Professor Ruibin Zhang

F07 - Carslaw Building
The University of Sydney

Telephone 9351 3444
Fax 9351 4534

Website Personal web page

Research interests

  • Lie Theory
  • Representation Theory
  • Supersymmetry
  • Quantum Field Theory
  • Ruibin Zhang is a member of the Algebra Research Group.

Teaching and supervision

Timetable

R_Zhang

Current research students

Project title Research student
Representations and Applications of Quantum Supergroups Victor DEMCSAK
Braided tensor categories, cellularity and diagrammatics in invariant theory Yang ZHANG

PhD and master's project opportunities

Selected grants

2017

  • Geometric themes in the theory of Lie supergroups and their quantisations; Zhang R; Australian Research Council (ARC)/Discovery Projects (DP).

2015

  • Symmetry via braiding, diagrammatics and cellularity; Lehrer G, Zhang R; Australian Research Council (ARC)/Discovery Projects (DP).

2014

  • Super Duality and Deformations in the Representation Theory of Lie Superalgebras; Zhang R; Australian Research Council (ARC)/Discovery Projects (DP).

2012

  • Quantised algebras, supersymmetry and invariant theory; Lehrer G, Zhang R; Australian Research Council (ARC)/Discovery Projects (DP).

2009

  • Topological Problems in Quantum Field Theory; Liu X, Zhang R; DVC Research/Postdoctoral Research Fellowship Scheme.
  • Noncommutative geometry in representation theory and quantum physics; Zhang R; Australian Research Council (ARC)/Discovery Projects (DP).

2007

  • Invariant theory, cellularity and geometry.; Lehrer G, Zhang R; Australian Research Council (ARC)/Discovery Projects (DP).

2006

  • Infinite dimensional unitarizable representations of Lie superalgearas; Zhang R, Molev A; Australian Research Council (ARC)/Discovery Projects (DP).

2004

  • Geometry & representations of classical & quantum Lie supergroups; Zhang R; Australian Research Council (ARC)/Discovery Projects (DP).

2002

  • Not known; Zhang R; DVC Research/Research and Development Scheme: Research and Development (R&D).
  • Representations and Applications of Quantum Groups; Zhang R, Molev A; Australian Research Council (ARC)/Discovery Projects (DP).

2001

  • Quantum superalgebras, Yangians and their applications; Zhang R; DVC Research/Bridging Support Grant.

2000

  • ARC Senior Research Fellowship F69802444 commenced 16.12.98 University of Queensland, transferred to University of Sydney to commence on 16.1.2000; Australian Research Council (ARC)/Australian Senior Research Fellowship.
  • Quantum and classical Lie Supergroups; Zhang R; Australian Research Council (ARC)/Small Grants.

1999

  • Vassiliev invariants and quantum superalgebras; Zhang R; Australian Research Council (ARC)/Small Grants.

Selected publications

Download citations: PDF RTF Endnote

Book Chapters

  • Zhang, R. (2014). Serre presentations of Lie superalgebras. In Maria Gorelik, Paolo Papi (Eds.), Advances in Lie Superalgebras, (pp. 235-280). Cham, Switzerland: Springer. [More Information]
  • Lehrer, G., Zhang, R. (2010). A Temperley-Lieb Analogue for the BMW Algebra. In A Gyoja, H Nakajima, K Shinoda, T Shoji, T Tanisaki (Eds.), Representation Theory of Algebraic Groups and Quantum Groups, (pp. 155-190). New York: Birkhauser (imprint of Springer). [More Information]

