Applying the weighted barycentre method to interactive graph visualization

Peter Eades
University of Sydney

Thanks for some software:
• Hooman Reisi Dekhordi
• Patrick Eades
Graphs and Graph Drawings
What is a graph?
A *graph* consists of

- Nodes, sometimes called “vertices”, and
- Binary relationships, called “edges” between the nodes.

Example: a “Linked-In” style social network

<table>
<thead>
<tr>
<th>Nodes:</th>
<th>Edges:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alice, Andrea,</td>
<td>- Bob is connected to Alice</td>
</tr>
<tr>
<td>Annie, Amelia,</td>
<td>- Bob is connected to Andrea</td>
</tr>
<tr>
<td>Bob, Brian,</td>
<td>- Bob is connected to Amelia</td>
</tr>
<tr>
<td>Bernard, Boyle</td>
<td>- Brian is connected to Alice</td>
</tr>
<tr>
<td></td>
<td>- Brian is connected to Andrea</td>
</tr>
<tr>
<td></td>
<td>- Brian is connected to Amelia</td>
</tr>
<tr>
<td></td>
<td>- Boyle is connected to Alice</td>
</tr>
<tr>
<td></td>
<td>- Boyle is connected to Andrea</td>
</tr>
<tr>
<td></td>
<td>- Boyle is connected to Annie</td>
</tr>
<tr>
<td></td>
<td>- Bernard is connected to Alice</td>
</tr>
<tr>
<td></td>
<td>- Bernard is connected to Andrea</td>
</tr>
<tr>
<td></td>
<td>- Bernard is connected to Amelia</td>
</tr>
<tr>
<td></td>
<td>- Bernard is connected to Annie</td>
</tr>
</tbody>
</table>
Notation:
The **degree** $\deg(u)$ of a node u is the number of edges attached to u.

Example:
$$\deg(Brian) = 3; \quad \deg(Alice) = 4.$$

Nodes:
- Alice, Andrea, Annie, Amelia, Bob, Brian, Bernard, Boyle

Edges
- Bob is connected to Alice
- Bob is connected to Andrea
- Bob is connected to Amelia
- Brian is connected to Alice
- Brian is connected to Andrea
- Brian is connected to Amelia
- Boyle is connected to Alice
- Boyle is connected to Andrea
- Boyle is connected to Annie
- Bernard is connected to Alice
- Bernard is connected to Andrea
- Bernard is connected to Annie
Notation:
The neighbour set $N(u)$ of a node u is the set of nodes that are linked to u by an edge.

Example:

$N(Brian) = \{Alice, Andrea, Amelia\}$;
$N(Alice) = \{Bob, Brian, Boyle, Bernard\}$.

Nodes:

• Alice, Andrea, Annie, Amelia, Bob, Brian, Bernard, Boyle

Edges

• Bob is connected to Alice
• Bob is connected to Andrea
• Bob is connected to Amelia
• Brian is connected to Alice
• Brian is connected to Andrea
• Brian is connected to Amelia
• Boyle is connected to Alice
• Boyle is connected to Andrea
• Boyle is connected to Annie
• Bernard is connected to Alice
• Bernard is connected to Andrea
• Bernard is connected to Annie
Note:

- Edges can be **weighted**.

Example: an *edge-weighted* “Linked-In” style social network

Nodes:

- Alice, Andrea, Annie, Amelia, Bob, Brian, Bernard, Boyle

Edges

- $w(\text{Bob} -- \text{Alice}) = 1$
- $w(\text{Bob} -- \text{Andrea}) = 5$
- $w(\text{Bob} -- \text{Amelia}) = 1$
- $w(\text{Brian} -- \text{Alice}) = 2$
- $w(\text{Brian} -- \text{Andrea}) = 100$
- $w(\text{Brian} -- \text{Amelia}) = 3$
- $w(\text{Boyle} -- \text{Alice}) = 1$
- $w(\text{Boyle} -- \text{Andrea}) = 1$
- $w(\text{Boyle} -- \text{Annie}) = 5$
- $w(\text{Bernard} -- \text{Alice}) = 1$
- $w(\text{Bernard} -- \text{Andrea}) = 9$
- $w(\text{Bernard} -- \text{Annie}) = 1$
What is a graph drawing?
A graph consists of
• Nodes, and
• Edges

