“I chose Sydney for its fantastic reputation in computer science and IT research and teaching. With support from the University of Sydney Union and the University I co-founded Incubate, a program that helps foster entrepreneurial students and get their start-up businesses off the ground – it’s the first of its kind in the Asia Pacific.”

JAMES ALEXANDER
COMPUTER SCIENCE
HONOURS STUDENT
AND CO-FOUNDER OF INCUBATE

READ THE FULL STORY
CONTENTS

<table>
<thead>
<tr>
<th>THE SYDNEY ADVANTAGE</th>
<th>AREAS OF STUDY</th>
</tr>
</thead>
<tbody>
<tr>
<td>2 Welcome</td>
<td>20 Flexible first-year program</td>
</tr>
<tr>
<td>3 Create, innovate and lead</td>
<td>22 Aeronautical</td>
</tr>
<tr>
<td>4 Exciting opportunities</td>
<td>23 Mechanical</td>
</tr>
<tr>
<td>6 Experts in their fields</td>
<td>25 Mechatronic</td>
</tr>
<tr>
<td>8 Student environment</td>
<td>26 Space</td>
</tr>
<tr>
<td>10 Hands-on opportunities</td>
<td>27 Biomedical</td>
</tr>
<tr>
<td>12 International opportunities</td>
<td>28 Chemical and biomolecular</td>
</tr>
<tr>
<td>14 Supporting your studies</td>
<td>30 Civil</td>
</tr>
<tr>
<td>16 Get a head start</td>
<td>31 Construction management</td>
</tr>
<tr>
<td>18 Assumed knowledge</td>
<td>32 Environmental</td>
</tr>
<tr>
<td>19 Flexible entry</td>
<td>33 Geotechnical</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUR ONLINE RESOURCES</th>
</tr>
</thead>
</table>

Don’t forget to check out the videos on our website: sydney.edu.au/engineering

And you can connect with us through social media:

- youtube.com/uniofsydney
- [@Eng_IT_Sydney](https://twitter.com/Eng_IT_Sydney)

Cover: A mechanical engineering student operates a high-repetition rate YAG-pumped dye laser, used to measure the evolution of reactive species in flames of gaseous or liquid fuels.
WELCOME

PROFESSOR ARCHIE JOHNSTON, DEAN
As one of the top 50 engineering and technology universities in the world*, our graduates have the ability to lead and shape the future. When you study with us, you’ll develop your skills of analysis and invention so you can effectively design, create and build structures, systems and products that improve people’s lives.

Our diverse degree options cover aeronautical, space, mechanical, mechatronic, biomedical, chemical and biomolecular, civil, electrical, power and software engineering along with information technology, computer science and project management. You can also choose to broaden your career options by combining your degree with studies in architecture, arts, commerce, law, medical science or science.

The extracurricular activities you’ll enjoy as a student, together with the opportunities for internships, international exchange and to work on industry-sponsored projects, offer you the kinds of different experiences that employers really value.

I’d encourage you to consider our new Engineering Leadership Scholarships – considered some of the most valuable engineering undergraduate scholarships offered in Australia. Recipients receive professional experience, leadership development and access to industry and academic mentors, giving them a distinct advantage upon graduation. So come and join us, a faculty that inspires, challenges and supports tomorrow’s leaders.

*Source: QS World University Rankings by Faculty 2014 – Engineering and Technology and 2014-15 Times Higher Education World University Rankings by Subject – Engineering and Technology

HARRY SMITH, 2014 PRESIDENT, SYDNEY UNIVERSITY ENGINEERING UNDERGRADUATE ASSOCIATION
Student societies play an invaluable role in enriching your university experience. Through our clubs and societies you will have opportunity to escape from your textbooks with a wide range of exciting, creative and social activities with like-minded individuals. You can build lifelong friendships, as well as professional networks that can help open doors for you later in life. You can also gain real-world experience that employers covet. In my final year of study I find myself consistently drawing on my experience as a society executive to demonstrate leadership, teamwork and organisational skills.

The Sydney University Engineering Undergraduate Association helps students professionally, academically and socially. It acts as a conduit between students, the faculty and industry. We aim to enhance your quality of life through involvement in interfaculty sport, regular BBQs and social events such as our end-of-year ball.

Between our association and more than 10 other engineering societies, there will be something fun for you to do week in, week out. We’re at Orientation Week and around the engineering lawns during semester, so come and introduce yourself and join one of the most popular student organisations on campus.

As President, I hope to build on the success of past presidents and continue to nurture a friendly, inviting and rewarding environment for all students.
“Engineering is an incredibly flexible degree. It teaches you how to think critically and solve problems – skills that can be applied across a variety of disciplines to create solutions to the challenges facing the world today, and to help shape the world of tomorrow. I think it’s an excellent foundation for a diverse range of pursuits.”