Journals

  • Deligne, P., Lehrer, G., Zhang, R. (2018). The first fundamental theorem of invariant theory for the orthosymplectic super group. Advances in Mathematics, 327, 4-24. [More Information]
  • Deligne, P., Lehrer, G., Zhang, R. (2018). The first fundamental theorem of invariant theory for the orthosymplectic super group. Advances in Mathematics, 327, 4-24. [More Information]
  • Lehrer, G., Zhang, R. (2017). Invariants of the orthosymplectic Lie superalgebra and super Pfaffians. Mathematische Zeitschrift, 286, 893-917. [More Information]
  • Lehrer, G., Zhang, R. (2017). The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup. Communications in Mathematical Physics, 349(2), 661-702. [More Information]
  • Su, Y., Zhang, R. (2016). Erratum to Character and Dimension Formulae for Queer Lie Superalgebra [Commun. Math. Phys., (2015), 333, (1465-1481), DOI 10.1007/s00220-014-2209-4]. Communications in Mathematical Physics, 342(2), 769-770. [More Information]
  • Su, Y., Zhang, R. (2016). Generalised Jantzen filtration of exceptional Lie superalgebras. Israel Journal of Mathematics, 212(2), 635-676. [More Information]
  • Wu, Y., Zhang, R. (2016). Integrable representations of affine A (m,n) and C (m) superalgebras. Journal of Pure and Applied Algebra, 220(4), 1434-1450. [More Information]
  • Wu, Y., Zhang, R. (2016). Integrable representations of the quantum affine special linear superalgebra. Advances in Theoretical and Mathematical Physics, 20(3), 553-593. [More Information]
  • Andersen, H., Lehrer, G., Zhang, R. (2015). Cellularity of certain quantum endomorphism algebras. Pacific Journal of Mathematics, 279(1), 11-35. [More Information]
  • Su, Y., Zhang, R. (2015). Character and Dimension Formulae for Queer Lie Superalgebra. Communications in Mathematical Physics, 333, 1465-1481. [More Information]
  • Lehrer, G., Zhang, R. (2015). The Brauer category and invariant theory. Journal of the European Mathematical Society, 17(9), 2311-2351. [More Information]
  • Xia, C., Zhang, R. (2013). Unitary highest weight modules over block type lie algebras B(q). Journal of Lie Theory, 23(1), 159-176.
  • Chaichian, M., Tureanu, A., Zhang, R. (2012). Extended PoincarĂ© supersymmetry in three dimensions and supersymmetric anyons. Journal of Mathematical Physics, 53(7), 1-8. [More Information]
  • Su, Y., Zhang, R. (2012). Generalised Jantzen filtration of Lie superalgebras I. Journal of the European Mathematical Society, 14(4), 1103-1133. [More Information]
  • Su, Y., Zhang, R. (2012). Generalised Verma modules for the orthosymplectic Lie superalgebra ospk|2. Journal of Algebra, 357, 94-115. [More Information]
  • Coulembier, K., Zhang, R. (2012). Invariant integration on orthosymplectic and unitary supergroups. Journal of Physics A: Mathematical and Theoretical, 45(2012), 1-32. [More Information]
  • Lehrer, G., Zhang, R. (2012). Quantum group actions on rings and equivariant K-theory. Contemporary Mathematics, 565, 115-141. [More Information]
  • Lehrer, G., Zhang, R. (2012). The second fundamental theorem of invariant theory for the orthogonal group. Annals of Mathematics, 176(3), 2031-2054. [More Information]
  • Lehrer, G., Zhang, H., Zhang, R. (2011). A Quantum Analogue of the First Fundamental Theorem of Classical Invariant Theory. Communications in Mathematical Physics, 301, 131-174. [More Information]
