Forest Stewardship Council (FSC®) is a globally recognised certification overseeing all fibre sourcing standards. This provides guarantees for the consumer that products are made of woodchips from well-managed forests, other controlled sources and reclaimed material with strict environmental, economical and social standards.

Cover image: Abstracted high-angle view of pillars
Photo: John Lund, Getty Images
Why study with us?2
Focus on careers5
Student experience6
International opportunities7
Innovative learning environment8
Get a head start on university10

Our courses

Engineering ..14
IT and Computer Science21
Project Management25
Courses A-Z ...26
Admissions ..32
Why study with us?

Engineers, project managers and information technology professionals develop innovative, creative and sustainable solutions that promote positive change worldwide.

Reputation for excellence

The University of Sydney is ranked:
− in the top 30 in the world for engineering and technology*
− number 1 in Australia and 14 in the world for graduate employability.**

Globally recognised qualifications

Our engineering degrees are accredited by Engineers Australia, and our IT degrees by the Australian Computer Society.

You will graduate with globally recognised qualifications, making you highly sought after by employers all over the world.

Flexible options

If you are concerned that you may not quite reach the ATAR cut-off for your preferred course, consider our Flexible Entry Scheme. We look at your ATAR along with your performance in maths and science subjects, as well as your leadership capabilities.

− sydney.edu.au/engineering/flexibleentry

If you’re not sure of the area of engineering in which you’d like to specialise, our Bachelor of Engineering Honours (Flexible First Year) gives you the time and freedom to discover where your strengths and interests lie before deciding on your stream.

− sydney.edu.au/engineering/futurestudent/flexiblefirstyear

* QS World University Rankings by Faculty 2015/16
** QS graduate employability rankings 2016
Learn from experts

The outstanding calibre of our academic staff means we consistently rank among the top research universities in the world.

As a student, you’ll be taught by some of these leading researchers, and in some cases you’ll have the chance to contribute to their work.

View our experts’ profiles.
- sydney.edu.au/engineering/ourpeople

High achievers’ program

Students with outstanding academic ability can take advantage of two exclusive programs designed to inspire and challenge.

Our Advanced Engineering and Talented IT programs offer the opportunity to work at an advanced level in science, engineering or IT subjects, or in a small supervised project group tackling a specific engineering problem relevant to the community.

Leadership development

Our Student Leadership Academy develops and fosters the next generation of leaders by creating a platform for you to exercise and develop your leadership skills. It offers:
- leadership development to complement the expertise and knowledge you will gain through your degree
- a unique peer-mentoring community to collaborate with on solutions to real-world issues
- insights from industry through guest speaker events, workshops, projects and competitions.

Led by students for students, the academy provides a community in which you can collaborate with others from diverse backgrounds such as engineering, business, law, arts and architecture.
- sydney.edu.au/engineering/current-students/leadership

“In my research I use an autonomous underwater vehicle that can create 3D models of the seafloor using software systems and algorithms we developed. I’ve been invited by organisations across the world to share this expertise.
I enjoy bringing my robotics experience into my teachings of mechatronic engineering.”

Professor Stefan Williams
Head of School of Aerospace, Mechanical and Mechatronic Engineering
Generous scholarships

At the University of Sydney, we offer more than 500 University-wide scholarships to undergraduates every year. Our Leadership Scholarships are some of the most valuable of their kind in Australia – providing $18,000 a year along with leadership development throughout your degree.

- sydney.edu.au/scholarships
- sydney.edu.au/engineering/scholarships

“I applied for the Leadership Scholarship to gain a competitive edge over other graduates. It was a great opportunity to get access to a wide network of people and be exposed to personal development skills such as leadership and communication while benefiting from work experience throughout my degree.”

Rhys Killian
Bachelor of Engineering (Mechanical) and Bachelor of Commerce (Finance)
Leadership Scholarship recipient

“Engineering is an incredibly flexible degree. It teaches you how to think critically and solve problems — skills that can be applied across a variety of disciplines to create solutions to the challenges facing the world today, and to help shape the world of tomorrow. I think it’s an excellent foundation for a diverse range of pursuits.”

Derek Muller
Engineer, TV Presenter and creator of YouTube Channel Veritasium
Focus on careers

Studying engineering, technology or project management gives you a wide range of careers to choose from when you graduate.

Broad career choice

With 75 percent of the fastest growing occupations now requiring professionals with STEM skills and knowledge*, your prospects for employment are bright.

You can also broaden your career options with a combined degree – a program of study that allows you to graduate with two degrees. You can combine your degree from our faculty with one from the disciplines of arts, law, architecture, science, commerce, music or medical science.

Prepare for your career

We know that employers want well-rounded individuals who embrace all the opportunities and challenges that come their way. That’s why we work with hundreds of organisations to support you through leadership development programs, scholarships, international exchange, vacation work and industry-sponsored projects.

We hold annual careers fairs where you can discuss graduate programs, employment options, internships, vacation work and placements with industry professionals who specialise in your chosen stream of engineering, IT or project management.

The University offers other networking opportunities, workshops and forums at which you can meet prospective employers and seek advice on your career path.

− sydney.edu.au/careers

“The best thing about university is that I have been given so many opportunities, ranging from producing consulting reports for real organisations to volunteering overseas.”

Joshua Lorusso
Bachelor of Engineering (Civil) (Structures) (Honours) and Bachelor of Laws
Student experience

As part of our student community, you’ll have the opportunity to get involved in many exciting projects and hands-on activities.

You might spend part of your degree overseas, or choose to work with local communities, either as part of your course or in your own time as a volunteer with one of our outreach programs, such as Engineers Without Borders.

You could become a student mentor, tutor or a faculty communicator. Faculty communicators let young people know about life at university, promoting engineering, IT and project management both on and off campus.

Depending on which course you choose, you could work on exciting projects such as building a lunar mining robot, developing ventilation solutions to help rural communities in Vietnam or designing and constructing a racing car.

Our clubs and societies help you make the most of your university experience. They prepare you for the workforce by providing networking and leadership opportunities. With more than 200 clubs and societies on offer, there’s something for everyone.

“I wanted to put into practice the skills that I have learned as part of my degree and to see an idea transformed into an actual object. It is the first ‘real-world’ project I have worked on and the experience has been invaluable.”

Deirdre Mair
Bachelor of Engineering (Civil)/Bachelor of Design in Architecture
Deirdre Mair and Harry Stitt exhibited Mirage at Sculpture by the Sea, 2015

“I led a team of students from the faculty who mentored high school students competing in the international Zero Robotics competition. These mentors had the amazing experience of helping their students to program robots that live on the International Space Station.”