DEREK MULLER
ENGINEER, TV PRESENTER AND CREATOR OF YOUTUBE CHANNEL VERITASUIM

CREATE, INNOVATE AND LEAD

Engineers, project managers and information technology professionals develop innovative, creative and sustainable solutions that promote positive change worldwide.

We encourage our students to take risks, break down traditional disciplinary barriers and work collaboratively to develop truly holistic solutions to today’s big issues, such as health and ageing, disease outbreak management, sustainable energy production and climate change.

You’ll have plenty of opportunities to take part in extra-curricular activities too, like participating in team competitions, joining one of our many student societies or travelling overseas on an exchange.

We know that employers want well-rounded individuals who embrace all the opportunities and challenges that come their way. That’s why we work with hundreds of organisations to support you through leadership development programs, scholarships, international exchange, vacation work and industry sponsored projects.

We’ll also get you thinking about life after university from your first year of study, with targeted careers fairs and workshops, guest lecturers and one-on-one careers counselling.

And you’ll graduate with qualifications that are recognised worldwide. Our engineering degrees are accredited by Engineers Australia and our Bachelor of Engineering (Chemical and Biomolecular) is also accredited by IChemE. Our IT degrees are accredited by the Australian Computer Society.
EXCITING OPPORTUNITIES

Would you like to engineer creative, practical solutions that can improve people’s quality of life on a local or global scale?

As part of our student community you’ll have the opportunity to get involved in any number of exciting projects or invent creative solutions, like the BlueClover mobile app that helps people with diabetes to manage their condition, or a floating road for flood-prone regions of Bangladesh.

And when you graduate your options will be endless – like award-winning biomedical engineering alumnus and philanthropist Pratik Gidwani.

PRATIK GIDWANI EXECUTIVE AND ALUMNUS

A recent biomedical engineering graduate, 25-year-old Pratik Gidwani is already making a significant contribution to his field through roles with Stryker, Bain & Company, Biometric, the Victor Chang Cardiac Research Institute and Engineers without Borders.

Having already demonstrated exemplary leadership qualities as an executive member of the Sydney University Association of Biomedical Engineers, Pratik went on to become the faculty’s first biomedical engineering graduate to be offered a role at a multinational medical device company, St Jude Medical. There, he played an integral role in establishing an internship program targeting the University’s biomedical engineering students.

Leading by example, he became the University’s first student donor/philanthropist and continues to encourage a culture of giving among students. In 2013 Pratik initiated a support program involving alumni giving and mentoring, led by the association.

Pratik was recognised for his academic, professional and leadership achievements when he received the faculty’s 2013 Young Alumni Award.
BANGLADESH ROAD
A CREATIVE SOLUTION TO AN EXPENSIVE PROBLEM
From Bangalow to Bangladesh the work of civil
engineering honours undergraduates Daniel Brand and
Christian Zimmerman could change the way we think
about engineering roads in flood-prone regions.
Road flooding costs Australia about $3.14 billion a
year and in developing countries the impact can be
substantially greater. Christian and Daniel rose to the
challenge by developing floating road technology— an
innovative solution with the potential to save millions of
dollars in infrastructure costs and improve the quality of
life for people all over the world.

“Without doubt engineering is the best
undergraduate degree – it fosters the
ability to think outside the box when
approaching problems, a skill that is easily
transferable in a rapidly changing world.”

DANIEL BRAND

BLUE CLOVER
IMPROVING THE QUALITY OF LIFE FOR PEOPLE
WITH DIABETES
Managing diabetes will soon be a little
easier thanks to BlueClover, a mobile
app designed by University of Sydney
information technologies students
Andrew Chen, Donald Zhang and
Robin Huan.

The students won the 2013 Microsoft
Asian Cup for their work and were
invited to showcase the app at the
2013 Board of Governors of the Asian
Development Bank Forum in India.

BlueClover automates the constant
monitoring of food intake, insulin and
glucose levels people with diabetes
need to maintain. The easy-to-use app
will replace tedious manual logbook
procedures with a convenient, effective
tool to record the information needed
to effectively manage their condition.

BlueClover also includes object
recognition and barcode scanning,
so users can easily scan barcodes or
products instead of having to manually
enter information.

It also provides reminders to record
food intake and exercise, which
improves accuracy of reporting.

The team is hoping to commercialise
BlueClover in the near future.

WATCH THE VIDEO
EXPERTS IN THEIR FIELDS

The outstanding calibre of our academic staff means we consistently rank among the top research universities in the world. As a student, you’ll be taught by some of these leading researchers, and in some cases you’ll have the chance to contribute to their work.