  • Lehrer, G., Nakano, D., Zhang, R. (2011). Detecting cohomology for Lie superalgebras. Advances in Mathematics, 228(4), 2098-2115. [More Information]
  • Meng, G., Zhang, R. (2011). Generalized MICZ-Kepler problems and unitary highest weight modules. Journal of Mathematical Physics, 52(4), 042106-1-042106-23. [More Information]
  • Lam, N., Zhang, R. (2011). u-Cohomology formula for unitarizable modules over general linear superalgebras. Journal of Algebra, 327(1), 50-70. [More Information]
  • Sun, W., Wang, D., Xie, N., Zhang, R., Zhang, X. (2010). Gravitational collapse of spherically symmetric stars in noncommutative general relativity. European Physical Journal C, 69, 271-279. [More Information]
  • Zhang, R., Zhang, X. (2010). Projective module description of embedded noncommutative spaces. Reviews in Mathematical Physics: a journal for survey and expository articles in the field of mathematical physics, 22(5), 507-531. [More Information]
  • Ke, W., Lai, K., Zhang, R. (2010). Quantum codes from Hadamard matrices. Linear and Multilinear Algebra, 58(7), 847-854. [More Information]
  • Liu, X., Zhang, R. (2010). Topological vortices in chiral gauge theory of graphene. Annals of Physics, 325, 384-391. [More Information]
  • Wang, D., Zhang, R., Zhang, X. (2009). Exact solutions of noncommutative vacuum Einstein field equations and plane-fronted gravitational waves. European Physical Journal: Applied Physics, 64, 439-444. [More Information]
  • Wang, D., Zhang, R., Zhang, X. (2009). Quantum deformations of Schwarzschild and Schwarzchild-de Sitter spacetimes. Classical and Quantum Gravity, 26(8), 085014-1-085014-14. [More Information]
  • Wu, Y., Zhang, R. (2009). Unitary highest weight representations of quantum general linear superalgebra. Journal of Algebra, 321(11), 3568-3593. [More Information]
  • Billig, Y., Molev, A., Zhang, R. (2008). Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus. Advances in Mathematics, 218(6), 1972-2004. [More Information]
  • Zhang, G., Zhang, R. (2008). Equivariant vector bundles on quantum homogeneous spaces. Mathematical Research Letters, 15(2), 297-307. [More Information]
  • Chaichian, M., Kulish, P., Tureanu, A., Zhang, R., Zhang, X. (2008). Noncommutative fields and actions of twisted Poincare algebra. Journal of Mathematical Physics, 49, 042302-1-042302-16. [More Information]
  • Lehrer, G., Zhang, R. (2008). On Endomorphisms of Quantum Tensor Space. Letters in Mathematical Physics, 86, 209-227. [More Information]
  • Zhang, R. (2008). Orthosymplectic Lie superalgebras in superspace analogues of quantum Kepler problems. Communications in Mathematical Physics, 280(2), 545-562. [More Information]
  • Chaichian, M., Tureanu, A., Zhang, R., Zhang, X. (2008). Riemannian geometry of noncommutative surfaces. Journal of Mathematical Physics, 49(7), 073511-1-073511-26. [More Information]
  • Cheng, S., Wang, W., Zhang, R. (2008). Super duality and Kazhdan-Lusztig polynomials. Transactions of the American Mathematical Society, 360(11), 5883-5924. [More Information]
  • Cheng, S., Wang, W., Zhang, R. (2007). A Fock space approach to representation theory of osp(2/2n). Transformation Groups, 12(2), 209-225. [More Information]
  • Su, Y., Zhang, R. (2007). Character and dimension formulae for general linear superalgebra. Advances in Mathematics, 211(1), 1-33. [More Information]
  • Su, Y., Zhang, R. (2007). Cohomology of Lie Superalgebras slm\n and osp2\2n. Proceedings of the London Mathematical Society, 94(1), 91-136. [More Information]
