Dr Yang Shi

F07 - Carslaw Building
The University of Sydney

Telephone 9351 2971
Fax 9351 4534

Website Integrable systems group website

Research interests

I am a member of the Integrable systems group. My research interest include discrete/continuous dynamical systems. In particular, I work with some very special nonlinear equations called the Painlevé equations. I study integrable equations with a view towards applications in integrable statistical models in physics.

Recently, I have been working on understanding the connections of different classes of integrable systems, exploiting the geometric/combinatorial properties of the Weyl group symmetries of these systems. In particular, this involves interpreting systems of equations as the higher dimensional regular polytopes and lattices with Weyl group symmetries.

Teaching and supervision

Timetable

Y_Shi

Selected publications

Download citations: PDF RTF Endnote

Journals

  • Joshi, N., Nakazono, N., Shi, Y. (2016). Lattice equations arising from discrete Painleve systems: II. A4(1)case. Journal of Physics A: Mathematical and Theoretical, 49, 1-39. [More Information]
  • Joshi, N., Nakazono, N., Shi, Y. (2016). Reflection groups and discrete integrable systems. Journal of Integrable Systems, 1(1), 1-37. [More Information]
  • Hay, M., Howes, P., Nakazono, N., Shi, Y. (2015). A systematic approach to reductions of type-Q ABS equations. Journal of Physics A: Mathematical and Theoretical, 48(9), 095201-1-095201-24. [More Information]
  • Joshi, N., Nakazano, N., Shi, Y. (2015). Lattice equations arising from discrete Painlevé systems. I. (A 2 + A 1)(1) and ( A 1 + A 1 ′ ) ( 1 ) cases. Journal of Mathematical Physics, 56(9), 092705-1-092705-25. [More Information]
  • Joshi, N., Nakazono, N., Shi, Y. (2014). Geometric reductions of ABS equations on an n-cube to discrete Painlevé systems. Journal of Physics A: Mathematical and Theoretical, 47(50), 1-16. [More Information]
  • Joshi, N., Shi, Y. (2012). Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem. II. Hypergeometric solutions. Proceedings of the Royal Society A, 468(2146), 3247-3264. [More Information]
  • Joshi, N., Shi, Y. (2011). Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem: I. Rational solutions. Proceedings of the Royal Society A, 467, 3443-3468. [More Information]
  • Bilek, M., McKenzie, D., Tarrant, R., Oates, T., Ruch, P., Newton-McGee, K., Shi, Y., Tompsett, D., Nguyen, H., Gan, B., Kwok, T. (2004). Practical Plasma Immersion Ion Implantation For Stress Regulation And Treatment Of Insulators. Contributions to Plasma Physics, 44(38508), 465-471. [More Information]
  • Gan, B., Bilek, M., McKenzie, D., Shi, Y., Tompsett, D., Taylor, M., McCulloch, D. (2004). Stress Relief And Texture Formation In Aluminium Nitride By Plasma Immersion Ion Implantation. Journal of Physics: Condensed Matter, 16(10), 1751-1760. [More Information]

2016

  • Joshi, N., Nakazono, N., Shi, Y. (2016). Lattice equations arising from discrete Painleve systems: II. A4(1)case. Journal of Physics A: Mathematical and Theoretical, 49, 1-39. [More Information]
  • Joshi, N., Nakazono, N., Shi, Y. (2016). Reflection groups and discrete integrable systems. Journal of Integrable Systems, 1(1), 1-37. [More Information]

2015

  • Hay, M., Howes, P., Nakazono, N., Shi, Y. (2015). A systematic approach to reductions of type-Q ABS equations. Journal of Physics A: Mathematical and Theoretical, 48(9), 095201-1-095201-24. [More Information]
  • Joshi, N., Nakazano, N., Shi, Y. (2015). Lattice equations arising from discrete Painlevé systems. I. (A 2 + A 1)(1) and ( A 1 + A 1 ′ ) ( 1 ) cases. Journal of Mathematical Physics, 56(9), 092705-1-092705-25. [More Information]

2014

  • Joshi, N., Nakazono, N., Shi, Y. (2014). Geometric reductions of ABS equations on an n-cube to discrete Painlevé systems. Journal of Physics A: Mathematical and Theoretical, 47(50), 1-16. [More Information]

2012

  • Joshi, N., Shi, Y. (2012). Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem. II. Hypergeometric solutions. Proceedings of the Royal Society A, 468(2146), 3247-3264. [More Information]

2011

  • Joshi, N., Shi, Y. (2011). Exact solutions of a q-discrete second Painlevé equation from its iso-monodromy deformation problem: I. Rational solutions. Proceedings of the Royal Society A, 467, 3443-3468. [More Information]

2004

  • Bilek, M., McKenzie, D., Tarrant, R., Oates, T., Ruch, P., Newton-McGee, K., Shi, Y., Tompsett, D., Nguyen, H., Gan, B., Kwok, T. (2004). Practical Plasma Immersion Ion Implantation For Stress Regulation And Treatment Of Insulators. Contributions to Plasma Physics, 44(38508), 465-471. [More Information]
  • Gan, B., Bilek, M., McKenzie, D., Shi, Y., Tompsett, D., Taylor, M., McCulloch, D. (2004). Stress Relief And Texture Formation In Aluminium Nitride By Plasma Immersion Ion Implantation. Journal of Physics: Condensed Matter, 16(10), 1751-1760. [More Information]

To update your profile click here. For support on your academic profile contact .