Ben Morrell
Aerospace PhD candidate
International opportunities

Maybe you’ve got your eyes set on high tech and want to create networks in Silicon Valley. Or would you just like to get out of your comfort zone for a semester?

Taking part in an international placement, internship, exchange or study abroad program is an exciting and challenging way to broaden your horizons. An overseas study experience through Sydney Abroad is your passport to discovery.

− sydney.edu.au/sydney-abroad

“Opportunities I’ve had include being on the University’s gold medal winning team at the International Genetically Engineered Machine competition for undergraduate research in synthetic biology, and building and launching a 3D printed satellite as part of the Intercollegiate Rocket Engineering Competition.”

Harrison Steel
Bachelor of Engineering (Mechanical) (Space) and Bachelor of Science (Advanced)

“Completing my industry placement in Saudi Arabia added a new dimension to my overall university experience. The awareness of what working as a chemical engineer encompasses is now clear, and is truly a thing to look forward to.”

Clint Howard
Bachelor of Engineering (Chemical)
Innovative learning environment

Our facilities incorporate the latest technology and equipment and allow interactive study, research and collaboration. Below are just a few examples:

Sydney Invention Studio can help you turn your ideas into reality. You can access 3D-printing technology, laser cutters, electronics testing and other machinery to develop and manufacture prototypes.

Sydney Accelerator Network (SAN) is where students with a vision of entrepreneurial success can be mentored by industry. SAN provides funding along with office space, the latest IT infrastructure, and exceptional networking opportunities through our alumni and industry partners.

Raymond Kirby Robotics Teaching Lab is equipped with the latest robotic and microcontroller-based hardware and software. Its centrepiece is a humanoid robot called Baxter (pictured right) that assists students learning to program robots for industrial and other tasks.

Investing in your future

We’re committed to creating a place where ideas and innovation flourish. The Engineering and Technology precinct is undergoing a multimillion-dollar transformation into an environment in which our leading students and researchers can thrive and realise their full potential.

The project includes new multidisciplinary learning and research spaces that reflect our culture of innovation and scholarship.
“It’s a passport to the world. Engineering is that base qualification that can take you anywhere.”

Regina Moran, Chief Executive of Fujitsu UK and Ireland and president of Engineers Ireland
Get a head start on university

It’s never too early to start thinking about university and planning your future studies.

There are several university programs, workshops and activities you can take part in while you’re still at school to get an idea of what engineering, IT and project management is like. Check them out online.

− sydney.edu.au/engineering/high-school

Campus tours, workshops and school visits
Throughout the year, we invite high school students to visit our campus and see what it’s like to study here. You can tour our facilities and talk to our academics and students about life at Sydney.

Our student ambassadors can also come to your school and run tailored activities with you and your class. You might build a signal railway, design a prosthetic leg, program a microcontroller, create a new prototype to assist recovery in orthopaedic patients, or control a flight simulator.

Project Management Winter Camp
7–8 July 2016
Designed for students in years 10, 11 and 12, our two-day intensive workshop will give you a head start in project management and an idea of where this dynamic field can take you.

Explore Engineering workshop
11–13 July 2016
If you’re in year 9 or 10, you can come to campus for a three-day intensive workshop to discover more about the range of disciplines and careers available in engineering. You can participate in hands-on activities and meet current engineers and engineering students. You will also be tasked with solving a real-life engineering problem and present your solution at the end of the workshop.

Zero Robotics
Created by Massachusetts Institute of Technology (MIT) and the University of Sydney’s former NASA astronaut, Dr Greg Chamitoff, this is a programming competition for robot SPHERES that live aboard the International Space Station (ISS) (pictured left). Finalists participate in a live competition conducted by astronauts on the ISS.
Girls’ Programming Network
An extracurricular program run by girls, for girls, this one-day workshop gives you the opportunity to develop games, learn about digital media, sound, image and video manipulation and even create smartphone applications. Tutors are a mix of university students and professional software engineers from companies like Google and Atlassian.

MadMaker
This is a six-week online challenge aimed at Year 9 students which teaches you about embedded systems and their application in everyday life. You’ll get to use Arduino Esplora boards to investigate fun and interactive ways to use science, technology, engineering and maths to solve real-world problems.

National Computer Science School (NCSS)
This is an intensive 10-day summer holiday program on computer programming and website development for students about to start Year 11 or 12. Participants also go on site visits and meet industry professionals.

NCSS Challenge
A five week online competition, the NCSS Challenge gives high school students an opportunity to learn and experience computer programming. It is designed to cater for beginners, intermediate and advanced students.

Indigenous Engineering Summer School
We partner with Engineering Aid Australia to deliver the annual Indigenous Australian Engineering Summer School. It gives Aboriginal and Torres Strait Islander students from around Australia the opportunity to see what it’s like to study and work in engineering.

– sydney.edu.au/engineering/iaess

Other engineering events
We also participate in the annual Engineers Australia engineering schools and Discover Engineering Days throughout the year.

“I attended the NCSS Challenge as a high school student and was so inspired by the experience that I made the decision to study computer science at the University of Sydney. I enjoyed the camp both intellectually and socially and knew I could have the same experience at university.”

Deanna Arora
Bachelor of Information Technologies
“Innovation distinguishes between a leader and a follower.”

Steve Jobs (1955–2011)
Entrepreneur, inventor, co-founder, chairman and chief executive of Apple Inc.
Our courses
Engineering

A career in engineering can take you almost anywhere – from developing space robotics to designing offshore pipelines, integrating renewable energy into our power supply, improving pharmaceutical delivery, managing construction of critical infrastructure or developing software.

Clear pathways, widest choice
Within your degree, you can select from a range of engineering streams, including aeronautical, mechanical, mechatronic, biomedical, chemical and biomolecular, civil, electrical, and software engineering. By taking a major (from more than 15 options), you have the ability to further personalise your degree.

You can choose to broaden your career options by combining your degree with studies in arts, law, architecture, science, commerce, music or medical science.

Flexible First Year Program
Our Bachelor of Engineering Honours (Flexible First Year), allows you to begin your studies with the freedom to decide on your area of specialisation later on.

At the end of your first year (or semester) of the program, you can transfer to one of the many streams we offer. You will still complete your degree in the normal time and be a fully qualified graduate in the area of your choice.

Advanced Engineering program
Our Bachelor of Engineering Honours with Advanced Engineering is open to students demonstrating outstanding academic ability (with an indicative ATAR of 97.5 or above).

