Dr Misha Neklyudov

F07 - Carslaw Building
The University of Sydney

Telephone 9351 3332
Fax 9351 4534

Website Homepage of Misha Neklyudov
Curriculum vitae Curriculum vitae

Research interests

Mikhail Neklyudov carries out research in the area of stochastic differential equations and their applications to the models appearing in mathematical physics and numerical analysis. His current research is concerned with the theory and numerical analysis of systems of nanomagnetic particles. The theory allows to construct mathematical models of the magnetic memory devices such as hard drives, flash memories.... Recent advances in technology allow to construct the "elements" of the devices at nanoscale. That leads to different technological problems. For instance, small fluctuations of temperature could change the state of the system. The aim of the research is to understand these problems better and find ways to resolve or circumvent them.
Mikhail Neklyudov is a member of the Applied Mathematics Research Group.

Teaching and supervision

N/A

Selected publications

Download citations: PDF RTF Endnote

Books

  • Banas, L., Brzezniak, Z., Neklyudov, M., Prohl, A. (2014). Stochastic Ferromagnetism. Analysis and Numerics. Germany: Walter de Gruyter GmbH & Co. KG.
  • Banas, L., Brzezniak, Z., Neklyudov, M., Prohl, A. (2014). Stochastic Ferromagnetism: Analysis and Numerics. Berlin: Walter de Gruyter.

Book Chapters

  • Inglis, J., Neklyudov, M., Zegarlinski, B. (2010). Liggett-type inequalities and interacting particle systems: The Gaussian case. In Michael Ruzhansky, Jens Wirth (Eds.), Progress in Analysis and Its Applications: Proceedings of the 7th International ISAAC Congress, (pp. 498-504). Singapore: World Scientific Publishing Co. Pte. Ltd.

Journals

  • Banas, L., Brzeźniak, Z., Neklyudov, M., Prohl, A. (2014). A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–Gilbert equation. IMA Journal of Numerical Analysis, 34(2), 502-549. [More Information]
  • Brzezniak, Z., Goldys, B., Neklyudov, M. (2014). Multidimensional Stochastic Burgers Equation. SIAM Journal On Mathematical Analysis, 46(1), 871-889. [More Information]
  • Brzeźniak, Z., Gubinelli, M., Neklyudov, M. (2013). Global solutions of the random vortex filament equation. Nonlinearity, 26(9), 2499-2514. [More Information]
  • Neklyudov, M., Prohl, A. (2013). The Role of Noise in Finite Ensembles of Nanomagnetic Particles. Archive for Rational Mechanics and Analysis, 210(2), 499-534. [More Information]
  • Inglis, J., Neklyudov, M., Zegarliński, B. (2012). Ergodicity for infinite particle systems with locally conserved quantities. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 15(1), 1-34. [More Information]
  • Brzeźniak, Z., Flandoli, F., Neklyudov, M., Zegarliński, B. (2011). Conservative interacting particles system with anomalous rate of ergodicity. Journal of Statistical Physics, 144(6), 1171-1185. [More Information]
  • Goldys, B., Neklyudov, M. (2009). Beale-Kato-Majda type condition for Burgers equation. Journal of Mathematical Analysis and Applications, 354(2), 397-411. [More Information]
  • Brzezniak, Z., Neklyudov, M. (2009). Duality, Vector advection and Navier-Stokes equations. Dynamics of Partial Differential Equations, 6(1), 53-93.
  • Neklyudov, M. (2009). Relationship between stochastic flows and connection forms. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 12(4), 565-573. [More Information]

Conferences

  • Neklyudov, M., Prohl, A. (2011). The role of noise in finite ensembles of nanomagnetic particles. The role of noise in finite ensembles of nanomagnetic particles.
  • Neklyudov, M. (2010). Ergodicity of infinite particle systems with locally conserved quantities. SPDE seminar, Cambridge, United Kingdom.
  • Neklyudov, M. (2010). Ergodicity of infinite particle systems with locally conserved quantities. Stochastic analysis seminar.
  • Neklyudov, M. (2009). Liggett inequality and interacting particle systems. 7th International ISAAC congress.
  • Neklyudov, M. (2008). Beale-Kato-Majda type condition for Burgers equation. Analysis seminar.
  • Neklyudov, M. (2008). Beale-Kato-Majda type condition for Burgers equation II. Analysis seminar.

