Performance Prediction of Component-based Applications

Jenny Liu
NICTA Empirical Software Engineering Program
Research in Empirical Software Engineering Program

• Software Process Modelling
• Software Knowledge Management
• Software Architecture
• Requirements Engineering
• Project Risk Management
• Process Improvement
• Software Product Line Development
Design for High Performance and Scalability of Web-based Applications

- Workload characterisation
- Determine the components most affected
- Architectural design/implementation
- Evaluation
Performance Prediction of Component-based Applications (PPCB) : The Challenge

- Design software architectures to meet specific performance/scalability requirements
 - Diversity of the component-technologies
 - Multiple architectural design choices
 - Many tunable parameters of the runtime environment
 - Different application behavior

- The performance of a deployed component-based application
 - the behavior of its application-specific components and their interactions
 - the particular implementation of the component infrastructure, or container
 - the selected configuration settings for the container
 - the attribute settings of both the application components and the infrastructure components
 - the simultaneous request load experienced at any given time by the application
Why is this important and useful?
- Many large scale IT applications fail or experience budget blow outs due to inability to meet performance/scalability needs

What’s our solution’s competitive edge?
- anticipating the performance of the eventual solution before it has been built – lower costs and risks
- developing a methodology that allows the system architect to make design trade-offs between alternative architectures and implementation approaches

How do we do this?
- We build a quantitative performance model for a proposed system design.
- The model requires inputs from an application-independent performance profile of the underlying component technology platform, and a design description of the application.
The Framework of PP-CB Approach

- A model-based prediction approach
 - Modeling infrastructure
 - Calibrating component architecture
 - Characterizing application behavior
 - Benchmarking middleware platform
 - Populating model parameters
- Requirements of PP-CB approach
 - Allow performance prediction under architecture changes
 - Reveal performance bottlenecks
 - Accurate
 - Cost effective
PPCB : The Solution

The imagination driving Australia’s ICT future.

Infrastructure model: a queueing network model for a single J2EE server using JMS

Performance Profile
(benchmarking)

Architecture model
(calibrating)

Service demand

Performance Model
(populating)

Performance Prediction

Performance Profile
(benchmarking)
PPCB Toolset : From Design to Prediction

- Design software engineering tools that hide the complexity of the modeling and analysis steps in our performance prediction approach from an architect
 - MDA-based automatic benchmark suite generation
 - Annotating performance attribute using UML2 Profile
 - From UML Profile to Performance Model Interchange Format
 - A Eclipse plug-in for the analysis engine
The imagination driving Australia's ICT future.

PPCB Toolset: From Design to Prediction
Strong evidence has been accumulated over last year that these techniques actually work!

We have several case studies of predicting J2EE applications:

- Two example applications (Stock-Online and J2EE 1.4 Tutorial Example Duke’s Bank)
- Two J2EE application servers (BEA WebLogic and Borland Enterprise Server)
- Three alternative architecture designs for data access
- Both synchronous and asynchronous communication protocols
- Infrastructure with a single server or a server cluster
- Statistical method to evaluate the prediction approach

We are also extending this approach to the .Net platform.
• IBM’s Autonomic Computing Initiative—take the ‘operator’ out of the loop

• Model-based architecture-driven adaptation for middleware platforms
 – The invention of predictive models for self-managing, self-optimizing applications
 – The invention of new software architectures to support self-managing, self-optimizing applications
 – The invention of mechanisms to enable dynamic monitoring and adaptation policies to be simply specified by the application designer
Models and Extensible Architectures
For Middleware Platform: Overview

- **Target**
 - Platform technologies to support next generation IT applications
 - Support NICTA Priority Research Challenges

- **Method**
 - Devise and empirically validate new models and architectures for building self-monitoring and dynamically re-configurable application server technologies
 - Use commercially available application servers as test-beds

- **Design and build infrastructure**
 - Predictive models
 - PPCB models are first example
 - Monitoring and feedback architecture framework
 - Policy specification language/tools
Models and Extensible Architectures For Middleware Platform: Some Issues

- Automatic workload characterization
 - Workload cannot be manually characterized
 - Applying clustering algorithm or fuzzy logic?
 - Determine the parameters for characterization
- Architecture designs
 - Adaptive behavior as application server plug-in
 - Computational models
- Minimize the overhead of adaptive behavior
 - Sample size and sampling period
 - Optimization of the control loop
Thank You