Dr Nobutaka Nakazono

F07 - Carslaw Building
The University of Sydney

Telephone 9351 5763
Fax 9351 4534

Curriculum vitae Curriculum vitae

Biographical details

EMPLOYMENT RECORD:

  • April 2013 -- Postdoctoral Research Associate at the University of Sydney
  • April 2010 -- March 2013 Research Fellow of the Japan Society for the Promotion of Science (DC1)

DEGREES:

  • March 2008 Bachelor's degree in Mathematics at Kyushu University
  • March 2010 Master's degree in Mathematics at Kyushu University
  • March 2013 Doctorate degree in Mathematics at Kyushu University

EDUCATION BACKGROUND:

  • April 2000 -- March 2003 Munakata High School
  • April 2003 -- March 2013 Kyushu University
  • September 2011 -- March 2012 The University of Sydney (The purpose of this visit and affiliation is to undertake research/training in the Faculty of Science which will contribute to the award of a PhD degree from Kyushu University)

Research interests

Integrable Systems discrete/continuous

Associations

  • 2014 Oct. -- Member of the Australian and New Zealand Association of Mathematical Physics (ANZAMP)
  • 2013 Jul. -- Member of the Australia and New Zealand Industrial and Applied Mathematics (ANZIAM)
  • 2013 Jul. -- Member of the Australian Mathematical Society (AustMS)
  • 2011--2013 One of the eventologist of Kyushu Integrable System Seminar
  • 2009 Mar. -- Member of Mathematical Society of Japan (MSJ)

Awards and honours

2010 Valedictorian, Kyushu University

Selected grants

2010

  • Japan Society for the Promotion of Science Fellows; Nakazono N; Japan Society for the Promotion of Science/Research Grant.

Selected publications

Download citations: PDF RTF Endnote

Journals

  • Atkinson, J., Howes, P., Joshi, N., Nakazono, N. (2016). Geometry of an elliptic difference equation related to Q4. Journal of The London Mathematical Society, 93(3), 763-784. [More Information]
  • Nakazono, N. (2016). Hypergeometric Tau Functions of the q-Painleve Systems of Types A4(1) and (A1? + A'1?)(1). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 12, 1-23. [More Information]
  • Joshi, N., Nakazono, N., Shi, Y. (2016). Reflection groups and discrete integrable systems. Journal of Integrable Systems, 1(1), 1-37. [More Information]
  • Hay, M., Howes, P., Nakazono, N., Shi, Y. (2015). A systematic approach to reductions of type-Q ABS equations. Journal of Physics A: Mathematical and Theoretical, 48(9), 095201-1-095201-24. [More Information]
  • Kajiwara, K., Nakazono, N. (2015). Hypergeometric solutions to the symmetric q-Painleve equations. International Mathematics Research Notices, 4, 1101-1140. [More Information]
  • Joshi, N., Nakazono, N., Shi, Y. (2014). Geometric reductions of ABS equations on an n-cube to discrete Painlevé systems. Journal of Physics A: Mathematical and Theoretical, 47(50), 1-16. [More Information]
  • Nakazono, N. (2014). Hypergeometric solutions of the A(1) 4-surface q-painleve IV equation. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 10, 1-23. [More Information]
  • Nakazono, N., Nishioka, S. (2013). Solutions to a q-analog of the Painlevé III equation of type D(1) 7. Funkcialaj Ekvacioj, Serio Internacia, 56(3), 415-439. [More Information]
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2011). Projective Reduction of the Discrete Painlevé System of Type (A2 + A1)(1). International Mathematics Research Notices, 2011 (4), 930-966. [More Information]
  • Nakazono, N. (2010). Hypergeometric T functions of the q-Painlevé systems of type (A 2 + A 1) (1). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 6, 1-16. [More Information]

Conferences

  • Nakazono, N., Howes, P., Joshi, N., Atkinson, J. (2012). Extension of a one-dimensional reduction of the Q4 mapping to a discrete Painleve equation. The Japan Society for Industrial and Applied Mathematics 2012.
  • Nakazono, N. (2012). Study on a q-analog of the Painlevé III equations of type D(1)7. Nonlinear Evolution Equations and Dynamical Systems 2012.
  • Howes, P., Nakazono, N., Joshi, N., Atkinson, J. (2012). The Holy Grail of Painlevé Equations: Finding Elliptic Painleve Through Surface Theory. ANZIAM 2012, Victoria: Australian Mathematical Society.
  • Howes, P., Nakazono, N. (2011). An 'elliptic'? Painleve systems. INTEGRABILITY DAY.
  • Nakazono, N., Nishioka, S. (2010). q-Painlevé systems arising from W(A4(1). Mathematical Society of Japan 2010.
  • Nakazono, N. (2010). Two types of hypergeometric solutions to a q-Painleve IV equation of type A4(1). Mathematical Society of Japan.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Hypergeometric solutions to the symmetric discrete Painlevé equations. Isaac Newton Institute for Mathematical Sciences.
  • Nakazono, N., Nishioka, S. (2009). q-Painleve systems which have an affine Weyl group symmetry of type A4(1). RIAM Symposium.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions. HG 2009.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions (I). Mathematical Society of Japan 2009.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions (II). Mathematical Society of Japan 2009.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2008). Symmetrization of q-Painleve systems. RIAM Symposium.

