzurak, A., Clark, R. (2005). Single-shot readout with the radio-frequency single-electron transistor in the presence of charge noise. Applied Physics Letters, 86, 143117-1-143117-3.
  • Hollenberg, C., Dzurak, A., Wellard, C., Hamilton, A., Reilly, D., Milburn, G., Clark, R. (2004). Charge-based quantum computing using single donors in semiconductors. Physical Review B (Condensed Matter and Materials Physics), 69(11), 1133011-1133014.
  • Buehler, T., Reilly, D., Starrett, R., Court, N., Hamilton, A., Dzurak, A., Clark, R. (2004). Development and operation of the twin radio frequency single electron transistor for cross-correlated charge detection. Journal of Applied Physics, 96(8), 4508-4513.
  • Buehler, T., Reilly, D., Starrett, R., Chan, V., Hamilton, A., Dzurak, A., Clark, R. (2004). Observing sub-microsecond telegraph noise with the radio frequency single electron transistor. Journal of Applied Physics, 96(11), 6827-6830.
  • Buehler, T., Reilly, D., Brenner, R., Hamilton, A., Dzurak, A., Clark, R. (2003). Correlated charge detection for readout of a solid-state quantum computer. Applied Physics Letters, 82(4), 577-579.
  • Clark, R., Brenner, R., Buehler, T., Chan, V., Curson, N., Dzurak, A., Gauja, E., Goan, H., Greentree, A., Hallam, T., Reilly, D., et al (2003). Progress in silicon-based quantum computing. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 361, 1451-1471.
  • Buehler, T., Reilly, D., Starrett, R., Hamilton, A., Brenner, R., Kenyon, S., Court, N., Dzurak, A., Clark, R. (2003). Single electron devices for simulating read-out in a solid state quantum computer. Surface Science, 532-535, 1199-1203.
  • Buehler, T., Reilly, D., Starrett, R., Kenyon, S., Hamilton, A., Dzurak, A., Clark, R. (2003). The twin radio frequency single electron transistor for correlated charge detection on microsecond time-scales. MICROELECTRONIC ENGINEERING, 67-68, 775-781.
  • Buehler, T., McKinnon, R., Lumpkin, N., Brenner, R., Reilly, D., Macks, L., Hamilton, A., Dzurak, A., Clark, R. (2002). A self-aligned fabrication process for silicon quantum computer devices. Nanotechnology, 13, 686-690.
  • Reilly, D., Buehler, T., O'Brien, J., Hamilton, A., Dzurak, A., Clark, R., Kane, B., Pfeiffer, L., West, K. (2002). Density-Dependent Spin Polarization in Ultra-Low-Disorder Quantum Wires. Physical Review Letters, 89(24), 246801-1-246801-4.
  • O'Brien, J., Hamilton, A., Clark, R., Mielke, C., Smith, J., Cooley, J., Rickel, D., Starrett, R., Reilly, D., Lumpkin, N., et al (2002). Magnetic susceptibility of the normal-superconducting transition in high-purity single-crystal a-uranium. Physical Review B (Condensed Matter and Materials Physics), 66, 064523-1-064523-5.
  • Buehler, T., Brenner, R., Reilly, D., Hamilton, A., Dzurak, A., Clark, R. (2002). Single-electron transistor architectures for charge motion detection in solid-state quantum computer devices. Smart Materials and Structures, 11, 749-755.

2014

  • Hornibrook, J., Colless, J., Mahoney, A., Croot, X., Blanvillain, S., Lu, H., Gossard, A., Reilly, D. (2014). Frequency multiplexing for readout of spin qubits. Applied Physics Letters, 104(10), Article number 103108. [More Information]
  • Colless, J., Croot, X., Stace, T., Doherty, A., Barrett, S., Lu, H., Gossard, A., Reilly, D. (2014). Raman phonon emission in a driven double quantum dot. Nature Communications, 5, Article number 3716. [More Information]
  • Getts, D., Terry, R., Getts, M., Deffrasnes, C., Müller, M., Van Vreden, C., Ashhurst, T., Chami, B., McCarthy, D., Wu, H., Ma, J., Witting, P., Campbell, I., Reilly, D., White, M., Cordwell, S., Chadban, S., Bao, B., King, N., et al (2014). Therapeutic inflammatory monocyte modulation using immune-modifying microparticles. Science Translational Medicine, 6(219), Article number 219ra7. [More Information]