A *graph drawing* is a picture of a graph. That is, a graph drawing is a mapping that assigns
• a location for each node, and
• a curve to each edge.
Nodes:
- Bob, Brian, Bernard, Boyle, Alice, Andrea, Annie, Amelia

Edges
- Bob is connected to Alice
- Bob is connected to Andrea
- Bob is connected to Amelia
- Brian is connected to Alice
- Brian is connected to Andrea
- Brian is connected to Amelia
- Boyle is connected to Alice
- Boyle is connected to Andrea
- Boyle is connected to Annie
- Bernard is connected to Alice
- Bernard is connected to Andrea
- Bernard is connected to Annie
A drawing of the graph

Nodes
0, 1, 2, 3, 4, 5, 6, 7

Edges
0 – 1
0 – 4
1 – 2
1 – 4
1 – 7
2 – 3
2 – 4
2 – 5
3 – 4
4 – 5
4 – 7
5 – 6
5 – 7
6 – 7

A graph

A drawing of the graph
A graph drawing is a *straight-line drawing* if every edge is a straight line segment.
What is *connectivity*?
Connectivity notions are fundamental in any study of graphs or networks

- A graph is connected if for every pair u, v of vertices, there is a path between u and v.

- A graph is k-connected if there is no set of $(k-1)$ vertices whose deletion disconnects the graph.

 - $k = 1$: “1-connected” ≡ “connected”
 - $k = 2$: “2-connected” ≡ “biconnected”
 - $k = 3$: “3-connected” ≡ “triconnected”
This graph is connected

This graph is not connected

Connected components

This graph is connected
Connectivity notions are fundamental in any study of networks

- A graph is \textit{connected} if for every pair \(u, v\) of vertices, there is a path between \(u\) and \(v\).

- A graph is \textit{k-connected} if there is no set of \((k-1)\) vertices whose deletion disconnects the graph.

 - \(k = 1\): “1-connected” \(\equiv\) “connected”
 - \(k = 2\): “2-connected” \(\equiv\) “biconnected”
 - \(k = 3\): “3-connected” \(\equiv\) “triconnected”
“2-connected” ≡ “biconnected”
- A cutvertex is a vertex whose removal would disconnect the graph.
- A graph without cutvertices is biconnected.
“3-connected” \equiv “triconnected”

- A **separation pair** is a pair of vertices whose removal would disconnect the graph.
- A graph without separation pairs is **triconnected**.

This graph is triconnected

This graph is *not* triconnected
What is a *planar* graph?
A graph is *planar* if it can be drawn without edge crossings.
A graph is \textit{planar} if it can be drawn without edge crossings.

Nodes:
- 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

Edges
- 0 – 4
- 0 – 9
- 1 – 2
- 1 – 6
- 1 – 7
- 2 – 3
- 2 – 8
- 3 – 4
- 4 – 5
- 4 – 8
- 5 – 6
- 5 – 7
- 7 – 8
A graph is **non-planar** if every drawing has at least one edge crossing.
What is a topological embedding?
A planar drawing divides the plane into faces.

The boundary-sharing relationships of the faces defines a topological embedding of the graph drawing.

- F_0 shares a boundary with F_1
- F_0 shares a boundary with F_2
- F_0 shares a boundary with F_3
- F_0 shares a boundary with F_4
- F_1 shares a boundary with F_2
- F_1 shares a boundary with F_4
- F_2 shares a boundary with F_1
- F_2 shares a boundary with F_3
- F_2 shares a boundary with F_4
- F_3 shares a boundary with F_4
What is a *good* graph drawing?
The input is a graph with no geometry

The output should be a good graph drawing:
- easy to understand,
- easy to remember,
- beautiful.
~1979 Intuition (Sugiyama et al. 1979; Batini et al 1982; etc.):

- Planar straight-line drawings make good pictures
Purchase et al., 1997:
Significant correlation between edge crossings and human understanding

➢ More edge crossings means more human errors in understanding
Purchase et al., 1997: Significant correlation between *straightness of edges* and human understanding

- More bends mean more human errors in understanding

Fig. 3. Results for the dense graph
What makes a *good* drawing of a graph?

