Dr Clark Li

A28 - Physics Building
The University of Sydney

Telephone +61 2 8627 4416

Biographical details

Dr. Guangyuan (Clark) Li completed his BS degree in Physics at Beijing Jiaotong University (China, 2004) and earned a PhD degree in Electronics from the State Key Laboratory of Advanced Optical Communication Systems & Networks, Peking University (China, 2009). He worked as a Lecturer at Yunnan University (2009-1010), and then Postdoctoral Fellow and Research Fellow at Peking University and Nanyang Technological University (Singapore), respectively. During his stay with Peking University, he was the Principal Investigator for several nationally competitive grants in China, including the National Science Foundation of China (NSFC), and won the Outstanding Postdoctoral Fellow of Peking University in 2012. His expertise is mainly in passive and active Plasmonics and Metamaterials, especially in waveguides, gratings and nano-lasers. His current interest is in nonlinear plasmonics.

Research interests

  • Gratings
  • Waveguides
  • Nonlinear Optics
  • Plasmonics
  • Nano-lasers
  • Metamaterials.

Associations

Member of Optical Society of America

Selected grants

2012

  • Plasmonic waveguide gratings for wide angle light coupling; Li G; National Natural Science Foundation of China/Research Grant.
  • Broadband and efficient launching of surface plasmon polaritons; Li G; China Postdoctoral Science Foundation/Special Financial Grant.

2011

  • Broadband and wide-angular optical beam steering with plasmonic antennas; Li G; China Postdoctoral Science Foundation/Research Support.

Selected publications

Download citations: PDF RTF Endnote

Journals

  • Li, G., de Sterke, C., Palomba, S. (2017). General analytic expression and numerical approach for the Kerr nonlinear coefficient of optical waveguides. Optics Letters, 42(7), 1329-1332. [More Information]
  • Li, G., de Sterke, C., Palomba, S. (2016). Figure of merit for Kerr nonlinear plasmonic waveguides. Laser and Photonics Reviews, 10(4), 639-646. [More Information]
  • Diaz, F., Li, G., de Sterke, C., Kuhlmey, B., Palomba, S. (2016). Kerr effect in hybrid plasmonic waveguides. Journal of the Optical Society of America B, 33(5), 957-962. [More Information]
  • Li, G., Liu, X., Wang, X., Yuan, Y., Sum, T., Xiong, Q. (2015). Purified plasmonic lasing with strong polarization selectivity by reflection. Optics Express, 23(12), 15657-16669. [More Information]
  • Zhang, Q., Li, G., Liu, X., Qian, F., Li, Y., Sum, T., Lieber, C., Xiong, Q. (2014). A room-temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communications, 5, 1-9. [More Information]
  • Li, G., Xiong, Q. (2014). Scattering by abrupt discontinuities on photonic nanowires: closed-form expressions for domain reduction. Optics Express, 22(21), 25137-25148. [More Information]
  • Xiao, F., Michel, D., Li, G., Xu, A., Alameh, K. (2014). Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors. Journal of Lightwave Technology, 32(21), 4169-4173. [More Information]
  • Wen, X., Li, G., Zhang, J., Zhang, Q., Peng, B., Wong, L., Wang, S., Xiong, Q. (2014). Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering. Nanoscale, 6(1), 132-139. [More Information]
  • Li, G., Zhang, J. (2014). Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period. Scientific Reports, 4, 1-7. [More Information]
  • Zhang, Q., Wen, X., Li, G., Ruan, Q., Wang, J., Xiong, Q. (2013). Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. ACS Nano, 7(12), 11071-11078. [More Information]
  • Peng, B., Li, G., Li, D., Dodson, S., Zhang, Q., Zhang, J., Lee, Y., Demir, H., Ling, X., Xiong, Q. (2013). Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano, 7(7), 5993-6000. [More Information]
  • Lu, F., Li, G., Li, K., Wang, Z., Xu, A. (2012). A compact wavelength demultiplexing structure based on arrayed MIM plasmonic nano-disk cavities. Optics Communications, 285(24), 5519-5523. [More Information]
  • Lu, F., Li, G., Xiao, F., Xu, A. (2012). Compact bidirectional polarization splitting antenna. IEEE Photonics Journal, 4(5), 1744-1751. [More Information]
  • Li, K., Li, G., Lu, F., Xu, A. (2012). Compact, broadband, and wide-angle optical coupling for Silicon waveguide. IEEE Photonics Journal, 4(6), 2116-2125. [More Information]
  • Xiao, F., Li, G., Alameh, K., Xu, A. (2012). Fabry-Perot-based surface plasmon resonance sensors. Optics Letters, 37(22), 4582-4584.
  • Li, G., Xiao, F., Li, K., Alameh, K., Xu, A. (2012). Theory, figures of merit, and design recipe of the plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations. Journal of Lightwave Technology, 30(15), 2405-2414. [More Information]
  • Li, K., Li, G., Xiao, F., Lu, F., Wang, Z., Xu, A. (2012). Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency. Optics Express, 20(17), 18545-18554. [More Information]
  • Wang, Z., Li, G., Xiao, F., Lu, F., Li, K., Xu, A. (2011). Plasmonic critical angle in optical transmission through subwavelength metallic gratings. Optics Letters, 36(23), 4584-4586.
  • Li, G., Xiao, F., Cai, L., Alameh, K., Xu, A. (2011). Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition. New Journal of Physics, 13, 1-15. [More Information]
  • Li, G., Cai, L., Xiao, F., Pei, Y., Xu, A. (2010). A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors. Optics Express, 18(10), 10487-10499. [More Information]
  • Cai, L., Li, G., Wang, Z., Xu, A. (2010). Interference and horizontal Fabry-Pérot resonance on extraordinary transmission through a metallic nanoslit surrounded with grooves. Optics Letters, 35(2), 127-129. [More Information]
  • Li, G., Cai, L., Xiao, F., Xu, A. (2010). Theoretical reexamination of the cross conversion between surface plasmon polaritons and quasi-cylindrical waves. Optics Letters, 35(19), 3162-3164. [More Information]
  • Cai, L., Li, G., Xiao, F., Wang, Z., Xu, A. (2010). Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence. Optics Express, 18(19), 19495-19503. [More Information]
  • Li, G., Cai, L., Xiao, F., Xu, A. (2009). Plasmonic corrugated horn structure for optical transmission enhancement. Chinese Physics Letters, 26(12), 1-3. [More Information]
  • Li, G., Cai, L., Xu, A. (2009). Recent progress in wide field-of-view optical receivers. Science Bulletin, 54(20), 3618-3622. [More Information]
  • Cai, L., Li, G., Xu, A. (2009). Wide field-of-view free-space optical receiver based on surface plasmon polaritons. China Communications, 6(3), 81-88.