You will take advanced units on topics such as sustainability and humanitarian issues, business planning and strategy, technology and education. You will also work in small groups on issues relevant to the community. You may take any engineering stream within this program. Applications are made directly through the Universities Admissions Centre.

Assumed knowledge
These HSC subjects are assumed knowledge for our engineering degrees:
- Mathematics Extension 1
- Physics and/or Chemistry (depending on stream)

If you did not take these subjects at high school, you can complete a bridging course to get up to speed.
- sydney.edu.au/ug-bridging
Bachelor of Engineering Honours
(Chemical and Biomolecular)
Chemical and biomolecular engineers turn raw materials into useful products for everyday life using chemistry, biology and physics. Such materials include fuels, pharmaceuticals, and processed foods.

During this degree you will develop solutions in the areas of chemical, combustion, environmental, petroleum and water engineering. You’ll also explore how to transform raw materials into useful products using chemistry, biology and physics.

Bachelor of Engineering Honours (Civil)
Civil engineers manage the design and construction of crucial modern infrastructure such as buildings, roads, railways, bridges, tunnels, dams, ports, and systems for managing water, irrigation, sewage and floodwaters. It’s a skillset that will enable you to take a leading role in sustainable development.

This degree will teach you about planning, designing and testing structures within the built environment. Core units of study will enable you to master the foundations of civil engineering before specialising in your chosen major.

Bachelor of Engineering Honours (Electrical)
Electrical engineers design, create, develop and manage systems in areas such as computer systems, electronics and telecommunications. They provide solutions to many of the world’s biggest challenges in health, education and the environment.

This degree teaches you the foundations of physics, mathematics, computer science and basic electrical engineering principles. This is a solid platform on which you can build further studies in subjects such as electrical circuits, electronics and computer systems, signals and communications, and power and energy systems and management.
Bachelor of Engineering Honours (Mechanical)
Mechanical engineering is a broad branch of professional engineering, and mechanical engineers are found in almost every type of engineering activity. They design and develop everything you think of as a machine – from supersonic fighter jets to bicycles and toasters.

You will learn how to design a mechanical component, a whole machine, a mechanical system and a mechanical process.

Bachelor of Engineering Honours (Mechatronic)
Mechatronics combines mechanical, electronic and software engineering to create computer-controlled machines and consumer products. It is the technology that underpins robotics and autonomous systems, automated manufacturing and intelligent microprocessor-based products.

This degree emphasises the development of skills in digital electronics, microprocessors, computer control, and software design in a mechanical engineering environment.

Bachelor of Engineering Honours (Software)
Software engineers develop computer games, business applications, operating systems and network control systems.

This degree prepares you for a role as a software engineer or innovator, development manager, applications programmer, analyst or consultant.

Sample course structure:
Bachelor of Engineering Honours (Civil) with Advanced Engineering

Year 1
- Advanced Engineering 1 A
- Advanced Engineering 1 B
- Intro to Civil Engineering
- Engineering Geology, Mechanics and Computing
- Mathematics
- Engineering Construction and Surveying

Year 2
- Advanced Engineering 2
- Transport Systems
- Structural, Soil, Fluid Mechanics
- Linear Mathematics and Vector Calculus
- Project Appraisal
- Sustainable Systems Engineering
- Materials

Year 3
- Advanced Engineering 3
- Fluid Mechanics
- Engineering Design and Construction
- Concrete and Steel Structures
- Civil specialist breadth units

Year 4
- Advanced Engineering 4
- Thesis A & B
- Civil Engineering Design
- Civil specialist depth units
- Practical experience

Sample course structure only. For full details, refer to sydney.edu.au/courses
Majors

Undertaking a major is optional, but many students take one as a way to personalise their degree. Depending on your engineering stream, you can select from up to 15 majors. Refer to the course table (pages 26-31) to identify the majors that best align with your stream.

Chemical Engineering

This major allows you to deepen your knowledge in areas such as biochemical engineering and biotechnology, energy and environment, green product and process design, minerals processing, process systems engineering and sustainability.

Computer Engineering

This major builds on foundations in physics, mathematics, computer science and basic electrical engineering principles. You will specialise in advanced computer systems, computer networking, and software engineering. A wide range of computer-oriented electives is also available, including studies in artificial intelligence and integrated circuit design.

Construction Management

This major will give you a depth of knowledge in construction management along with skills across all disciplines in civil engineering. It will allow you to focus on organisation and management, design and construction, the economics of construction projects and project administration systems. You will learn about infrastructure in large construction projects and gain skills in professional project management.

Electrical Engineering

This major allows you to deepen your knowledge of the discipline of electrical engineering, including in areas such as satellite communications, high-performance computing, telecommunications, signal processing, energy generation and control systems.

Environmental Engineering

In this major you will take advanced units of study related to areas such as environmental solutions to human-caused problems, ocean and coastal engineering, water resources and hydrology and environmental geotechnics.

Geotechnical Engineering

This major will give you a depth of knowledge in geotechnical engineering along with skills across all disciplines in civil engineering. It offers advanced units of study in geotechnical risks, computer modelling, and environmental geotechnics.

Humanitarian Engineering*

This major is the first of its kind in Australia. It will help you develop the crucial skills to plan, implement, and maintain infrastructure in rural Australian areas and developing countries. You will explore international aid and development, and learn from experienced practitioners and industry partners about how to work in disadvantaged communities, fragile states, and communities in disaster recovery. You’ll also have the opportunity to conduct local or overseas fieldwork and apply your knowledge to analyse the challenges faced by Australia’s close neighbours, such as rapid urbanisation and entrenched poverty.

* The Humanitarian Engineering major is subject to final approval but is expected to go ahead in 2017.

Information Technology (Engineering)

Drawing on both computer science and information systems, this major covers the study of computers and the programs that run on them as well as the creation of computer systems that satisfy individual and organisational needs. You can focus on computer languages, programming, system development and implementation and network design as well as managerial aspects such as strategic planning and operational management.

Materials

This major focuses on the relationship between properties of materials and in turn their relationship to engineering design. Concepts covered include mechanical properties, fracture and fatigue mechanics, composite materials, ceramics and glasses, structure-property relationships, and selection of materials.

Mechanical Engineering

This major provides you with the option to focus across a broad range of mechanical engineering technologies and activities – from the application of nanotechnology to the design of systems crucial to sustainable power generation, air conditioning, transport, steel production and mining.
Mechatronic Engineering
This major will give you an understanding of the interconnection between mechanical, electrical and systems engineering, as well as computer science. It provides a foundation for cutting-edge technologies in fields including robotics, manufacturing, aerospace and bioengineering.