  • Zhang, H., Zhang, R. (2006). Dual canonical bases for the quantum general linear supergroup. Journal of Algebra, 304(2), 1026-1058. [More Information]
  • Chebotar, M., Ke, W., Lee, P., Zhang, R. (2006). On maps preserving zero Jordan products. Monatshefte fur Mathematik, 149(2), 91-101. [More Information]
  • Lehrer, G., Zhang, R. (2006). Strongly multiplicity free modules for Lie algebras and quantum groups. Journal of Algebra, 306(1), 138-174. [More Information]
  • Zhang, H., Zhang, R. (2005). Dual canonical bases for the quantum special linear group and invariant subalgebras. Letters in Mathematical Physics, 73(3), 165-181. [More Information]
  • Scheunert, M., Zhang, R. (2005). Integration on Lie supergroups: A Hopf superalgebra approach. Journal of Algebra, 292(2), 324-342. [More Information]
  • Dobrev, V., Zhang, R. (2005). Positive energy unitary irreducible representations of the superalgebras osp(1|2n, R). Physics of Atomic Nuclei, 68(10), 1660-1669. [More Information]
  • Lam, N., Zhang, R. (2005). Quasi-finite modules for Lie superalgebras of infinite rank. Transactions of the American Mathematical Society, 358(1), 403-439. [More Information]
  • Jarvis, P., Zhang, R. (2005). Resolution of the GL(3) superset of O(3) state labelling problem via the O(3)-invariant Bethe subalgebra of the twisted Yangian. Journal of Physics A: Mathematical and General, 38(14), L219-L226. [More Information]
  • Zhang, R., Zou, Y. (2005). Spherical functions on homogeneous superspaces. Journal of Mathematical Physics, 46(4), 043513-1-043513-21. [More Information]
  • Cheng, S., Zhang, R. (2004). Analogue Of Kostant's U-Cohomology Formula For The General Linear Superalgebra. International Mathematics Research Notices, 2004 (1), 31-53.
  • Cheng, S., Lam, N., Zhang, R. (2004). Character Formula For Infinite-Dimensional Unitarizable Modules Of The General Linear Superalgebra. Journal of Algebra, 273(2), 780-805. [More Information]
  • Cheng, S., Zhang, R. (2004). Howe Duality And Combinatorial Character Formula For Orthosymplectic Lie Superalgebras. Advances in Mathematics, 182(1), 124-172. [More Information]
  • Molev, A., Tolstoy, V., Zhang, R. (2004). On Irreducibility Of Tensor Products Of Evaluation Modules For The Quantum Affine Algebra. Journal of Physics A: Mathematical and General, 37(6), 2385-2399. [More Information]
  • Zhang, R. (2004). Quantum Superalgebra Representations On Cohomology Groups Of Non-Commutative Bundles. Journal of Pure and Applied Algebra, 191(3), 285-314. [More Information]
  • Zhang, R. (2003). Howe duality and the quantum general linear group. Proceedings of the American Mathematical Society, 131(9), 2681-2692. [More Information]
  • Lai, K., Zhang, R. (2003). Multiplicity Free Actions of Quantum Groups and Generalized Howe Duality. Letters in Mathematical Physics, 64(3), 255-272. [More Information]
  • Zhang, R. (2002). Quantum enveloping superalgebras and link invariants. Journal of Mathematical Physics, 43(4), 2029-2048. [More Information]
  • Scheunert, M., Zhang, R. (2002). The general linear supergroup and its Hopf superalgebra of regular functions. Journal of Algebra, 254(1), 44-83. [More Information]
  • Scheunert, M., Zhang, R. (2001). Invariant integration on classical and quantum Lie supergroups. Journal of Mathematical Physics, 42(8), 3871-3897.