Other

  • Neklyudov, M. (2009), Workshop on Stochastics in the North West.

2014

  • Banas, L., Brzeźniak, Z., Neklyudov, M., Prohl, A. (2014). A convergent finite-element-based discretization of the stochastic Landau–Lifshitz–Gilbert equation. IMA Journal of Numerical Analysis, 34(2), 502-549. [More Information]
  • Brzezniak, Z., Goldys, B., Neklyudov, M. (2014). Multidimensional Stochastic Burgers Equation. SIAM Journal On Mathematical Analysis, 46(1), 871-889. [More Information]
  • Banas, L., Brzezniak, Z., Neklyudov, M., Prohl, A. (2014). Stochastic Ferromagnetism. Analysis and Numerics. Germany: Walter de Gruyter GmbH & Co. KG.
  • Banas, L., Brzezniak, Z., Neklyudov, M., Prohl, A. (2014). Stochastic Ferromagnetism: Analysis and Numerics. Berlin: Walter de Gruyter.

2013

  • Brzeźniak, Z., Gubinelli, M., Neklyudov, M. (2013). Global solutions of the random vortex filament equation. Nonlinearity, 26(9), 2499-2514. [More Information]
  • Neklyudov, M., Prohl, A. (2013). The Role of Noise in Finite Ensembles of Nanomagnetic Particles. Archive for Rational Mechanics and Analysis, 210(2), 499-534. [More Information]

2012

  • Inglis, J., Neklyudov, M., Zegarliński, B. (2012). Ergodicity for infinite particle systems with locally conserved quantities. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 15(1), 1-34. [More Information]

2011

  • Brzeźniak, Z., Flandoli, F., Neklyudov, M., Zegarliński, B. (2011). Conservative interacting particles system with anomalous rate of ergodicity. Journal of Statistical Physics, 144(6), 1171-1185. [More Information]
  • Neklyudov, M., Prohl, A. (2011). The role of noise in finite ensembles of nanomagnetic particles. The role of noise in finite ensembles of nanomagnetic particles.

2010

  • Neklyudov, M. (2010). Ergodicity of infinite particle systems with locally conserved quantities. SPDE seminar, Cambridge, United Kingdom.
  • Neklyudov, M. (2010). Ergodicity of infinite particle systems with locally conserved quantities. Stochastic analysis seminar.
  • Inglis, J., Neklyudov, M., Zegarlinski, B. (2010). Liggett-type inequalities and interacting particle systems: The Gaussian case. In Michael Ruzhansky, Jens Wirth (Eds.), Progress in Analysis and Its Applications: Proceedings of the 7th International ISAAC Congress, (pp. 498-504). Singapore: World Scientific Publishing Co. Pte. Ltd.

2009

  • Goldys, B., Neklyudov, M. (2009). Beale-Kato-Majda type condition for Burgers equation. Journal of Mathematical Analysis and Applications, 354(2), 397-411. [More Information]
  • Brzezniak, Z., Neklyudov, M. (2009). Duality, Vector advection and Navier-Stokes equations. Dynamics of Partial Differential Equations, 6(1), 53-93.
  • Neklyudov, M. (2009). Liggett inequality and interacting particle systems. 7th International ISAAC congress.
  • Neklyudov, M. (2009). Relationship between stochastic flows and connection forms. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 12(4), 565-573. [More Information]
  • Neklyudov, M. (2009), Workshop on Stochastics in the North West.

2008

  • Neklyudov, M. (2008). Beale-Kato-Majda type condition for Burgers equation. Analysis seminar.
  • Neklyudov, M. (2008). Beale-Kato-Majda type condition for Burgers equation II. Analysis seminar.

To update your profile click here. For support on your academic profile contact .