Power Engineering
Designed in consultation with key industrial partners, this major is complemented with real-world project work, including the protection of industrial and power plants, as well as transmission and distribution networks. You will complete your studies in the areas of power systems, control, energy systems and management.

Space Engineering
Combining key areas including orbital mechanics, space vehicles, ground station infrastructure, space avionics and space robotics, our space engineering major is the only program of its kind in Australia. It is available only within the aeronautical, mechanical or mechatronic streams of the Bachelor of Engineering Honours and associated combined degrees.

Structures
This major will give you a depth of knowledge in the field of structures, along with skills across all disciplines in civil engineering. It offers advanced units of study in areas such as structural behaviour, analysis and dynamics.

Telecommunications Engineering
This major is concerned with all aspects of theory and application for a broad range of systems such as telephone and data networks, radio and television broadcasting, satellite and deep space applications. Learn about the design, planning, commissioning and monitoring of complex telecommunications networks and broadcasting equipment.

Transport Engineering
This major incorporates planning, design, operation and management of infrastructure to achieve safe, economical, and environmentally sustainable movement of people and goods. It covers traditional mathematical and engineering methods along with multidisciplinary issues such as environmental and social impact, economics, and government policy.

Inside view

Jeremy Kwarcinski
Bachelor of Engineering Honours (Biomedical)
As an undergraduate biomedical engineering student, Jeremy was part of a team that developed a game-changing method of treating severe skull injuries by creating patient-specific bone replacement implants using a 3D printer.

“As a student it is very exciting to work on such a project that has a real impact, and where you’re interacting not only with leading researchers and clinicians, but also with real patients to provide a tangible benefit.”
Our courses
IT and Computer Science

Our Bachelor of Information Technology and Bachelor of Computer Science and Technology degrees prepare you for a professional career at the forefront of information technology.

Technical skills, business knowledge
You will study a number of core subjects before choosing one of two streams: computer science or information systems. When you graduate you could play an important role in helping businesses build infrastructure, develop products, manage data, analyse trends, strategise and conduct research.

You can broaden your career options by combining your degree with studies in arts, law, science, commerce or medical science. Combined degrees are mostly five years in length, and very popular as they allow students to combine a range of interests.

Assumed knowledge
This HSC subject is assumed knowledge for our information technologies degrees
– Mathematics Extension 1

If you did not take this subject at high school, you can complete a bridging course to get up to speed.
– sydney.edu.au/ug-bridging

Talented IT program
Our Talented IT program is open to students demonstrating outstanding academic ability (indicative ATAR of 98 or above).

Entry to the Talented IT program is by invitation from the Dean of Engineering and Information Technologies, following the release of HSC results.
Degree options

- Bachelor of Information Technology (in one of two streams)
- Bachelor of Computer Science and Technology
- Bachelor of Computer Science and Technology (Advanced)

You can choose to combine your Bachelor of Information Technology with a degree in commerce, arts, science, law, medical science.

Bachelor of Information Technology
If you are technically minded and want to push the limits of information technology and business innovation, this course is for you. We have developed it in consultation with industry to ensure our graduates are equipped for the challenges of working in this dynamic area.

You can choose one of two streams: information systems or computer science.

Computer science is the study of computers and their programs. You’ll gain knowledge and skills in computer languages such as Java, C, C++, and Python, as well as computer programming, including algorithms, data structures, networks and operating system internals.

Information systems involves creating computer systems that satisfy individual and organisational needs. It includes strategic planning, system development and implementation, network design and management, operational management, end-user needs and education.

Inside view

James Alexander
Co-founder, Incubate

While studying for a Bachelor of Computer Science and Technology, James co-founded Incubate, an award-winning start-up accelerator and entrepreneur program.

“I chose Sydney for its fantastic reputation in computer science and IT research, and teaching. With support from the University of Sydney Union and the University, I co-founded Incubate, a program that fosters entrepreneurial students and helps get start-up businesses off the ground. It’s the first of its kind in the Asia-Pacific region.”
Bachelor of Computer Science and Technology

Bachelor of Computer Science and Technology (Advanced)

These degrees prepare you to become a professional at the leading edge of information technology.

After completing core studies in programming, databases, systems analysis, and professional IT practice, you will choose your stream: information systems, or computer science.

The **information systems** stream will give you an understanding of the principles and techniques involved in the analysis, design, implementation and maintenance of computer systems within a business environment.

The **computer science** stream is an ideal choice if you’re more technically minded and want to contribute to the development and support of computer technology.

In the Bachelor of Computer Science and Technology (Advanced), you will take advanced units in networking, human–computer interaction, graphics, object–oriented design, internet software platforms, artificial intelligence, and e–business analysis and design.

Sample course structure:

Bachelor of Computer Science and Technology

<table>
<thead>
<tr>
<th>Year 1</th>
<th>Year 2</th>
<th>Year 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional Engineering and IT</td>
<td>Operating Systems and Machine Principles</td>
<td>Management of IT Projects and Systems</td>
</tr>
<tr>
<td>Introduction to Programming and Computer Systems</td>
<td>Algorithms and Complexity</td>
<td>IT stream units/electives</td>
</tr>
<tr>
<td>Data Structures</td>
<td>Database Systems 1</td>
<td></td>
</tr>
<tr>
<td>Maths units for IT</td>
<td>Maths units for IT</td>
<td></td>
</tr>
<tr>
<td>IT electives</td>
<td>Systems Analysis and Modelling</td>
<td></td>
</tr>
<tr>
<td></td>
<td>IT stream units/electives</td>
<td></td>
</tr>
</tbody>
</table>

Sample course structure only. For full details, refer to sydney.edu.au/courses

Inside view

Sasha Bermeister

Bachelor of Information Technology (Honours)

Sasha took up a software engineering role at Google after finishing her Bachelor of Information Technology (in the stream of computer science). She is one of online–venture builder Pollenizer’s top 50 women programmers in Australia.

Jenna Bermeister

Bachelor of Computer Science and Technology

Jenna leads a team collaborating with San Franciscan start-up Meta. She is the University’s Google Student Ambassador and president of the IT Society. In 2014 she led a team that tied for first prize in the inaugural Telstra M2M University Challenge.

“**The lecturers here are the best I’ve ever come across,”** Jenna says. “They are so passionate about what they do, and it’s incredible to hear their experiences – you can really feel the enthusiasm. I think it inspires people to go beyond their degree and become leaders themselves.”

Sasha and Jenna Bermeister
Our courses
Project Management

Project managers help organisations deliver new products, services and infrastructure. They manage and implement new systems and processes and effect change within companies.