2013

  • Colless, J., Mahoney, A., Hornibrook, J., Doherty, A., Lu, H., Gossard, A., Reilly, D. (2013). Dispersive readout of a few-electron double quantum dot with fast rf gate sensors. Physical Review Letters, 110(4), 1-5. [More Information]
  • Stace, T., Doherty, A., Reilly, D. (2013). Dynamical steady states in driven quantum systems. Physical Review Letters, 111(18), 1-5. [More Information]
  • Cano, J., Doherty, A., Nayak, C., Reilly, D. (2013). Microwave absorption by a mesoscopic quantum Hall droplet. Physical Review B (Condensed Matter and Materials Physics), 88(16), 1-12. [More Information]
  • Reilly, D. (2013). Quantum dots: And then there were three. Nature Nanotechnology, 8(6), 395-396. [More Information]
  • Hornibrook, J., Mitchell, E., Reilly, D. (2013). Suppressing dissipative paths in superconducting coplanar waveguide resonators. IEEE Transactions on Applied Superconductivity, 23(3), 1-4. [More Information]

2012

  • Colless, J., Reilly, D. (2012). Cryogenic high-frequency readout and control platform for spin qubits. Review of Scientific Instruments, 83(2), 1-7. [More Information]
  • Blanvillain, S., Colless, J., Reilly, D., Lu, H., Gossard, A. (2012). Suppressing on-chip electromagnetic crosstalk for spin qubit devices. Journal of Applied Physics, 112(6), 1-6. [More Information]

2011

  • Say, J., Van Vreden, C., Reilly, D., Brown, L., Rabeau, J., King, N. (2011). Luminescent nanodiamonds for biomedical applications. Biophysical Reviews, 3(4), 171-184. [More Information]
  • Biercuk, M., Reilly, D. (2011). Quantum computing: Solid-state spins survive. Nature Nanotechnology, 6(1), 9-11. [More Information]
  • Biercuk, M., Reilly, D. (2011). Solid-state spins survive: Quantum-control pulse sequences can suppress errors and significantly extend the lifetimes of spin-based quantum bits in solid-state devices. Nature Nanotechnology, 6(1), 9-11. [More Information]

2010

  • Reilly, D. (2010). Electrons spin in the field. Nature, 468(7327), 1045-1046.
  • Reilly, D., Taylor, J., Petta, J., Marcus, C., Hanson, M., Gossard, A. (2010). Exchange Control of Nuclear Spin Diffusion in a Double Quantum Dot. Physical Review Letters, 104(23), 236802-1-236802-4.
  • Bartlett, S., Biercuk, M., Doherty, A., Reilly, D. (2010). The Revolution is coming. Australian Physics, 47(3), 86-88.

2009

  • Barthel, C., Reilly, D., Marcus, C., Hanson, M., Gossard, A. (2009). Rapid Single-Shot Measurement of a Singlet-Triplet Qubit. Physical Review Letters, 103(16), 160503-1-160503-4.

2008

  • Reilly, D., Taylor, J., Laird, E., Petta, J., Marcus, C., Hanson, M., Gossard, A. (2008). Measurement of Temporal Correlations of the Overhauser Field in a Double Quantum Dot. Physical Review Letters, 101(23), 236803-1-236803-4.
  • Reilly, D., Taylor, J., Petta, J., Marcus, C., Hanson, M., Gossard, A. (2008). Suppressing Spin Qubit Dephasing by Nuclear State Preparation. Science, 321(5890), 817-821.

2007

  • Hu, Y., Churchill, H., Reilly, D., Xiang, J., Lieber, C., Marcus, C. (2007). A Ge/Si heterostructure nanowire-based double quantum dot with integrated charge sensor. Nature Nanotechnology, 2(October 2007), 622-625.
  • Reilly, D., Marcus, C., Hanson, M., Gossard, A. (2007). Fast single-charge sensing with an rf quantum point contact. Applied Physics Letters, 91, 162101-1-162101-3.

2006

  • Biercuk, M., Reilly, D., Buehler, T., Chan, V., Chow, J., Clark, R., Marcus, C. (2006). Charge sensing in carbon-nanotube quantum dots on microsecond timescales. Physical Review B (Condensed Matter and Materials Physics), 73(20), 201402-1-201402-4. [More Information]
  • Buehler, T., Chan, V., Ferguson, A., Dzurak, A., Hudson, F., Reilly, D., Hamilton, A., Clark, R., Jamieson, D., Yang, C., et al (2006). Controlled single electron transfer between Si:P dots. Applied Physics Letters, 88(19), 192101-1-192101-3.
  • Chan, V., Buehler, T., Ferguson, A., McCamey, D., Reilly, D., Dzurak, A., Clark, R., Yang, C., Jamieson, D. (2006). Ion implanted Si:P double dot with gate tunable interdot coupling. Journal of Applied Physics, 100(10), 106104-1-106104-3.
  • Reilly, D., Zhang, Y., DiCarlo, L. (2006). Phenomenology of the 0.7 conductance feature. Physica E: Low-Dimensional Systems and Nanostructures, 34(1-2), 27-30.
  • DiCarlo, L., Zhang, Y., McClure, D., Reilly, D., Marcus, C., Pfeiffer, L., West, K. (2006). Shot-Noise Signatures of 0.7 Structure and Spin in a Quantum Point Contact. Physical Review Letters, 97(3), 036810-1-036810-4.