2018

  • Deligne, P., Lehrer, G., Zhang, R. (2018). The first fundamental theorem of invariant theory for the orthosymplectic super group. Advances in Mathematics, 327, 4-24. [More Information]
  • Deligne, P., Lehrer, G., Zhang, R. (2018). The first fundamental theorem of invariant theory for the orthosymplectic super group. Advances in Mathematics, 327, 4-24. [More Information]

2017

  • Lehrer, G., Zhang, R. (2017). Invariants of the orthosymplectic Lie superalgebra and super Pfaffians. Mathematische Zeitschrift, 286, 893-917. [More Information]
  • Lehrer, G., Zhang, R. (2017). The First Fundamental Theorem of Invariant Theory for the Orthosymplectic Supergroup. Communications in Mathematical Physics, 349(2), 661-702. [More Information]

2016

  • Su, Y., Zhang, R. (2016). Erratum to Character and Dimension Formulae for Queer Lie Superalgebra [Commun. Math. Phys., (2015), 333, (1465-1481), DOI 10.1007/s00220-014-2209-4]. Communications in Mathematical Physics, 342(2), 769-770. [More Information]
  • Su, Y., Zhang, R. (2016). Generalised Jantzen filtration of exceptional Lie superalgebras. Israel Journal of Mathematics, 212(2), 635-676. [More Information]
  • Wu, Y., Zhang, R. (2016). Integrable representations of affine A (m,n) and C (m) superalgebras. Journal of Pure and Applied Algebra, 220(4), 1434-1450. [More Information]
  • Wu, Y., Zhang, R. (2016). Integrable representations of the quantum affine special linear superalgebra. Advances in Theoretical and Mathematical Physics, 20(3), 553-593. [More Information]

2015

  • Andersen, H., Lehrer, G., Zhang, R. (2015). Cellularity of certain quantum endomorphism algebras. Pacific Journal of Mathematics, 279(1), 11-35. [More Information]
  • Su, Y., Zhang, R. (2015). Character and Dimension Formulae for Queer Lie Superalgebra. Communications in Mathematical Physics, 333, 1465-1481. [More Information]
  • Lehrer, G., Zhang, R. (2015). The Brauer category and invariant theory. Journal of the European Mathematical Society, 17(9), 2311-2351. [More Information]

2014

  • Zhang, R. (2014). Serre presentations of Lie superalgebras. In Maria Gorelik, Paolo Papi (Eds.), Advances in Lie Superalgebras, (pp. 235-280). Cham, Switzerland: Springer. [More Information]

2013

  • Xia, C., Zhang, R. (2013). Unitary highest weight modules over block type lie algebras B(q). Journal of Lie Theory, 23(1), 159-176.

2012

  • Chaichian, M., Tureanu, A., Zhang, R. (2012). Extended PoincarĂ© supersymmetry in three dimensions and supersymmetric anyons. Journal of Mathematical Physics, 53(7), 1-8. [More Information]
  • Su, Y., Zhang, R. (2012). Generalised Jantzen filtration of Lie superalgebras I. Journal of the European Mathematical Society, 14(4), 1103-1133. [More Information]
  • Su, Y., Zhang, R. (2012). Generalised Verma modules for the orthosymplectic Lie superalgebra ospk|2. Journal of Algebra, 357, 94-115. [More Information]
  • Coulembier, K., Zhang, R. (2012). Invariant integration on orthosymplectic and unitary supergroups. Journal of Physics A: Mathematical and Theoretical, 45(2012), 1-32. [More Information]
  • Lehrer, G., Zhang, R. (2012). Quantum group actions on rings and equivariant K-theory. Contemporary Mathematics, 565, 115-141. [More Information]
  • Lehrer, G., Zhang, R. (2012). The second fundamental theorem of invariant theory for the orthogonal group. Annals of Mathematics, 176(3), 2031-2054. [More Information]

2011

  • Lehrer, G., Zhang, H., Zhang, R. (2011). A Quantum Analogue of the First Fundamental Theorem of Classical Invariant Theory. Communications in Mathematical Physics, 301, 131-174. [More Information]
  • Lehrer, G., Nakano, D., Zhang, R. (2011). Detecting cohomology for Lie superalgebras. Advances in Mathematics, 228(4), 2098-2115. [More Information]
  • Meng, G., Zhang, R. (2011). Generalized MICZ-Kepler problems and unitary highest weight modules. Journal of Mathematical Physics, 52(4), 042106-1-042106-23. [More Information]
  • Lam, N., Zhang, R. (2011). u-Cohomology formula for unitarizable modules over general linear superalgebras. Journal of Algebra, 327(1), 50-70. [More Information]