Project management skills are highly regarded and sought after. They can be applied to a variety of organisational and humanitarian situations, including disease and disaster recovery scenarios that require an innovative and dynamic approach.

Degree options

- Bachelor of Project Management

You can also combine your degree with a Bachelor of Arts or Bachelor of Engineering Honours.

Bachelor of Project Management

This unequalled course is unlike any other in Australia. We take a complex systems approach to investigate projects from a holistic viewpoint.

Core subjects include project finance, project management, complex project coordination, analytics, statistics, risk management, organisational behaviour and psychology.

These subjects are integrated with units of study from your chosen stream from the start of your studies, which could be:

- Civil Engineering Science
- Built Environment
- Software.

Project management skills are transferable across industries so your career prospects will be many and diverse. For example, you could work in engineering, water, health, energy, property development, construction, mining, IT, banking and finance, not-for-profit organisations, state or federal government.

“This degree is helping me to prepare for a successful career as there are endless jobs available for people with a project management degree, including construction, engineering, finance or management.”

Allison Monaghan
Bachelor of Engineering (Civil)
Bachelor of Project Management
Courses A-Z

Below you can find out the Australian Tertiary Admissions Rank (ATAR), or International Baccalaureate (IB) score you would have needed to gain entry to each of the degrees we offer in 2016. Scores can vary by year, but this gives you an idea of the academic requirements for entry in 2017.

For a full list of high school qualifications accepted by the University, refer to: sydney.edu.au/ug-int-qualifications