2005

  • Reilly, D., Buehler, T. (2005). Direct measurement of the intrinsic RC roll-off in a radio frequency single electron transistor operated as a microwave mixer. Applied Physics Letters, 87, 163122-1-163122-3.
  • Brenner, R., Buehler, T., Reilly, D. (2005). Double-island single-electron transistor operated at radio-frequency for sensitive and fast charge detection. MICROELECTRONIC ENGINEERING, 78-79, 218-223.
  • Reilly, D. (2005). Phenomenological model for the 0.7 conductance feature in quantum wires. Physical Review B (Condensed Matter and Materials Physics), 72, 033309-1-033309-4.
  • Brenner, R., Buehler, T., Reilly, D. (2005). Radio-frequency operation of a double-island single-electron transistor. Journal of Applied Physics, 97, 034501-1-034501-5.
  • Mitic, M., Andresen, S., Yang, C., Hopf, T., Chan, V., Gauja, E., Hudson, F., Buehler, T., Brenner, R., Ferguson, A., Reilly, D., et al (2005). Single atom Si nanoelectronics using controlled single-ion implantation. MICROELECTRONIC ENGINEERING, 78-79, 279-286.
  • Buehler, T., Reilly, D., Starrett, R., Greentree, A., Hamilton, A., Dzurak, A., Clark, R. (2005). Single-shot readout with the radio-frequency single-electron transistor in the presence of charge noise. Applied Physics Letters, 86, 143117-1-143117-3.

2004

  • Hollenberg, C., Dzurak, A., Wellard, C., Hamilton, A., Reilly, D., Milburn, G., Clark, R. (2004). Charge-based quantum computing using single donors in semiconductors. Physical Review B (Condensed Matter and Materials Physics), 69(11), 1133011-1133014.
  • Buehler, T., Reilly, D., Starrett, R., Court, N., Hamilton, A., Dzurak, A., Clark, R. (2004). Development and operation of the twin radio frequency single electron transistor for cross-correlated charge detection. Journal of Applied Physics, 96(8), 4508-4513.
  • Buehler, T., Reilly, D., Starrett, R., Chan, V., Hamilton, A., Dzurak, A., Clark, R. (2004). Observing sub-microsecond telegraph noise with the radio frequency single electron transistor. Journal of Applied Physics, 96(11), 6827-6830.

2003

  • Buehler, T., Reilly, D., Brenner, R., Hamilton, A., Dzurak, A., Clark, R. (2003). Correlated charge detection for readout of a solid-state quantum computer. Applied Physics Letters, 82(4), 577-579.
  • Clark, R., Brenner, R., Buehler, T., Chan, V., Curson, N., Dzurak, A., Gauja, E., Goan, H., Greentree, A., Hallam, T., Reilly, D., et al (2003). Progress in silicon-based quantum computing. Philosophical Transactions of the Royal Society A-Mathematical Physical and Engineering Sciences, 361, 1451-1471.
  • Buehler, T., Reilly, D., Starrett, R., Hamilton, A., Brenner, R., Kenyon, S., Court, N., Dzurak, A., Clark, R. (2003). Single electron devices for simulating read-out in a solid state quantum computer. Surface Science, 532-535, 1199-1203.
  • Buehler, T., Reilly, D., Starrett, R., Kenyon, S., Hamilton, A., Dzurak, A., Clark, R. (2003). The twin radio frequency single electron transistor for correlated charge detection on microsecond time-scales. MICROELECTRONIC ENGINEERING, 67-68, 775-781.

2002

  • Buehler, T., McKinnon, R., Lumpkin, N., Brenner, R., Reilly, D., Macks, L., Hamilton, A., Dzurak, A., Clark, R. (2002). A self-aligned fabrication process for silicon quantum computer devices. Nanotechnology, 13, 686-690.
  • Reilly, D., Buehler, T., O'Brien, J., Hamilton, A., Dzurak, A., Clark, R., Kane, B., Pfeiffer, L., West, K. (2002). Density-Dependent Spin Polarization in Ultra-Low-Disorder Quantum Wires. Physical Review Letters, 89(24), 246801-1-246801-4.
  • O'Brien, J., Hamilton, A., Clark, R., Mielke, C., Smith, J., Cooley, J., Rickel, D., Starrett, R., Reilly, D., Lumpkin, N., et al (2002). Magnetic susceptibility of the normal-superconducting transition in high-purity single-crystal a-uranium. Physical Review B (Condensed Matter and Materials Physics), 66, 064523-1-064523-5.
  • Buehler, T., Brenner, R., Reilly, D., Hamilton, A., Dzurak, A., Clark, R. (2002). Single-electron transistor architectures for charge motion detection in solid-state quantum computer devices. Smart Materials and Structures, 11, 749-755.

To update your profile click here. For support on your academic profile contact .