- lack of edge crossings
- straightness of edges
- (plus some other things)

→ Planar straight-line drawings of graphs are GOOD!

(This talk is about planar straight-line drawings of graphs!)
Tuttle’s Barycentre Algorithm
W. T. Tutte 1917 - 2002
- Code breaker at Bletchley park
- Pioneer of graph theory

Tutte’s barycentre algorithm is the original graph drawing algorithm
Run VinciTest1
Tutte’s barycentre algorithm

Input: A planar graph $G = (V, E)$
Output: A straight-line drawing p of G

Step 1. Choose a face f of G.
Step 2. Draw f as a convex polygon.
Step 3. For all u not in f, choose $p(u)$ by

$$p(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} p(v)$$

where the sum is over all neighbors v of u.

Vertex u is placed at the “barycenter” of its neighbors.
Example output
Step 1. Choose a face f of G

Step 2. Draw f as a convex polygon

Step 3. For all u not on f, choose $p(u)$ by

$$p(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} p(v)$$

where the sum is over all neighbors v of u

$$x(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x(v)$$

and

$$y(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} y(v)$$

$$2(|V| - |f|) = O(|V|)$$

linear equations

“barycentre equations”
Step 1. Choose a face \(f \) of \(G \)
Step 2. Draw \(f \) as a convex polygon
Step 3. For all \(u \) not on \(f \), choose
\[
p(u) = (x(u), y(u))
\]
by
\[
x(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} x(v)
\]
and
\[
y(u) = \frac{1}{\deg(u)} \sum_{v \in N(u)} y(v)
\]
where the sum is over all neighbors \(v \) of \(u \)

The critical part is step 3
Step 1. \(f = \{4, 5, 6, 7, 8\} \)

Step 2. For all \(i = 4, 5, 6, 7, 8 \), choose the location \((x_i, y_i)\) of \(i \) so that they form a convex polygon.

Step 3. Find \(x_1, x_2, x_3 \) such that:
\[
\begin{align*}
x_1 &= \frac{1}{4} (x_2 + x_3 + x'_4 + x'_8) \\
x_2 &= \frac{1}{4} (x_1 + x_3 + x'_5 + x'_6) \\
x_3 &= \frac{1}{3} (x_1 + x_2 + x'_7)
\end{align*}
\]

and find \(y_1, y_2, y_3 \) such that:
\[
\begin{align*}
y_1 &= \frac{1}{4} (y_2 + y_3 + y'_4 + y'_8) \\
y_2 &= \frac{1}{4} (y_1 + y_3 + y'_5 + y'_6) \\
y_3 &= \frac{1}{3} (y_1 + y_2 + y'_7)
\end{align*}
\]

where \(x'_i \) and \(y'_i \) are the values chosen at step 2.
Re-write the equations for step 3:

\[
4x_1 - x_2 - x_3 = x'_4 + x'_8 \\
-x_1 + 4x_2 - x_3 = x'_5 + x'_6 \\
-x_1 - x_2 + 3x_3 = x'_5
\]

and

\[
4y_1 - y_2 - y_3 = y'_4 + y'_8 \\
-y_1 + 4y_2 - y_3 = y'_5 + y'_6 \\
-y_1 - y_2 + 3y_3 = y'_5
\]

That is:

\[
4x_1 - x_2 - x_3 = c_1 \\
-x_1 + 4x_2 - x_3 = c_2 \\
-x_1 - x_2 + 3x_3 = c_3
\]

and

\[
4y_1 - y_2 - y_3 = d_1 \\
-y_1 + 4y_2 - y_3 = d_2 \\
-y_1 - y_2 + 3y_3 = d_3
\]

where \(c_1, c_2, c_3, d_1, d_2, d_3 \) are constants
Re-writing the equations using a matrix:

We want vectors $x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$ and $y = \begin{bmatrix} y_1 \\ y_2 \\ y_3 \end{bmatrix}$ such that $Mx = c$ and $My = d$ where

$M = \begin{bmatrix} 4 & -1 & -1 \\ -1 & 4 & -1 \\ -1 & -1 & 3 \end{bmatrix}$

The essence of Tutte’s barycentre algorithm is inverting a matrix.
Tutte’s barycentre algorithm

Input: A triconnected planar graph \(G = (V, E) \)

Output: A planar straight-line drawing \(p \) of \(G \)

Step 1. Choose a face \(f \) of \(G \)

Step 2. Draw \(f \) as a convex polygon

Step 3.