<table>
<thead>
<tr>
<th>Course description</th>
<th>Major studies</th>
<th>Assumed knowledge</th>
<th>Career possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Computer Science and Technology</td>
<td>Computer science, information systems, mathematics, professional technology skills, systems analysis. Electives include artificial intelligence, e-business analysis and design, graphics, human-computer interaction, internet software platforms, networking, object-oriented design, operating systems. You may also take electives from other faculties.</td>
<td>HSC Mathematics</td>
<td>Computer programmer, computer system administrator, systems analyst, software engineer</td>
</tr>
<tr>
<td>ATAR 81.3, IB 50, UAC 511795 3 years full time</td>
<td>This degree will prepare you to work at the cutting edge of information technology. After completing core studies in programming, databases, systems analysis and professional IT practice, you will pursue a course of study along one of two streams: information systems or computer science.</td>
<td>Extension 1</td>
<td></td>
</tr>
<tr>
<td>B Computer Science and Technology (Advanced)</td>
<td>A more challenging variant of the Bachelor of Computer Science and Technology, this degree will appeal to you if you have substantial programming experience. It has the same flexible structure but with advanced units where more challenging topics are covered in areas such as networking, human-computer interaction, object-oriented design, internet software platforms, artificial intelligence, and e-business analysis and design.</td>
<td>HSC Mathematics Extension 1</td>
<td>Computer programmer, computer system administrator, systems analyst, software engineer</td>
</tr>
<tr>
<td>ATAR 87, IB 52, UAC 511796 3 years full time</td>
<td>Computer science, information systems, mathematics, professional technology skills, systems analysis. Electives include artificial intelligence, e-business analysis and design, graphics, human-computer interaction, internet software platforms, networking, object-oriented design and operating systems. You may also take electives from other faculties.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Engineering Honours (Aeronautical)</td>
<td>There are more than 15 engineering majors to choose from. Depending on your engineering stream, some majors may require additional study. Certain majors may also have limited capacity. The major that best aligns with this stream is Space Engineering.</td>
<td>HSC Mathematics Extension 1 and Physics</td>
<td>Employment in manufacturing and assembly, design research and certification in the airline/aerospace industry and general engineering positions</td>
</tr>
<tr>
<td>ATAR 90, IB 53, UAC 511716 4 years full time</td>
<td>This degree will provide you with a complex understanding of the design of a flight vehicle and a knowledge of aerodynamics, propulsion systems, structural design, materials, avionics, and stability and control systems. Your studies will cover the development and operation of aircraft both within the Earth's atmosphere and in space, from design and manufacture through to maintenance and operation.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Engineering Honours (Biomedical)</td>
<td>There are more than 15 engineering majors to choose from. Depending on your engineering stream, some majors may require additional study. Certain majors may also have limited capacity. The majors that best align with this stream are Chemical Engineering, Electrical Engineering, Information Technology, Mechanical Engineering and Mechatronic Engineering.</td>
<td>HSC Mathematics Extension 1, Physics and/ or Chemistry. Recommended studies: Biology</td>
<td>Clinical support specialist, instrumentation engineer, medical device assessor, patent examiner and field service engineer. Biomedical engineers design and manufacture implantable and external medical devices including orthopaedic, cardiovascular and other electronic and surgical equipment</td>
</tr>
<tr>
<td>ATAR 90, IB 53, UAC 511758 4 years full time</td>
<td>This degree covers all aspects of biomedical engineering, including technology, biology, biomechanics, biomaterials, orthopaedic engineering, tissue engineering, medical regulation, bioelectronics, medical instrumentation, and computational simulation of biomedical systems. The degree includes electives that provide opportunities for breadth and depth as well as a wide range of majors, including information technology, mechanical, mechatronic, electrical, or chemical engineering.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course description</td>
<td>Major studies</td>
<td>Assumed knowledge</td>
<td>Career possibilities</td>
</tr>
<tr>
<td>-------------------</td>
<td>--------------</td>
<td>------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>B Engineering Honours (Chemical and Biomolecular)</td>
<td>During this degree you will learn to develop creative solutions in the areas of chemical, combustion, environmental, petroleum and water engineering as well as explore how to transform raw materials into useful products using chemistry, biology and physics. Your studies will include the newer fields of nanotechnology and molecular biology, which are revolutionising energy and storage systems, food production and healthcare industries.</td>
<td>There are more than 15 engineering majors to choose from. Depending on your engineering stream, some majors may require additional study. Certain majors may also have limited capacity.</td>
<td>All sectors of the process industries from primary resource industries through to fine chemicals and sophisticated manufacturing</td>
</tr>
<tr>
<td>ATAR 90</td>
<td>IB 33</td>
<td>UAC 511735</td>
<td>4 years full time</td>
</tr>
<tr>
<td>B Engineering Honours (Civil)</td>
<td>This degree will teach you about planning, designing and testing structures within the built environment, including buildings, roads, railways, bridges, tunnels, dams and ports as well as systems for managing water and sewerage. Core units of study will enable you to master the foundations of civil engineering before specialising in your chosen major.</td>
<td>There are more than 15 engineering majors to choose from. Depending on your engineering stream, some majors may require additional study. Certain majors may also have limited capacity. The majors that best align with this stream are Construction Management, Environmental Engineering, Geotechnical Engineering, Structures and Transport Engineering.</td>
<td>Airport and harbour authorities, banks, construction and mining companies, engineering and infrastructure consultants, municipal councils, project management consultants and public works</td>
</tr>
<tr>
<td>ATAR 90</td>
<td>IB 33</td>
<td>UAC 511741</td>
<td>4 years full time</td>
</tr>
<tr>
<td>B Engineering Honours (Civil)/ B Design in Architecture</td>
<td>This combined degree offers you the opportunity to study both civil engineering and architectural design simultaneously over five years. Your engineering studies will teach you to analyse the forces within a structure and to design its skeleton to support these forces, while your architectural studies will emphasise the conceptual and aesthetic aspects of the design process.</td>
<td>Refer to B Engineering Honours (Civil) and B Design in Architecture information at sydney.edu.au/courses for details.</td>
<td>Refer to B Engineering (Civil) and B Design in Architecture information at sydney.edu.au/courses</td>
</tr>
<tr>
<td>ATAR 95</td>
<td>IB 37</td>
<td>UAC 511762</td>
<td>5 years full time</td>
</tr>
<tr>
<td>B Engineering Honours (Electrical)</td>
<td>This degree includes foundations in physics, mathematics, computer science and basic electrical engineering principles, on which further studies in electrical circuits, electronics and computer systems, signals and communications, and power and energy systems and management are based. Your studies will involve extensive computer-based problem-solving projects and aspects of modern workplace management.</td>
<td>There are more than 15 engineering majors to choose from. Depending on your engineering stream, some majors may require additional study. Certain majors may also have limited capacity. The majors that best align with this stream are Computer Engineering, Power Engineering and Telecommunications Engineering.</td>
<td>Power transmission and generating systems engineering, grid maintenance and stability contractor, industry power supply engineer, telecommunications and specialised consulting companies</td>
</tr>
<tr>
<td>ATAR 90</td>
<td>IB 33</td>
<td>UAC 511747</td>
<td>4 years full time</td>
</tr>
<tr>
<td>B Engineering Honours (Flexible First Year)</td>
<td>This program gives you the time and flexibility to discover where your strengths lie before deciding on an engineering stream. You will start your studies with core subjects and transfer at the end of first semester or at the end of first year into your stream of choice. You will still complete your engineering degree in the normal time.</td>
<td>There are more than 15 engineering majors to choose from. Information on which majors align best with the different engineering streams can be found under the Individual stream descriptions in this table. If you are commencing your studies in Flexible First Year, you can pursue a major once you have transferred to a stream.</td>
<td>Refer to individual engineering streams</td>
</tr>
<tr>
<td>ATAR 90</td>
<td>IB 33</td>
<td>UAC 511756</td>
<td>4 years full time</td>
</tr>
<tr>
<td>Course description</td>
<td>Major studies</td>
<td>Assumed knowledge</td>
<td>Career possibilities</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>---------------------</td>
</tr>
<tr>
<td>B Engineering Honours (Mechanical)</td>
<td>There are more than 15 engineering majors to choose from. Depending on your engineering stream, some majors may require additional study. Certain majors may also have limited capacity. The majors that best align with this stream are Environmental Engineering, Materials and Space Engineering.</td>
<td>HSC Mathematics Extension 1 and Physics</td>
<td>Employment in fields including automated airport facilities, automatic control systems, biomedical implant design, building industry, design of automotive underwater exploration and defense vehicles, environmental pollution control, manufacturing industry, mineral and oil exploration</td>
</tr>
<tr>
<td>ATAR 90</td>
<td>IB 33</td>
<td>UAC 511729</td>
<td>4 years full time</td>
</tr>
<tr>
<td>B Engineering Honours (Mechatronic)</td>
<td>Mechatronics combines mechanical, electronic and software engineering to create computer-controlled machines and consumer products. It is the technology that underpins robotics and autonomous systems, automated manufacturing and intelligent microprocessor-based products. This degree places strong emphasis on the development of skills in digital electronics, microprocessors, computer control, and software design in a mechanical engineering environment.</td>
<td>HSC Mathematics Extension 1 and Physics</td>
<td>Automatic control systems, product design and development, robotics and automation for advanced manufacturing, software design and development for real-time computer systems</td>
</tr>
<tr>
<td>ATAR 90</td>
<td>IB 33</td>
<td>UAC 511730</td>
<td>4 years full time</td>
</tr>
<tr>
<td>B Engineering Honours (Software)</td>
<td>This degree prepares you for a role as a software engineer, development manager, applications programmer, analyst, consultant or software innovator. You will learn all aspects of software production, from strategy and design to coding, quality and management. You will cover foundation units on which further studies in software design, development, security and management are built.</td>
<td>HSC Mathematics Extension 1 and Physics</td>
<td>Control systems, database management, information technology, internet programming, language compilers, multimedia and telecommunication software systems, real-time software engineering, reliable biomedical systems and artificial intelligence</td>
</tr>
<tr>
<td>ATAR 90</td>
<td>IB 33</td>
<td>UAC 511753</td>
<td>4 years full time</td>
</tr>
<tr>
<td>B Engineering Honours / B Arts</td>
<td>This combined degree allows you to study engineering while pursuing your interests in the humanities, social sciences or languages. You can combine any of the Bachelor of Engineering Honours streams with a Bachelor of Arts.</td>
<td>Refer to the relevant engineering stream and B Arts information at sydney.edu.au/courses</td>
<td>Refer to B Engineering Honours relevant stream and B Arts information at sydney.edu.au/courses</td>
</tr>
<tr>
<td>ATAR 90</td>
<td>IB 33</td>
<td>UAC 511760</td>
<td>5 years full time</td>
</tr>
<tr>
<td>B Engineering Honours / B Commerce</td>
<td>This combined degree program is designed to extend the management component of the Bachelor of Engineering Honours. You can combine any of the engineering streams with a Bachelor of Commerce. In addition to your engineering stream, this program allows you to complete one major and one minor in any area of commerce.</td>
<td>Refer to the relevant Engineering stream and B Commerce information at sydney.edu.au/courses</td>
<td>Refer to B Engineering Honours relevant stream and B Commerce information at sydney.edu.au/courses</td>
</tr>
</tbody>
</table>
Course description