2010

  • Lehrer, G., Zhang, R. (2010). A Temperley-Lieb Analogue for the BMW Algebra. In A Gyoja, H Nakajima, K Shinoda, T Shoji, T Tanisaki (Eds.), Representation Theory of Algebraic Groups and Quantum Groups, (pp. 155-190). New York: Birkhauser (imprint of Springer). [More Information]
  • Sun, W., Wang, D., Xie, N., Zhang, R., Zhang, X. (2010). Gravitational collapse of spherically symmetric stars in noncommutative general relativity. European Physical Journal C, 69, 271-279. [More Information]
  • Zhang, R., Zhang, X. (2010). Projective module description of embedded noncommutative spaces. Reviews in Mathematical Physics: a journal for survey and expository articles in the field of mathematical physics, 22(5), 507-531. [More Information]
  • Ke, W., Lai, K., Zhang, R. (2010). Quantum codes from Hadamard matrices. Linear and Multilinear Algebra, 58(7), 847-854. [More Information]
  • Liu, X., Zhang, R. (2010). Topological vortices in chiral gauge theory of graphene. Annals of Physics, 325, 384-391. [More Information]

2009

  • Wang, D., Zhang, R., Zhang, X. (2009). Exact solutions of noncommutative vacuum Einstein field equations and plane-fronted gravitational waves. European Physical Journal: Applied Physics, 64, 439-444. [More Information]
  • Wang, D., Zhang, R., Zhang, X. (2009). Quantum deformations of Schwarzschild and Schwarzchild-de Sitter spacetimes. Classical and Quantum Gravity, 26(8), 085014-1-085014-14. [More Information]
  • Wu, Y., Zhang, R. (2009). Unitary highest weight representations of quantum general linear superalgebra. Journal of Algebra, 321(11), 3568-3593. [More Information]

2008

  • Billig, Y., Molev, A., Zhang, R. (2008). Differential equations in vertex algebras and simple modules for the Lie algebra of vector fields on a torus. Advances in Mathematics, 218(6), 1972-2004. [More Information]
  • Zhang, G., Zhang, R. (2008). Equivariant vector bundles on quantum homogeneous spaces. Mathematical Research Letters, 15(2), 297-307. [More Information]
  • Chaichian, M., Kulish, P., Tureanu, A., Zhang, R., Zhang, X. (2008). Noncommutative fields and actions of twisted Poincare algebra. Journal of Mathematical Physics, 49, 042302-1-042302-16. [More Information]
  • Lehrer, G., Zhang, R. (2008). On Endomorphisms of Quantum Tensor Space. Letters in Mathematical Physics, 86, 209-227. [More Information]
  • Zhang, R. (2008). Orthosymplectic Lie superalgebras in superspace analogues of quantum Kepler problems. Communications in Mathematical Physics, 280(2), 545-562. [More Information]
  • Chaichian, M., Tureanu, A., Zhang, R., Zhang, X. (2008). Riemannian geometry of noncommutative surfaces. Journal of Mathematical Physics, 49(7), 073511-1-073511-26. [More Information]
  • Cheng, S., Wang, W., Zhang, R. (2008). Super duality and Kazhdan-Lusztig polynomials. Transactions of the American Mathematical Society, 360(11), 5883-5924. [More Information]

2007

  • Cheng, S., Wang, W., Zhang, R. (2007). A Fock space approach to representation theory of osp(2/2n). Transformation Groups, 12(2), 209-225. [More Information]
  • Su, Y., Zhang, R. (2007). Character and dimension formulae for general linear superalgebra. Advances in Mathematics, 211(1), 1-33. [More Information]
  • Su, Y., Zhang, R. (2007). Cohomology of Lie Superalgebras slm\n and osp2\2n. Proceedings of the London Mathematical Society, 94(1), 91-136. [More Information]