(a) Let \(M \) be the square symmetric matrix indexed by the vertices of \(G - f \) defined by

\[
M_{uv} = \begin{cases}
\deg(u) & \text{if } u = v \\
-1 & \text{if } (u, v) \in E \\
0 & \text{otherwise}
\end{cases}
\]

The matrix of the barycentre equations is a Laplacian submatrix.

(b) Let \(c \) and \(d \) be vectors indexed by the vertices of \(G - f \) defined by

\[
c_u = \sum_{w \in f} x_w \quad \text{and} \quad d_u = \sum_{w \in f} y_w
\]

(c) Let \(x \) and \(y \) be vectors indexed by the vertices of \(G - f \) defined by

\[
x = M^{-1}c \quad \text{and} \quad y = M^{-1}d
\]

(d) Let \(p(u) = (x_u, y_u) \) for all \(u \) not on \(f \).
A more general barycentre algorithm

Step 1. Choose a subset A of V
Step 2. Choose a location $p(a) = (x(a), y(a))$ for each vertex $a \in A$
Step 3. Solve the barycentre equations to give a position $p(u) = (x(u), y(u))$
for each vertex $u \in V - A$

The subset A of V is called the set of fixed nodes.
A few lemmas and theorems about the barycentre equations
Definition: If $A \subseteq V$ then the A-contraction G_A of G is the graph obtained from G by identifying all vertices in A (ie, contracting A to a single vertex).

Determinant Lemma: If G_A is connected then the matrix M of the barycentre equations has a positive determinant.

Proof: Follows from Kirchhoff's spanning tree theorem.

(actually, even more is true: The barycentre matrix is positive definite)
Uniqueness Lemma: If G_A is connected then the barycentre equations have a unique solution.
Tutte’s amazing theorem

Theorem (Tutte 1960/63)
If the input graph is planar and triconnected, then
 • the drawing output by the barycentre algorithm is planar, and
 • every face is convex.
Implementation

The main part of the barycentre algorithm inverting the $n \times n$ barycentre matrix M.

- The usual Gaussian elimination: $O(n^3)$

- Williams algorithm: $O(n^{2.373})$

- If the graph is planar, then the matrix M is sparse, then we can use Lipton-Tarjan nested dissection: $O(n^{1.5})$

- In practice we can use numerical methods (such as Gauss-Seidel / Jacobi iterations); these converge rapidly since M is diagonally dominant.
Example (planar graph, 100 vertices)
Example (planar graph, 100 vertices)
Example (planar graph, 200 vertices)
Example (planar graph, 1000 vertices)
The Weighted Barycentre Algorithm
Weighted barycentre algorithm

Input: A positive-edge-weighted triconnected planar graph $G = (V, E, w)$
Output: A straight-line drawing p of G

Step 1. Choose a face f of G
Step 2. Draw f as a convex polygon
Step 3. For all u not on f, choose $p(u)$ by

$$p(u) = \frac{1}{w\text{Deg}(u)} \sum_{v \in N(u)} w_{uv}p(v)$$

where

$$w\text{Deg}(u) = \sum_{v \in N(u)} w_{uv}$$

Vertex u is placed at the "weighted barycenter" of its neighbors.
Weighted barycentre algorithm
Input: A weighted triconnected planar graph \(G = (V, E, w) \)
Output: A planar straight-line drawing \(p \) of \(G \)