Conferences

  • de Sterke, C., Li, G., Palomba, S. (2017). Relative performance of one-dimensional nonlinear plasmonic structures. Conference on Lasers and Electro-Optics, CLEO 2017, Washington, D.C: OSA (Optical Society America). [More Information]
  • Li, G., de Sterke, C., Palomba, S. (2016). Kerr nonlinear characteristics of plasmonic waveguide devices. 16th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2016), Piscataway: (IEEE) Institute of Electrical and Electronics Engineers. [More Information]
  • Li, G., de Sterke, C., Palomba, S. (2016). Performance Comparison of Kerr Nonlinear Plasmonic Waveguide Configurations. Australian Conference on Optical Fibre Technology (ACOFT 2016), Washington, D.C.: OSA (Optical Society America). [More Information]

Patents

  • Xu, A., Li, G., Li, M. (2011). Wide-angle income fiber receiving method and system for space light(China). Patent No. 101098194. China.

2017

  • Li, G., de Sterke, C., Palomba, S. (2017). General analytic expression and numerical approach for the Kerr nonlinear coefficient of optical waveguides. Optics Letters, 42(7), 1329-1332. [More Information]
  • de Sterke, C., Li, G., Palomba, S. (2017). Relative performance of one-dimensional nonlinear plasmonic structures. Conference on Lasers and Electro-Optics, CLEO 2017, Washington, D.C: OSA (Optical Society America). [More Information]

2016

  • Li, G., de Sterke, C., Palomba, S. (2016). Figure of merit for Kerr nonlinear plasmonic waveguides. Laser and Photonics Reviews, 10(4), 639-646. [More Information]
  • Diaz, F., Li, G., de Sterke, C., Kuhlmey, B., Palomba, S. (2016). Kerr effect in hybrid plasmonic waveguides. Journal of the Optical Society of America B, 33(5), 957-962. [More Information]
  • Li, G., de Sterke, C., Palomba, S. (2016). Kerr nonlinear characteristics of plasmonic waveguide devices. 16th International Conference on Numerical Simulation of Optoelectronic Devices (NUSOD 2016), Piscataway: (IEEE) Institute of Electrical and Electronics Engineers. [More Information]
  • Li, G., de Sterke, C., Palomba, S. (2016). Performance Comparison of Kerr Nonlinear Plasmonic Waveguide Configurations. Australian Conference on Optical Fibre Technology (ACOFT 2016), Washington, D.C.: OSA (Optical Society America). [More Information]

2015

  • Li, G., Liu, X., Wang, X., Yuan, Y., Sum, T., Xiong, Q. (2015). Purified plasmonic lasing with strong polarization selectivity by reflection. Optics Express, 23(12), 15657-16669. [More Information]