2006

  • Zhang, H., Zhang, R. (2006). Dual canonical bases for the quantum general linear supergroup. Journal of Algebra, 304(2), 1026-1058. [More Information]
  • Chebotar, M., Ke, W., Lee, P., Zhang, R. (2006). On maps preserving zero Jordan products. Monatshefte fur Mathematik, 149(2), 91-101. [More Information]
  • Lehrer, G., Zhang, R. (2006). Strongly multiplicity free modules for Lie algebras and quantum groups. Journal of Algebra, 306(1), 138-174. [More Information]

2005

  • Zhang, H., Zhang, R. (2005). Dual canonical bases for the quantum special linear group and invariant subalgebras. Letters in Mathematical Physics, 73(3), 165-181. [More Information]
  • Scheunert, M., Zhang, R. (2005). Integration on Lie supergroups: A Hopf superalgebra approach. Journal of Algebra, 292(2), 324-342. [More Information]
  • Dobrev, V., Zhang, R. (2005). Positive energy unitary irreducible representations of the superalgebras osp(1|2n, R). Physics of Atomic Nuclei, 68(10), 1660-1669. [More Information]
  • Lam, N., Zhang, R. (2005). Quasi-finite modules for Lie superalgebras of infinite rank. Transactions of the American Mathematical Society, 358(1), 403-439. [More Information]
  • Jarvis, P., Zhang, R. (2005). Resolution of the GL(3) superset of O(3) state labelling problem via the O(3)-invariant Bethe subalgebra of the twisted Yangian. Journal of Physics A: Mathematical and General, 38(14), L219-L226. [More Information]
  • Zhang, R., Zou, Y. (2005). Spherical functions on homogeneous superspaces. Journal of Mathematical Physics, 46(4), 043513-1-043513-21. [More Information]

2004

  • Cheng, S., Zhang, R. (2004). Analogue Of Kostant's U-Cohomology Formula For The General Linear Superalgebra. International Mathematics Research Notices, 2004 (1), 31-53.
  • Cheng, S., Lam, N., Zhang, R. (2004). Character Formula For Infinite-Dimensional Unitarizable Modules Of The General Linear Superalgebra. Journal of Algebra, 273(2), 780-805. [More Information]
  • Cheng, S., Zhang, R. (2004). Howe Duality And Combinatorial Character Formula For Orthosymplectic Lie Superalgebras. Advances in Mathematics, 182(1), 124-172. [More Information]
  • Molev, A., Tolstoy, V., Zhang, R. (2004). On Irreducibility Of Tensor Products Of Evaluation Modules For The Quantum Affine Algebra. Journal of Physics A: Mathematical and General, 37(6), 2385-2399. [More Information]
  • Zhang, R. (2004). Quantum Superalgebra Representations On Cohomology Groups Of Non-Commutative Bundles. Journal of Pure and Applied Algebra, 191(3), 285-314. [More Information]

2003

  • Zhang, R. (2003). Howe duality and the quantum general linear group. Proceedings of the American Mathematical Society, 131(9), 2681-2692. [More Information]
  • Lai, K., Zhang, R. (2003). Multiplicity Free Actions of Quantum Groups and Generalized Howe Duality. Letters in Mathematical Physics, 64(3), 255-272. [More Information]

2002

  • Zhang, R. (2002). Quantum enveloping superalgebras and link invariants. Journal of Mathematical Physics, 43(4), 2029-2048. [More Information]
  • Scheunert, M., Zhang, R. (2002). The general linear supergroup and its Hopf superalgebra of regular functions. Journal of Algebra, 254(1), 44-83. [More Information]

2001

  • Scheunert, M., Zhang, R. (2001). Invariant integration on classical and quantum Lie supergroups. Journal of Mathematical Physics, 42(8), 3871-3897.

To update your profile click here. For support on your academic profile contact .