Step 1. Choose a face \(f \) of \(G \)
Step 2. Draw \(f \) as a convex polygon
Step 3.
(a) Let \(M \) be the square symmetric matrix indexed by the vertices of \(G - f \) defined by
\[
M_{uv} = \begin{cases}
\sum_{v \in N(u)} w_{uv} & \text{if } u = v \\
- \sum_{v \in N(u)} w_{uv} p(v) & \text{if } (u, v) \in E \\
0 & \text{otherwise}
\end{cases}
\]
(b) Let \(x \) and \(y \) be vectors indexed by the vertices of \(G - f \) defined by
\[
x = M^{-1} c \quad \text{and} \quad y = M^{-1} d
\]
(c) Let \(p(u) = (x_u, y_u) \) for all \(u \) not on \(f \).

The matrix is diagonally dominant and has positive entries.
A few lemmas and theorems about the *weighted* barycentre equations
Determinant Lemma: If G_A is connected then the matrix M of the barycentre equations has a positive determinant.

Uniqueness Lemma: If G_A is connected then the barycentre equations have a unique solution.
Corollary to Tutte’s **amazing** theorem (Floater 1997, maybe earlier)

If the input graph is planar and triconnected, then
- the drawing output by the *weighted* barycentre algorithm is planar, and
- every face is convex.
The Energy View
Tutte’s barycentre algorithm is “force-directed”
Tutte’s barycenter algorithm:

The energy view

1. Choose a set A of vertices.
2. Choose a location $p(a)$ for each $a \in A$.
3. Place all the other vertices to minimize energy.

What is the energy of a drawing p?

- The Euclidean distance between u and v in the drawing p is:
 \[
 d(u, v) = \sqrt{(x_u - x_v)^2 + (y_u - y_v)^2}
 \]

- The energy in the edge (u, v) is $d(u, v)^2 = (x_u - x_v)^2 + (y_u - y_v)^2$

- The energy in the drawing p is the sum of the energy in its edges, ie,
 \[
 \text{energy}(p) = \sum_{(u,v) \in E} d(u, v)^2 = \sum_{(u,v) \in E} (x_u - x_v)^2 + (y_u - y_v)^2
 \]
Tutte’s barycenter algorithm: *The energy view*

We represent each vertex by a steel ring, and represent each edge by a spring of natural length zero connecting the rings at its endpoints.

1. Choose a set A of vertices.
2. For each $a \in A$, nail the ring representing a to the floor at some position.
3. The vertices in $V - A$ will move around a bit; when the movement stops, take a photo of the layout; this is the drawing.

Note: for Tutte’s barycentre algorithm:
- The springs have zero natural length
- Similar to elastic bands
How to minimize energy:

➢ Choose a location \(p(u) = (x_u, y_u) \) for each \(u \in V - A \) to minimize

\[
\text{energy}(p) = \sum_{(u,v) \in E} d(u,v)^2 = \sum_{(u,v) \in E} (x_u - x_v)^2 + (y_u - y_v)^2
\]

Note that the minimum is unique, and occurs when

\[
\frac{\partial (\text{energy}(p))}{\partial x_u} = 0 \quad \text{and} \quad \frac{\partial (\text{energy}(p))}{\partial y_u} = 0
\]

for each \(u \in V - A \).
For x_u, the minimum occurs when:

$$\frac{\partial \ (\text{energy}(p))}{\partial x_u} = 0$$

$$\frac{\partial}{\partial x_u} \left(\sum_{(u,v)\in E} (x_u - x_v)^2 + (y_u - y_v)^2 \right) = 0$$

$$\sum_{v \in V \ s.t. (u,v) \in E} 2(x_u - x_v) = 0$$

$$x_u = \frac{1}{\text{deg}(u)} \sum_{v \in V \ s.t. (u,v) \in E} x_v$$
The weighted barycentre algorithm is a *force directed algorithm*

- Edges are Hooke’s law springs with zero natural length.
- The weights define strengths for the springs.
- The fixed set are nodes nailed down (i.e., they don’t move).
Tutte’s barycenter algorithm: \textit{The energy view}

Step 1. Choose a face f of G
Step 2. Draw f as a convex polygon
Step 3: \textit{Place all the other vertices to minimize energy.}

The \textit{biggest differences} between the weighted barycentre algorithm and other force-directed methods are:

- For the barycentre algorithm, the springs have zero natural length.
- For the barycentre algorithm, the equations are easy to solve.
Animation
The animation problem:

- Given two drawings of a graph G, find a “nice” animation that takes one to the other.