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Major studies</th>
<th>Assumed knowledge</th>
<th>Career possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Engineering Honours/ B Laws</td>
<td>This six-year combined degree is an excellent foundation for a career in law or engineering. Your engineering studies emphasise the practical aspects of science, while your law studies focus on the interpretation and application of the legal system. You can combine any of the engineering streams with a Bachelor of Laws.</td>
<td>Refer to the B Engineering relevant stream. For Law: First year: Foundations of law, legal research I, torts. Second year: Civil and criminal procedure, contracts, criminal law. Third year: Torts and contracts II, legal research II, public international law, public law. Fourth year: Administrative law, corporations law, equity, evidence, federal constitutional law, introduction to property and commercial law, real property and the legal profession. Final year: Private international law A and seven elective units of study.</td>
<td>HSC Mathematics Extension 1, Physics and Chemistry</td>
<td>Refer to B Engineering Honours relevant stream. For Law: solicitor, barrister, magistrate, judge. Non-legal: diplomacy, foreign affairs, human rights, international relations, investment banking, journalism, management consultancy, public policy</td>
</tr>
<tr>
<td>ATAR 99.5</td>
<td>IB 43</td>
<td>UAC 511801 6 years full time</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| B Engineering Honours/ B Medical Science | This five-year combined degree links the core elements of engineering and medical science. The technology-based engineering skills you develop during your studies will be complemented by skills in medical sciences. It forms an ideal base for postgraduate research or graduate studies in medicine or dentistry. You can combine any engineering stream with a Bachelor of Medical Science. | Refer to the relevant Engineering stream and B Medical Science information at sydney.edu.au/courses | HSC Mathematics Extension 1, Physics and/or Chemistry | Refer to B Engineering Honours relevant stream and B Medical Science information at sydney.edu.au/courses |
| ATAR 90 | IB 33 | UAC 511790 5 years full time | | |

| B Engineering Honours/ B Music Studies | This five-year combined degree gives you an opportunity to pursue your interests in both the technical and artistic arenas. You will explore the synergies between the rule-based domains of music and engineering, bringing together your musical creativity with your creative thinking skills. You can combine any of the engineering streams with a Bachelor of Music Studies. | Refer to the relevant Engineering stream and B Music Studies information at sydney.edu.au/courses | HSC Mathematics Extension 1, Physics and/or Chemistry | Refer to B Engineering Honours relevant stream and B Music Studies information at sydney.edu.au/courses |
| ATAR A+C | IB A+C | UAC 511792 5 years full time | | |

| B Engineering Honours/ B Project Management | In this combined degree you will develop technical expertise in your chosen engineering stream and complementary project management skills. Along with engineering, you will study core project management subjects including project finance, complex project coordination, analytics, risk management, organisational behaviour and psychology. You can combine any engineering stream with a Bachelor of Project Management. | Refer to the relevant Engineering stream and B Project Management | HSC Mathematics Extension 1, Physics and/or Chemistry | Refer to B Engineering Honours relevant stream and B Project Management |
| ATAR 90 | IB 33 | UAC 511784 5 years full time | | |

