Dr Nobutaka Nakazono

F07 - Carslaw Building
The University of Sydney

Telephone 9351 5763
Fax 9351 4534

Selected grants

2010

  • Japan Society for the Promotion of Science Fellows; Nakazono N; Japan Society for the Promotion of Science /Research Grant.

Selected publications

Download citations: PDF RTF Endnote

Journals

  • Nakazono, N. (2014). Hypergeometric solutions of the A(1) 4-surface q-painlevé IV equation. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 10, Art 090-23 pages. [More Information]
  • Nakazono, N., Nishioka, S. (2013). Solutions to a q-analog of the Painlevé III equation of type D(1) 7. Funkcialaj Ekvacioj, Serio Internacia, 56(3), 415-439. [More Information]
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2011). Projective Reduction of the Discrete Painlevé System of Type (A2 + A1)(1). International Mathematics Research Notices, 2011 (4), 930-966. [More Information]
  • Nakazono, N. (2010). Hypergeometric τ functions of the q-Painlevé systems of type (A 2 + A 1) (1). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 6, 1-16. [More Information]

Conferences

  • Nakazono, N., Howes, P., Joshi, N., Atkinson, J. (2012). Extension of a one-dimensional reduction of the Q4 mapping to a discrete Painleve equation. The Japan Society for Industrial and Applied Mathematics 2012.
  • Nakazono, N. (2012). Study on a q-analog of the Painlevé III equations of type D(1)7. Nonlinear Evolution Equations and Dynamical Systems 2012.
  • Howes, P., Nakazono, N., Joshi, N., Atkinson, J. (2012). The Holy Grail of Painlevé Equations: Finding Elliptic Painleve Through Surface Theory. ANZIAM 2012, Victoria: Australian Mathematical Society.
  • Howes, P., Nakazono, N. (2011). An 'elliptic'? Painleve systems. INTEGRABILITY DAY.
  • Nakazono, N., Nishioka, S. (2010). q-Painlevé systems arising from W(A4(1). Mathematical Society of Japan 2010.
  • Nakazono, N. (2010). Two types of hypergeometric solutions to a q-Painleve IV equation of type A4(1). Mathematical Society of Japan.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Hypergeometric solutions to the symmetric discrete Painlevé equations. Isaac Newton Institute for Mathematical Sciences.
  • Nakazono, N., Nishioka, S. (2009). q-Painleve systems which have an affine Weyl group symmetry of type A4(1). RIAM Symposium.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions. HG 2009.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions (I). Mathematical Society of Japan 2009.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions (II). Mathematical Society of Japan 2009.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2008). Symmetrization of q-Painleve systems. RIAM Symposium.

2014

  • Nakazono, N. (2014). Hypergeometric solutions of the A(1) 4-surface q-painlevé IV equation. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 10, Art 090-23 pages. [More Information]

2013

  • Nakazono, N., Nishioka, S. (2013). Solutions to a q-analog of the Painlevé III equation of type D(1) 7. Funkcialaj Ekvacioj, Serio Internacia, 56(3), 415-439. [More Information]

2012

  • Nakazono, N., Howes, P., Joshi, N., Atkinson, J. (2012). Extension of a one-dimensional reduction of the Q4 mapping to a discrete Painleve equation. The Japan Society for Industrial and Applied Mathematics 2012.
  • Nakazono, N. (2012). Study on a q-analog of the Painlevé III equations of type D(1)7. Nonlinear Evolution Equations and Dynamical Systems 2012.
  • Howes, P., Nakazono, N., Joshi, N., Atkinson, J. (2012). The Holy Grail of Painlevé Equations: Finding Elliptic Painleve Through Surface Theory. ANZIAM 2012, Victoria: Australian Mathematical Society.

2011

  • Howes, P., Nakazono, N. (2011). An 'elliptic'? Painleve systems. INTEGRABILITY DAY.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2011). Projective Reduction of the Discrete Painlevé System of Type (A2 + A1)(1). International Mathematics Research Notices, 2011 (4), 930-966. [More Information]

2010

  • Nakazono, N. (2010). Hypergeometric τ functions of the q-Painlevé systems of type (A 2 + A 1) (1). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 6, 1-16. [More Information]
  • Nakazono, N., Nishioka, S. (2010). q-Painlevé systems arising from W(A4(1). Mathematical Society of Japan 2010.
  • Nakazono, N. (2010). Two types of hypergeometric solutions to a q-Painleve IV equation of type A4(1). Mathematical Society of Japan.

2009

  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Hypergeometric solutions to the symmetric discrete Painlevé equations. Isaac Newton Institute for Mathematical Sciences.
  • Nakazono, N., Nishioka, S. (2009). q-Painleve systems which have an affine Weyl group symmetry of type A4(1). RIAM Symposium.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions. HG 2009.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions (I). Mathematical Society of Japan 2009.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions (II). Mathematical Society of Japan 2009.

2008

  • Kajiwara, K., Nakazono, N., Tsuda, T. (2008). Symmetrization of q-Painleve systems. RIAM Symposium.

To update your profile click here. For support on your academic profile contact .