Associate Professor Laurentiu Paunescu

F07 - Carslaw Building
The University of Sydney

Telephone 9351 2969
Fax 9351 4534

Website Personal web page

Research interests

Domains of Research:

  • Real and Complex Singularities, Stratifications.
  • Real and Complex Algebraic Geometry.

My main research interests are in real and complex singularities,in stratification theory and in real and complex polynomials.

I am interested in geometric criteria allowing us to tell when we can ignore higher order terms in a weighted (or Newton) Taylor expansion of an analytic map, without changing the topological type defined by it. These can be used to understand the lists of V.I. Arnold and C.T.C. Wall of simple and unimodular germs.

Teaching and supervision

Timetable

PhD and master's project opportunities

Selected grants

2010

  • The canonical stratification of jet spaces; Paunescu L; Australian Research Council (ARC)/Discovery Projects (DP).

2003

  • Rational homotopy theory and global differential geometry; Paunescu L; DVC Research/Research and Development Scheme: Research and Development (R&D).

Selected publications

Download citations: PDF RTF Endnote

Journals

  • Koike, S., Loi, T., Paunescu, L., Shiota, M. (2013). Directional properties of sets definable in o-minimal structures (Proprietes directionnelles d'ensembles definissable dans des structures o-minimales). Annales de l'Institut Fourier, 63(5), 2017-2047. [More Information]
  • Koike, S., Kuo, T., Paunescu, L. (2012). A study of curvature using infinitesimals. Proceedings of the Japan Academy Series a-Mathematical Sciences, 88(A), 70-74. [More Information]
  • Kuo, T., Paunescu, L. (2012). Enriched Riemann sphere, Morse stability and equi-singularity in O2. Journal of The London Mathematical Society, 85(2), 382-408. [More Information]
  • Kuo, T., Paunescu, L. (2010). Morse equi-singular deformation in C^2. Academie des Sciences. Comptes Rendus. Mathematique, 32(4), 120-127.
  • Fukui, T., Kurdyka, K., Paunescu, L. (2010). Tame nonsmooth inverse mapping theorems. S I A M Journal on Optimization, 20(3), 1573-1590. [More Information]
  • Koike, S., Paunescu, L. (2009). The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms. Annales de l'Institut Fourier, 59(6), 2445-2467.
  • Kurdyka, K., Paunescu, L. (2008). Hyperbolic polynomials and multiparameter real-analytic perturbation theory. Duke Mathematical Journal, 141(1), 123-149.
  • Fukui, T., Paunescu, L. (2008). On blow-analytic equivalence. Panoramas et Synthèses, 24, 87-125.
  • Papadima, S., Paunescu, L. (2007). Closed manifolds coming from Artinian complete intersections. Transactions of the American Mathematical Society, 359(6), 2777-2786.
  • Kuo, T., Paunescu, L. (2005). Equisingularity in R2 as Morse stability in infinitesimal calculus. Proceedings of the Japan Academy Series a-Mathematical Sciences, 81(6), 115-120.
  • Papadima, S., Paunescu, L. (2005). Isometry-invariant geodesics and nonpositive derivations of the cohomology. Journal of Differential Geometry, 71(1), 159-176.
  • Kurdyka, K., Paunescu, L. (2004). Arc-Analytic Roots Of Analytic Functions Are Lipschitz. Proceedings of the American Mathematical Society, 132(6), 1693-1702.
  • Paunescu, L. (2002). Invariants associated with blow-analytic homeomorphisms. Proceedings of the Japan Academy Series a-Mathematical Sciences, 78(10), 194-198.
  • Fukui, T., Kuo, T., Paunescu, L. (2001). Constructing blow-analytic isomorphisms. Annales de l'Institut Fourier, 51(4), 1071-1087.
  • Paunescu, L. (2001). Implicit function theorem for locally blow-analytic functions. Annales de l'Institut Fourier, 51(4), 1089-1100.
  • Fukui, T., Paunescu, L. (2001). Stratification theory from the weighed point of view. Canadian Journal of Mathematics-Journal Canadien de Mathematiques, 53(1), 73-97.

Conferences

  • Koike, S., Kuo, T., Paunescu, L. (2014). Non concentration of curvature near singular points of two variable analytic functions. 4th Japanese-Australian Workshop (JARCS4), Singapore: World Scientific Publishing Co. Pte. Ltd.
  • Kurdyka, K., Paunescu, L. (2005). ARC-Analyticity is an Open Property. The Second Franco-Japanese Singularity Conference, Marseille-Luminy: Sociétié Mathématicque de France.
  • Kuo, T., Paunescu, L. (2005). Desingularization and equisingularity at undergraduate level. Australian-Japanese Workshop on Real and Complex Singularities, Singapore: World Scientific Publishing.
  • Fukui, T., Kurdyka, K., Paunescu, L. (2004). An Inverse Mapping Theorem For Arc-Analytic Homeomorphisms. Banach Center Symposium: Geometry and topology of caustics, Caustics ''02, Warsaw, Poland: Polish Academy of Sciences, Institute of Mathematics.
  • Kuo, T., Paunescu, L. (2001). An elementary expose on equisingularities. First International Congress of Chinese Mathematicians, Australia: UNSW Australian Defence Force Academy.