<p>| B Engineering Honours/ B Science | This combined degree emphasises the strong scientific foundations of engineering. It will expand your career options by giving you two qualifications with just one extra year of study. In addition to your engineering stream, you will complete a major in science. You can combine any engineering stream with a Bachelor of Science. | Refer to the relevant Engineering stream and B Science information at sydney.edu.au/courses | HSC Mathematics Extension 1, Physics and/or Chemistry, Also refer to B Science | Refer to B Engineering Honours relevant stream and B Science information at sydney.edu.au/courses |
| ATAR 90 | IB 33 | UAC 511770 5 years full time | |</p>
<table>
<thead>
<tr>
<th>Course Description</th>
<th>Major Studies</th>
<th>Assumed Knowledge</th>
<th>Career Possibilities</th>
</tr>
</thead>
<tbody>
<tr>
<td>B Engineering Honours with Advanced Engineering</td>
<td>This program is open to students who demonstrate outstanding academic ability. You will undertake advanced engineering units covering topics such as sustainability and humanitarian issues, business planning and strategy, technology and education. You will also participate in small groups working on problems relevant to the community. You may take any engineering stream within this program.</td>
<td>HSC Mathematics Extension 1, Physics and/or Chemistry</td>
<td>Along with career options from your chosen stream, you have gained into business planning, strategy development and financial planning will broaden your career prospects</td>
</tr>
<tr>
<td>ATAR 97.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 59</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAC 511700 4 years full time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Engineering Honours with Space Engineering Major</td>
<td>This major is available to students undertaking aeronautical, mechanical or mechatronic engineering streams. You will study all facets of space engineering, including orbital mechanics, space vehicles, ground station infrastructure, space avionics and space robotics. This space major is the only program of its kind in Australia.</td>
<td>HSC Mathematics Extension 1 and Physics</td>
<td>Along with career options from your chosen stream, you can apply your specialised knowledge of the space environment to careers in the aerospace, defence, environmental and research sectors</td>
</tr>
<tr>
<td>ATAR 99</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IB 42</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>UAC 511734 4 years full time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Information Technology ATAR 92 IB 54</td>
<td>If you are technically minded and want to work on extending the cutting edge of information technology and business innovation, this degree is for you. You can choose one of two streams – information systems or computer science – and will enjoy flexibility within your study, emerging equipped to take advantage of the opportunities in this dynamic field.</td>
<td>HSC Mathematics Extension 1</td>
<td>Consultancy, information services management, software architecture, web development and management</td>
</tr>
<tr>
<td>UAC 511797 4 years full time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Information Technology/ B Arts ATAR 92 IB 54</td>
<td>This combined degree enables you to study IT while pursuing interests in the humanities, social sciences or languages. You can choose an IT stream in either computer science or information systems, and complete one arts major and other elective units of study from areas as diverse as linguistics, anthropology, cultural studies, or a range of languages.</td>
<td>Refer to B Information Technology and B Arts information at sydney.edu.au/courses</td>
<td>Refer to B Information Technology and B Arts information at sydney.edu.au/courses</td>
</tr>
<tr>
<td>UAC 511765 5 years full time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Information Technology/ B Commerce ATAR 95 IB 37</td>
<td>This combined degree program is designed to extend the management component of the Bachelor of Information Technology and further satisfy the increasing demand for IT professionals with business skills. You will undertake one major from the University of Sydney Business School and one of two IT streams: computer science or information systems.</td>
<td>Refer to B Information Technology and B Commerce information at sydney.edu.au/courses</td>
<td>Refer to B Information Technology and B Commerce information at sydney.edu.au/courses</td>
</tr>
<tr>
<td>UAC 511761 5 years full time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>B Information Technology/ B Laws ATAR 99.5 IB 43</td>
<td>This combined degree program provides you with an excellent foundation in both law and IT. You will be well equipped to tackle legal issues in the growing field of technology, such as privacy, data collection, copyright, censorship, contracts and patents, and understand the challenges of working in international markets.</td>
<td>Refer to B Information Technology, Units of study for Law: First year: Foundations of Law, Legal research I, torts. Second year: Civil and criminal procedure, contracts, criminal law. Third year: Torts and contracts II, legal research II, public international law, public law. Fourth year: Administrative law, corporations law, equity, evidence, federal constitutional law, introduction to property and commercial law, real property and the legal profession. Final year: Private International Law A and seven elective units of study.</td>
<td>Refer to B Information Technology. For Law: solicitor, barrister, magistrate, judge. Non-legal: diplomacy, foreign affairs, human rights, International relations, investment banking, journalism, management consultancy, public policy</td>
</tr>
<tr>
<td>UAC 511801 6 years full time</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Course description</td>
<td>Major studies</td>
<td>Assumed knowledge</td>
<td>Career possibilities</td>
</tr>
<tr>
<td>-------------------</td>
<td>---------------</td>
<td>------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>B Information Technology/ B Medical Science
ATAR 92
IB 34
UAC 511763
5 years full time</td>
<td>This five-year combined degree allows you to complement your IT skills with those from medical science, biomedicine and bioinformatics. You will choose either computer science or information systems for your IT stream while also studying foundation science followed by senior units of study in the clinical sciences.</td>
<td>Refer to B Information Technology and B Medical Science information at sydney.edu.au/courses</td>
<td>Refer to B Information Technology and B Medical Science information at sydney.edu.au/courses</td>
</tr>
<tr>
<td>This combined degree emphasises the natural synergy between science and technology. In your IT studies you can pursue either computer science or information systems subjects, while also completing core units in selected science areas such as mathematics, physics, biology, chemistry, geography or psychology.</td>
<td>Refer to B Information Technology and B Science information at sydney.edu.au/courses</td>
<td>HSC Mathematics Extension 1</td>
<td>Refer to B Information Technology and B Science information at sydney.edu.au/courses</td>
</tr>
<tr>
<td>B Project Management
ATAR 86
IB 31
UAC 511765
3 years full time</td>
<td>The Bachelor of Project Management is unlike any other project management degree in Australia and will provide you with the fundamental project management skills, theories and methods required in today’s complex business environment. Subjects include project finance, statistics, analytics, risk management, organisational behaviour and psychology. You can choose a stream from civil engineering science, built environment or software.</td>
<td>HSC Mathematics Extension 1</td>
<td>Professional and management roles in property development, construction, mining, IT, banking and finance, state or federal government or in consultancy roles in engineering, water health or energy sectors</td>
</tr>
<tr>
<td>Built environment stream, civil engineering science stream or software stream. Core subjects include analytics, complex project co-ordination, organisational behaviour, project finance, project management, psychology, risk management and statistics. You will undertake a capstone project in the final year. Built environment stream units and the capstone project are within the Faculty of Architecture, Design and Planning.</td>
<td>Built environment stream, civil engineering science stream or software stream. Core subjects include analytics, complex project co-ordination, organisational behaviour, project finance, project management, psychology, risk management and statistics. You will undertake a capstone project in the final year. Built environment stream units and the capstone project are within the Faculty of Architecture, Design and Planning.</td>
<td>Refer to B Project Management and B Science information at sydney.edu.au/courses</td>
<td>Refer to B Project Management and B Science information at sydney.edu.au/courses</td>
</tr>
<tr>
<td>B Project Management/ B Arts
ATAR 86
IB 31
UAC 511783
5 years full time</td>
<td>This five-year combined degree will provide you with fundamental practical and behavioural project management skills and allows you to explore your arts and humanities interests and passions. It offers the broad flexibility of an arts degree along with project management methodologies and competencies, giving you valuable skills that enhance your career opportunities.</td>
<td>HSC Mathematics Extension 1</td>
<td>Refer to B Project Management and B Arts Information at sydney.edu.au/courses</td>
</tr>
</tbody>
</table>

Refer to B Information Technology and B Science information at sydney.edu.au/courses
Admissions

How to apply

Step 1: Choose your course
- sydney.edu.au/courses

Step 2: Check the entry requirements of the course
Admission to the University of Sydney is highly competitive. You need to meet specific academic requirements before we can make an unconditional offer of admission.

For engineering, IT and project management, entry is based on your ATAR (Australian Tertiary Admission Rank) or equivalent.

Step 3: Explore your entry options
If you’re a domestic student and not sure you’ll reach the ATAR cut-off for your preferred course, find out if you’re eligible to apply for Flexible Entry or one of our other alternative entry pathways.
- sydney.edu.au/engineering/futurestudent/flexibleentry
- sydney.edu.au/access

Step 4: Submit your application with the relevant documents
Domestic students need to submit their application online through the Universities Admissions Centre (UAC) website:
- www.uac.edu.au

You will also need to submit your application through UAC if you are an international student completing:
- a current Australian Year 12 secondary school examination
- a current International Baccalaureate diploma in Australia or New Zealand, or
- a current New Zealand Certificate of Educational Achievement Level 3 qualification.

All other international applicants need to apply directly to the University using the ‘Apply Now’ button on the page for your chosen course at:
- sydney.edu.au/courses

Key dates

August 2016
The best way to get a feel for the campus is to visit us on Open Day, on Saturday 27 August 2016. Explore the campus, enjoy the atmosphere, and learn more about our courses and facilities by attending mini-lectures, activities and tours.
- sydney.edu.au/open-day

September 2016
- Submit your application to UAC no later than 30 September.
- Scholarship applications open.

January 2017
- Attend Info Day, usually held in the first week of January.
- Finalise your Main Round UAC preferences no later than the first week of January.
- Accept your Main Round UAC offer within one week of receiving it (to avoid losing your place).

February 2017
- You may receive UAC offers following the main round if you submitted your application late, or did not receive an offer in the main round, and your preferred course is not already full.
- Attend Orientation in the week before semester starts.

March 2017
Semester 1 begins.
Join us for Open Day

Saturday 27 August 2016

sydney.edu.au/open-day
One more thing to consider

Your journey to university is as unique as you are.

At the University of Sydney, you have the opportunity to develop your expertise and help make a positive and lasting contribution to society.

This guide provides the key information you need to apply for a degree in engineering, information technologies or project management. The next step is up to you.

sydney.edu.au/engineering