Remember Jumping

- Use Newton’s third law - if you push down on the floor it will push up on you
- Push hard enough and the upward force will exceed your weight and you will accelerate upwards.

Energy and Work

- There is another way to think about jumping - as a change in energy
- Energy derives from the Greek words en (meaning in) and ergon (meaning work). Energy is the capacity to do work.
- But what does work mean?
- In physics, work is the change in energy resulting from the application of a force to an object as the object moves through a distance.

\[W = Fd \]

Work

- In lifting an object, your hand is doing work to lift the object “against gravity”
- Say you lift with a constant velocity (i.e. acceleration = 0), then the upward force \(F = \) weight (\(F_w = mg \))
- The work done by your hand to raise an object a height \(h \) “against gravity” is

\[W = Fd = (mg)h \]

Energy

- The SI unit of work (and energy) is the newton-meter, known as the Joule (J)
- How much energy?
 - Supernova explosion \(10^{44} \) J
 - Earth’s annual sunshine \(10^{25} \) J
 - Severe earthquake \(10^{18} \) J
 - Hiroshima atomic bomb \(10^{18} \) J
 - Recommended intake/day \(10^7 \) J
 - Hard-hit cricket ball \(10^3 \) J
 - Human heartbeat \(0.5 \) J
 - Hopping flea \(10^{-7} \) J
 - Photon of light \(10^{-19} \) J

Gravitational Potential Energy

- An object lifted against gravity still experiences the downward force of gravity when it is held up, but at rest. When no longer held up, it will obviously fall.
- Energy will appear as motion as it falls, but what’s happening while the object is held motionless in the air?
- Apparently it is possible to do work on a system when lifting it and not have it ‘visible’
- Energy is stored, waiting to be let loose.

Gravitational Potential Energy

- This retrievable stored energy is called Gravitational Potential Energy (PE or sometimes GPE)
- We have already calculated the work done in lifting an object a height \(h \) “against gravity”

\[W = Fd = (mg)h \]
- So Gravitational PE is \(GPE = mgh \)
Kinetic Energy

- When you release it, an object falls - accelerates downward.
- Under the influence of a net force, a body accelerates as work is done on it. It increases its speed and gains energy.
- Energy associated with motion is called **Kinetic Energy** \(KE = \frac{1}{2}mv^2 \).

Example:
- A Boeing 747 weighing 2.2 million N at take-off cruises at 960 km/h. What is its KE?
 - Mass \(m = 224,000 \text{ kg} \), speed \(v = 267 \text{ m/s} \)
 - \(KE = \frac{1}{2} \times 224,000 \text{ kg} \times (267 \text{ m/s})^2 \)
 - \(= 8 \times 10^9 \text{ J} \)

Mechanical Energy

- **Mechanical Energy** of a system is the sum of KE and gravitational GPE of all its parts.
- If no additional forces (except gravity) are applied to a system, **mechanical energy is conserved**.
- This is a limited case of the more general concept of conservation of all forms of energy.

Jumping

- How can pole vaulters jump so high?
- The pole provides a means of transforming almost all the jumper’s initial KE from his run-up, into gravitational PE - i.e. into height.
- Once the jumper is off the ground, his run-up KE is converted into both gravitational PE and elastic PE of the pole. As the pole straightens again it gives up its elastic PE and hurls him even higher.

Energy content of food

- Food is your day-to-day source of energy, so the energy content is expressed in energy units
 - In Australia - kilojoules (kJ)
 - Elsewhere - kilocalories (kcal) = Calories (very confusing)
 - (1 Calorie = 4.1868 kJ)
- You could determine the total energy content of a product by burning the dried food, but this will be more than the energy than can be extracted by the body - instead use standard conversion tables in kJ/g (an odd mix of units!) - e.g.
 - Fat 37 kJ/g, carbohydrates 17 kJ/g
- Average person’s energy requirements - 8-10 MJ/day

Summary

- Energy and Work and very closely related concepts.
- Work is a change in energy resulting from the application of a force
- Gravitational Potential Energy (GPE) \(GPE = mgh \)
- Kinetic Energy (KE) \(KE = \frac{1}{2}mv^2 \)
- If no additional forces are applied to a system, mechanical energy (KE + GPE) is conserved.