2014

  • Zhang, Q., Li, G., Liu, X., Qian, F., Li, Y., Sum, T., Lieber, C., Xiong, Q. (2014). A room-temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communications, 5, 1-9. [More Information]
  • Li, G., Xiong, Q. (2014). Scattering by abrupt discontinuities on photonic nanowires: closed-form expressions for domain reduction. Optics Express, 22(21), 25137-25148. [More Information]
  • Xiao, F., Michel, D., Li, G., Xu, A., Alameh, K. (2014). Simultaneous measurement of refractive index and temperature based on surface plasmon resonance sensors. Journal of Lightwave Technology, 32(21), 4169-4173. [More Information]
  • Wen, X., Li, G., Zhang, J., Zhang, Q., Peng, B., Wong, L., Wang, S., Xiong, Q. (2014). Transparent free-standing metamaterials and their applications in surface-enhanced Raman scattering. Nanoscale, 6(1), 132-139. [More Information]
  • Li, G., Zhang, J. (2014). Ultra-broadband and efficient surface plasmon polariton launching through metallic nanoslits of subwavelength period. Scientific Reports, 4, 1-7. [More Information]

2013

  • Zhang, Q., Wen, X., Li, G., Ruan, Q., Wang, J., Xiong, Q. (2013). Multiple magnetic mode-based Fano resonance in split-ring resonator/disk nanocavities. ACS Nano, 7(12), 11071-11078. [More Information]
  • Peng, B., Li, G., Li, D., Dodson, S., Zhang, Q., Zhang, J., Lee, Y., Demir, H., Ling, X., Xiong, Q. (2013). Vertically aligned gold nanorod monolayer on arbitrary substrates: self-assembly and femtomolar detection of food contaminants. ACS Nano, 7(7), 5993-6000. [More Information]

2012

  • Lu, F., Li, G., Li, K., Wang, Z., Xu, A. (2012). A compact wavelength demultiplexing structure based on arrayed MIM plasmonic nano-disk cavities. Optics Communications, 285(24), 5519-5523. [More Information]
  • Lu, F., Li, G., Xiao, F., Xu, A. (2012). Compact bidirectional polarization splitting antenna. IEEE Photonics Journal, 4(5), 1744-1751. [More Information]
  • Li, K., Li, G., Lu, F., Xu, A. (2012). Compact, broadband, and wide-angle optical coupling for Silicon waveguide. IEEE Photonics Journal, 4(6), 2116-2125. [More Information]
  • Xiao, F., Li, G., Alameh, K., Xu, A. (2012). Fabry-Perot-based surface plasmon resonance sensors. Optics Letters, 37(22), 4582-4584.
  • Li, G., Xiao, F., Li, K., Alameh, K., Xu, A. (2012). Theory, figures of merit, and design recipe of the plasmonic structure composed of a nano-slit aperture surrounded by surface corrugations. Journal of Lightwave Technology, 30(15), 2405-2414. [More Information]
  • Li, K., Li, G., Xiao, F., Lu, F., Wang, Z., Xu, A. (2012). Unidirectionally optical coupling from free space into silicon waveguide with wide flat-top angular efficiency. Optics Express, 20(17), 18545-18554. [More Information]

2011

  • Wang, Z., Li, G., Xiao, F., Lu, F., Li, K., Xu, A. (2011). Plasmonic critical angle in optical transmission through subwavelength metallic gratings. Optics Letters, 36(23), 4584-4586.
  • Li, G., Xiao, F., Cai, L., Alameh, K., Xu, A. (2011). Theory of the scattering of light and surface plasmon polaritons by finite-size subwavelength metallic defects via field decomposition. New Journal of Physics, 13, 1-15. [More Information]
  • Xu, A., Li, G., Li, M. (2011). Wide-angle income fiber receiving method and system for space light(China). Patent No. 101098194. China.

2010

  • Li, G., Cai, L., Xiao, F., Pei, Y., Xu, A. (2010). A quantitative theory and the generalized Bragg condition for surface plasmon Bragg reflectors. Optics Express, 18(10), 10487-10499. [More Information]
  • Cai, L., Li, G., Wang, Z., Xu, A. (2010). Interference and horizontal Fabry-Pérot resonance on extraordinary transmission through a metallic nanoslit surrounded with grooves. Optics Letters, 35(2), 127-129. [More Information]
  • Li, G., Cai, L., Xiao, F., Xu, A. (2010). Theoretical reexamination of the cross conversion between surface plasmon polaritons and quasi-cylindrical waves. Optics Letters, 35(19), 3162-3164. [More Information]
  • Cai, L., Li, G., Xiao, F., Wang, Z., Xu, A. (2010). Theory of enhanced optical transmission through a metallic nano-slit surrounded with asymmetric grooves under oblique incidence. Optics Express, 18(19), 19495-19503. [More Information]

2009

  • Li, G., Cai, L., Xiao, F., Xu, A. (2009). Plasmonic corrugated horn structure for optical transmission enhancement. Chinese Physics Letters, 26(12), 1-3. [More Information]
  • Li, G., Cai, L., Xu, A. (2009). Recent progress in wide field-of-view optical receivers. Science Bulletin, 54(20), 3618-3622. [More Information]
  • Cai, L., Li, G., Xu, A. (2009). Wide field-of-view free-space optical receiver based on surface plasmon polaritons. China Communications, 6(3), 81-88.

To update your profile click here. For support on your academic profile contact .