HOW TERTIARY LEVEL PHYSICS STUDENTS LEARN AND CONCEPTUALISE QUANTUM MECHANICS

by

Peter Robert Fletcher

Diploma Programming Technology
Control Data Institute, Sydney

Bachelor of Science (Double major Physics and Mathematics)
University of Sydney, Sydney

Graduate Diploma in Education (Science Education)
University of Technology, Sydney

Teacher’s Certificate
Department of School Education, New South Wales

Master of Science (Physics Education Research)
University of Sydney, Sydney

DISSERTATION

submitted in fulfilment of the requirements for the Degree

of

DOCTOR OF PHILOSOPHY

in the

SCHOOL OF PHYSICS

at the

UNIVERSITY OF SYDNEY

© University of Sydney
2004
Dedicated to

Andrew Frank Egan

Who touched the minds and lives of all who came into contact with him.

The more success the quantum theory has, the sillier it looks.

Albert Einstein
PREFACE

This study was conducted in accordance with Human Ethics approval 99/09/21; please refer to Appendix 1 for further details.

A concept mapping exercise developed by Associate Professor Ian Johnston in 1999, designed as a formative assessment task to examine the relationships between key concepts associated with quantum mechanics was selected as one of the four grounded data sources for this study; please refer to Appendix 2 for further details.

Assistance during the coding phases of this study was provided by Associate Professor Ian Johnston, Dr Kirsten Hogg, Mr Stephen Junor, Dr Michael Stewart and Mr Ian Sefton.

Peter Fletcher 2004
HOW TERTIARY LEVEL PHYSICS STUDENTS LEARN AND CONCEPTUALISE QUANTUM MECHANICS

by Peter Robert Fletcher

ABSTRACT (300 Word Summary)

Quantum mechanics is an area of immense importance to modern technologies and industries, covering a diverse range of applications from semiconductors and lasers to advances in nuclear medicine. Quantum mechanics is also a subject that most students have traditionally found both difficult and abstract. Despite these facts, quantum mechanics has not until recently attracted much pedagogical research and introductory courses are still taught in much the same manner as they have been for the past seventy five years. The aims of this research project are to isolate key concepts, to identify learning difficulties, to identify teaching difficulties, and so to provide both teachers and curriculum developers with a useful resource to assist them in making informed decisions. The research was conducted in two distinct stages: Stage 1 – The Grounded Theory Approach was used to develop a set of interview questions, their content and sequencing was grounded in the data collected from a range of sources including concept maps, expert interviews, examination scripts and preliminary interviews. Stage 2 – The Phenomenological Approach primarily conducted and analysed 48 one hour student interviews, generating a tabulated dataset which is divided into 5 themes. In reporting these results, attention is then drawn to facts and trends within these themes. Additionally, the discussions with lecturers, which were conducted during the grounded phase of the investigation, were also brought forward to compare, contrast and support the results under discussion. In conclusion three outcomes of this investigation are acknowledged: A Detailed Data Resource that provides a readily accessible resource which details the internal aspects of the five identified themes; A Framework in the form of a schematic representation, comprising the three areas of Mathematics, Quantum Concepts and Outside Applications, providing the teacher and/or researcher with a tool to examine how the structural and thematic components are related, and; A Research Methodology which provides an easily adaptable and robust research tool for investigating similar physics education research questions within a tertiary setting. Three research topics are proposed for future investigation.
ACKNOWLEDGMENTS

During this research I have been fortunate to have the support of many people. I thank Ian Sefton with whom I engaged in many hours of extended conversations discussing every conceivable aspect of physics and education. I hold these discussions close to heart, as enjoyable moments which reflect the true spirit of education.

I am especially grateful to my supervisor Associate Professor Ian Johnston for his endless enthusiasm, encouragement, time and support. For his constructive comments and challenging arguments I am once again indebted. The growth of the physics education research within the School and Australia is a tribute to Ian’s vision and energy.

A special thank you to my two co-supervisors Associate Professor Mike King for his expertise, advice and guidance in all matters educational; and to Sue Gordon for her support and advice.

To the rest of the SUPER team Manju Sharma, Ian Cooper, Brian McInnes and Rosemary Millar for their support, assistance and advice over this five-and-a-half years of toil. Meredith Jordan, Gerard Sullivan, Stephen Edney, Julie Crowley, Stephen Junor, George Bacsay, Adrian George, Scott Kable, Mike Prosser, Rod Cross, John Davis, Lawrence Peak, Ferg Brand, Michael Stewart, Bill Gibson, Ross McPhedran, Joe Khachan, Brian James, Juris Ulrichs, Vicki Moore, Martijn de Sterke, Peter Robinson and Elizabeth Hing who provided support, constructive criticism and most of all their genuine interest in this project.

A warm thank you to my room mate Kirsten Hogg for her many hours of heated debate, constructive criticisms and support.

A special thanks to the School of Physics and the Faculty of Science which provided financial assistance through several small grants which allowed me to visit other key physics educational research centres in the United States and to extend the scope of the study.

I thank again all the students and lecturers in physics and chemistry who participated in the study.

Peter Fletcher 2004