2014

  • Koike, S., Kuo, T., Paunescu, L. (2014). Non concentration of curvature near singular points of two variable analytic functions. 4th Japanese-Australian Workshop (JARCS4), Singapore: World Scientific Publishing Co. Pte. Ltd.

2013

  • Koike, S., Loi, T., Paunescu, L., Shiota, M. (2013). Directional properties of sets definable in o-minimal structures (Proprietes directionnelles d'ensembles definissable dans des structures o-minimales). Annales de l'Institut Fourier, 63(5), 2017-2047. [More Information]

2012

  • Koike, S., Kuo, T., Paunescu, L. (2012). A study of curvature using infinitesimals. Proceedings of the Japan Academy Series a-Mathematical Sciences, 88(A), 70-74. [More Information]
  • Kuo, T., Paunescu, L. (2012). Enriched Riemann sphere, Morse stability and equi-singularity in O2. Journal of The London Mathematical Society, 85(2), 382-408. [More Information]

2010

  • Kuo, T., Paunescu, L. (2010). Morse equi-singular deformation in C^2. Academie des Sciences. Comptes Rendus. Mathematique, 32(4), 120-127.
  • Fukui, T., Kurdyka, K., Paunescu, L. (2010). Tame nonsmooth inverse mapping theorems. S I A M Journal on Optimization, 20(3), 1573-1590. [More Information]

2009

  • Koike, S., Paunescu, L. (2009). The directional dimension of subanalytic sets is invariant under bi-Lipschitz homeomorphisms. Annales de l'Institut Fourier, 59(6), 2445-2467.

2008

  • Kurdyka, K., Paunescu, L. (2008). Hyperbolic polynomials and multiparameter real-analytic perturbation theory. Duke Mathematical Journal, 141(1), 123-149.
  • Fukui, T., Paunescu, L. (2008). On blow-analytic equivalence. Panoramas et Synthèses, 24, 87-125.

2007

  • Papadima, S., Paunescu, L. (2007). Closed manifolds coming from Artinian complete intersections. Transactions of the American Mathematical Society, 359(6), 2777-2786.

2005

  • Kurdyka, K., Paunescu, L. (2005). ARC-Analyticity is an Open Property. The Second Franco-Japanese Singularity Conference, Marseille-Luminy: Sociétié Mathématicque de France.
  • Kuo, T., Paunescu, L. (2005). Desingularization and equisingularity at undergraduate level. Australian-Japanese Workshop on Real and Complex Singularities, Singapore: World Scientific Publishing.
  • Kuo, T., Paunescu, L. (2005). Equisingularity in R2 as Morse stability in infinitesimal calculus. Proceedings of the Japan Academy Series a-Mathematical Sciences, 81(6), 115-120.
  • Papadima, S., Paunescu, L. (2005). Isometry-invariant geodesics and nonpositive derivations of the cohomology. Journal of Differential Geometry, 71(1), 159-176.

2004

  • Fukui, T., Kurdyka, K., Paunescu, L. (2004). An Inverse Mapping Theorem For Arc-Analytic Homeomorphisms. Banach Center Symposium: Geometry and topology of caustics, Caustics ''02, Warsaw, Poland: Polish Academy of Sciences, Institute of Mathematics.
  • Kurdyka, K., Paunescu, L. (2004). Arc-Analytic Roots Of Analytic Functions Are Lipschitz. Proceedings of the American Mathematical Society, 132(6), 1693-1702.

2002

  • Paunescu, L. (2002). Invariants associated with blow-analytic homeomorphisms. Proceedings of the Japan Academy Series a-Mathematical Sciences, 78(10), 194-198.

2001

  • Kuo, T., Paunescu, L. (2001). An elementary expose on equisingularities. First International Congress of Chinese Mathematicians, Australia: UNSW Australian Defence Force Academy.
  • Fukui, T., Kuo, T., Paunescu, L. (2001). Constructing blow-analytic isomorphisms. Annales de l'Institut Fourier, 51(4), 1071-1087.
  • Paunescu, L. (2001). Implicit function theorem for locally blow-analytic functions. Annales de l'Institut Fourier, 51(4), 1089-1100.
  • Fukui, T., Paunescu, L. (2001). Stratification theory from the weighed point of view. Canadian Journal of Mathematics-Journal Canadien de Mathematiques, 53(1), 73-97.

To update your profile click here. For support on your academic profile contact .