Problem: how to compute the frames in between.
Run VinciTest2
The animation problem:

- Given two planar drawings \(\vec{p}_0 \) and \(\vec{p}_1 \) of a graph \(G \):
 - Find a “nice” animation that takes \(\vec{p}_0 \) to \(\vec{p}_1 \).
- Here we represent the drawing \(\vec{p}_0 \) as a \(2 \times n \) vector with a row \((x_0(u), y_0(u))\) for each vertex \(u \); similarly for \(\vec{p}_1 \).

The animation consists of a drawing \(\vec{p}_t \) for each \(t \) with \(0 \leq t \leq 1 \).

We want two properties of the animation:

1. **Planarity**: The drawing \(\vec{p}_t \) is planar for \(0 \leq t \leq 1 \),
2. **Smoothness**: The animation is smooth, that is, the animation function \(a: t \to \vec{p}_t \) is continuous and differentiable.
The animation problem:

Given two planar drawings \(\tilde{p}_0 \) and \(\tilde{p}_1 \) of a graph \(G \):
Find an animation \(a: t \rightarrow \tilde{p}_t \) with two properties:

- Planarity
- Smoothness

Solution (Floater and Gotsman, 1999, maybe others):

If \(\tilde{p}_0 \) and \(\tilde{p}_1 \) are weighted barycentre drawings, then the animation problem is easy: just *interpolate the weights.*
Say drawings \tilde{p}_0 and \tilde{p}_1 are barycentre drawings with barycentre matrices M_0 and M_1, that is,
\[M_0 \tilde{p}_0 = \tilde{c} \text{ and } M_1 \tilde{p}_1 = \tilde{c} \]
for a constant $2 \times n$ vector \tilde{c}.

Let $M_t = (1 - t)M_0 + tM_1$.

Theorem:
Suppose that \tilde{p}_t is a solution to the barycentre equation with matrix M_t, that is, $M_t \tilde{p}_t = \tilde{c}$.
Then the animation function $a: t \to \tilde{p}_t$ is planar and smooth.

Proof
- It is planar by Tutte’s amazing Theorem.
- It is smooth by the Determinant Lemma.
The Bi-Weighted Barycentre Algorithm
Run VinciTest3
The bi-weighted barycentre algorithm with weak parameter δ

Suppose that

- $G = (V, E)$ is a triconnected planar graph and f is a face of G.
- Suppose that $G' = (V', E')$ is a subgraph of G.
- The f-contractions G_f and G'_f are connected.
- $\delta > 0$ is small.

We define weights $w_{uv} = \begin{cases} 1 & \text{if } (u, v) \in E' \\ \delta & \text{otherwise} \end{cases}$.

The **strong graph** $G' = (V', E')$ is the subgraph with all edge weights 1, plus the vertices and edges of f.

The **weak graph** $G'' = (V'', E'')$ is the subgraph with all edge weights δ, plus the vertices and edges of f.
The *strong graph theorem*

and

The *weak graph theorem*
Strong Graph Theorem

Suppose that the G_f is connected, and the strong graph is G'. Suppose that G'_f is connected, \tilde{p}_G is the bi-weighted barycentre drawing of G restricted to the vertices of G', with weak parameter δ, and \tilde{p}' is the barycentre drawing of G'. Then for every $\epsilon > 0$ there is a $\delta > 0$ such that $||\tilde{p}_G - \tilde{p}'|| < \epsilon$.

Informally:

If the strong edges are connected to the fixed set f, then the barycentre drawing of the whole graph is arbitrarily close to the barycentre drawing of the strong graph.
Strong Graph Theorem

Suppose that the G_f is connected, and the strong graph is G'. Suppose that G'_f is connected, $\hat{p}_{G'}$ is the bi-weighted barycentre drawing of G restricted to the vertices of G', with weak parameter δ, and \hat{p}' is the barycentre drawing of G'. Then for every $\epsilon > 0$ there is a $\delta > 0$ such that $\|\hat{p}_{G'} - \hat{p}'\| < \epsilon$.