2016

  • Atkinson, J., Howes, P., Joshi, N., Nakazono, N. (2016). Geometry of an elliptic difference equation related to Q4. Journal of The London Mathematical Society, 93(3), 763-784. [More Information]
  • Nakazono, N. (2016). Hypergeometric Tau Functions of the q-Painleve Systems of Types A4(1) and (A1? + A'1?)(1). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 12, 1-23. [More Information]
  • Joshi, N., Nakazono, N., Shi, Y. (2016). Reflection groups and discrete integrable systems. Journal of Integrable Systems, 1(1), 1-37. [More Information]

2015

  • Hay, M., Howes, P., Nakazono, N., Shi, Y. (2015). A systematic approach to reductions of type-Q ABS equations. Journal of Physics A: Mathematical and Theoretical, 48(9), 095201-1-095201-24. [More Information]
  • Kajiwara, K., Nakazono, N. (2015). Hypergeometric solutions to the symmetric q-Painleve equations. International Mathematics Research Notices, 4, 1101-1140. [More Information]

2014

  • Joshi, N., Nakazono, N., Shi, Y. (2014). Geometric reductions of ABS equations on an n-cube to discrete Painlevé systems. Journal of Physics A: Mathematical and Theoretical, 47(50), 1-16. [More Information]
  • Nakazono, N. (2014). Hypergeometric solutions of the A(1) 4-surface q-painleve IV equation. Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 10, 1-23. [More Information]

2013

  • Nakazono, N., Nishioka, S. (2013). Solutions to a q-analog of the Painlevé III equation of type D(1) 7. Funkcialaj Ekvacioj, Serio Internacia, 56(3), 415-439. [More Information]

2012

  • Nakazono, N., Howes, P., Joshi, N., Atkinson, J. (2012). Extension of a one-dimensional reduction of the Q4 mapping to a discrete Painleve equation. The Japan Society for Industrial and Applied Mathematics 2012.
  • Nakazono, N. (2012). Study on a q-analog of the Painlevé III equations of type D(1)7. Nonlinear Evolution Equations and Dynamical Systems 2012.
  • Howes, P., Nakazono, N., Joshi, N., Atkinson, J. (2012). The Holy Grail of Painlevé Equations: Finding Elliptic Painleve Through Surface Theory. ANZIAM 2012, Victoria: Australian Mathematical Society.

2011

  • Howes, P., Nakazono, N. (2011). An 'elliptic'? Painleve systems. INTEGRABILITY DAY.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2011). Projective Reduction of the Discrete Painlevé System of Type (A2 + A1)(1). International Mathematics Research Notices, 2011 (4), 930-966. [More Information]

2010

  • Nakazono, N. (2010). Hypergeometric T functions of the q-Painlevé systems of type (A 2 + A 1) (1). Symmetry, Integrability and Geometry: Methods and Applications (SIGMA), 6, 1-16. [More Information]
  • Nakazono, N., Nishioka, S. (2010). q-Painlevé systems arising from W(A4(1). Mathematical Society of Japan 2010.
  • Nakazono, N. (2010). Two types of hypergeometric solutions to a q-Painleve IV equation of type A4(1). Mathematical Society of Japan.

2009

  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Hypergeometric solutions to the symmetric discrete Painlevé equations. Isaac Newton Institute for Mathematical Sciences.
  • Nakazono, N., Nishioka, S. (2009). q-Painleve systems which have an affine Weyl group symmetry of type A4(1). RIAM Symposium.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions. HG 2009.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions (I). Mathematical Society of Japan 2009.
  • Kajiwara, K., Nakazono, N., Tsuda, T. (2009). Symmetrization of q-Painleve systems and hypergeometric solutions (II). Mathematical Society of Japan 2009.

2008

  • Kajiwara, K., Nakazono, N., Tsuda, T. (2008). Symmetrization of q-Painleve systems. RIAM Symposium.

To update your profile click here. For support on your academic profile contact .