The drawing of the whole graph is similar to the drawing of the strong graph.
Strong Graph Theorem

Suppose that the G_f is connected, and the strong graph is G'.

Suppose that G'_f is connected, $\hat{\mathbf{p}}_{G'}$ is the bi-weighted barycentre drawing of G restricted to the vertices of G', with weak parameter δ, and $\hat{\mathbf{p}}'$ is the barycentre drawing of G'.

Then for every $\epsilon > 0$ there is a $\delta > 0$ such that $\|\hat{\mathbf{p}}_{G'} - \hat{\mathbf{p}}'\| < \epsilon$.

Proof. Use two results:
1. The “Hoffman principle”: if $\|Mx - b\|$ is small then x is close to a solution of $Mx = b$
2. The uniqueness lemma.
Weak Graph Theorem

Suppose that the G_f is connected, and the weak graph is G''. Suppose that the strong graph G' is connected but has no vertex in f. Let $\tilde{p}_{G'}$ be the barycentre drawing of the graph formed from G by collapsing all of G' to a single node. Suppose that G''_f is connected, $\tilde{p}_{G''}$ is the bi-weighted barycentre drawing of G restricted to the vertices of G', with weak parameter δ. Then for every $\epsilon > 0$ there is a $\delta > 0$ such that $\|\tilde{p}_{G'} - \tilde{p}_{G''}\| < \epsilon$.

Informally:
If the strong graph is connected but not connected to the fixed set f, then the barycentre drawing of the whole graph is arbitrarily close to the barycentre drawing where the strong graph is collapsed to a single node.
The drawing of the whole graph is similar to the drawing of the weak graph.
Clustered Planar Graphs
Clustered graphs
Run VinciTest3 (again)
Semantic Zoom
Focus + context display:

Focus: we want to zoom in to the neighbourhood of \(u \), to see it in detail.

Context: we can reduce detail for parts of G that are further from \(u \).

This can be achieved via geometric or semantic zooming.

Geometric zoom: “neighbourhood” and “distance” are defined geometrically

Semantic zoom: “neighbourhood” and “distance” are defined graph-theoretically

Semantic zoom is better!
VinciTest4
Weighted barycentre for semantic zoom for focus vertex r:

- For each vertex u, let $d(u) =$ graph theoretic distance between r and u.

- For each edge (u, v), $w_{uv} = k^d(u) + k^d(v)$

That is, edges become weaker as they get close to the focus node.
Finishing Up
The weighted barycentre algorithm can do many things

- Animation
- Clustered graph drawing
- Semantic zoom

But there is more …
there’s more ….

• Emphasize a specified spanning tree

• Emphasize a specified path (run VinciTest10)

• Adjust layout after adding/deleting and edge/vertex
The weighted barycentre algorithm can do many things

- Animation
- Clustered graph drawing
- Semantic zoom
- Emphasize a specified spanning tree
- Emphasize a specified path
- Adjust layout after adding/deleting and edge/vertex

But some things are still a problem …
Consider this graph G_k with $k + 2$ nodes

In a barycentre drawing of graph G_k, nodes u_{k-1} and u_k are exponentially close together (distance less than $\frac{1}{2^k}$)
Run VinciTest7
Important note:

For practical graph drawing, vertex resolution is very important, because nontrivial labels need to be attached to nodes.
But by weighting the edges, we can get a better drawing:

\[w(u_i, u_{i+1}) = 2^{k-i} \]
Run VinciTest8, then 9
Open problem

Given a triconnected planar graph $G = (V, E)$

Find weights on the edges so that the vertex resolution is good.

That is:

Given a graph $G = (V, E)$, find a diagonally dominant matrix M such that

- $M_{uv} > 0$ if $u \neq v$ and $(u, v) \in E$
- $M_{uv} = 0$ if $u \neq v$ and $(u, v) \notin E$

and

$$\min_{u, v \in V} \|p(u) - p(v)\|$$

is maximal.