View our experts’ profiles online at: sydney.edu.au/engineering/ourpeople

“My research aims to lead to the development of new, low-cost devices for home health care to improve diagnosis and treatment. Understanding the influence of the electrical properties of the body can enable us to learn more about neural and cell signalling, leading to better design of electronic implants and ultimately a better understanding of how the brain works.”

DR ALISTAIR McEWAN
SENIOR LECTURER IN ELECTRICAL AND INFORMATION ENGINEERING, MICROSOFT RESEARCH FACULTY FELLOW

“My work focuses on marine robotics, with an autonomous underwater vehicle that can create three-dimensional models of the seafloor using software systems and algorithms we developed. My team has been invited by organisations across the globe to help assess changes in marine habitats and to document previously unexplored environments. This has led to opportunities to survey maritime archaeological sites, including submerged cities and ancient shipwrecks.”

PROFESSOR STEFAN WILLIAMS
LECTURER IN EXPERIMENTAL ROBOTICS
“Our research has resulted in developing a fermentation process that led to producing an oil rich in vitamin K, with greater bioavailability. This oil can be used in the formulation of food products to reduce the risk of osteoporotic fractures and cardiovascular disease.”

PROFESSOR FARIBA DEHGHANI AND DR JOHN KAVANAGH
LECTURERS IN BIOCHEMICAL ENGINEERING

“Computer systems that understand natural languages are revolutionising the way we interact with modern technology. I’m excited to be able to share my expertise in computational linguistics with undergraduates and inspire high school students to pursue a career in programming through the National Computer Science School.”

ASSOCIATE PROFESSOR JAMES CURRAN
DIRECTOR, NATIONAL COMPUTER SCIENCE SCHOOL

James Curran has won several university teaching awards and was recently included as one of Sydney’s 100 most influential people, published in the Sydney Morning Herald’s the (sydney) magazine.

The National Computer Science School program is run by the University and NICTA.
STUDENT ENVIRONMENT

Our labs, teaching spaces and learning hubs are designed to help you get the most out of your learning experience. They incorporate state-of-the-art technology and equipment and allow interactive study, research and collaboration.

For example, our Learning Studio (right) in the PNR Building was awarded ‘Best Application of AV in Education’ for pushing the boundaries of innovation in an educational environment.

Our newly refurbished PNR Learning Hub (below) is a student-centric learning space, characterised by small group work pods and open-plan learning spaces that tap into the latest technology.
Our state-of-the-art facilities also include:

Computing and audio research lab (opposite page, bottom) designed for analysing all aspects of the spatial perception of sound.

Combustion lab (top) with advanced laser diagnostic equipment.

The newly refurbished Electrical Engineering Lab 265 (centre) is equipped with the latest in electronics test equipment.

Fluid lab (right) with advanced thermo-flow measuring apparatus.
Our students have a thirst for knowledge and a passion for challenging conventional thinking. We ask you to reach beyond our campus to think through issues that affect the wider world.

You may spend part of your degree overseas, or you may choose to work with local communities, either as part of your course or in your own time as a volunteer with one of our outreach programs, such as Engineers Without Borders.

You may like to become a student mentor, tutor or ambassador. Ambassadors let young people know about the possibilities in higher education, promoting the University both on and off campus.

Depending on which course you choose, you could work on exciting projects like building a lunar mining robot, developing ventilation solutions to help rural communities in Vietnam or designing and constructing a race car. However you choose to get involved, you’ll be doing it within a group of students who are all interested in making a genuine difference within our own community and beyond.
ADVANCED ENGINEERING AND TALENTED IT STUDENT PROGRAMS
We offer these programs to students with outstanding academic ability. They can work at an advanced level in science, engineering and IT subjects or in a small supervised project group tackling a specific engineering problem relevant to the modern community.

sydney.edu.au/engineering/advancedengineering

SYDNEY LUNABOTICS TEAM
Sydney Lunabotics is the first Australian entry in the NASA Lunabotics Mining Competition. The competition was open to teams from the US and around the world, and aimed to further the development of space exploration technology. Teams overcome challenges in mechanics, power, guidance, telemetry and control systems to develop a robotic excavator that can operate remotely in the harsh lunar environment.

In 2013 the team travelled to the Kennedy Space Center in Florida, USA to compete in the NASA Lunarena, the largest simulated moon environment in the world. Sydney Lunabotics took out seventh place in the on-site mining component of the competition, making them the highest ranked international team and achieving the highest rank for any first-time competitor.

FORMULA SOCIETY OF AUTOMOTIVE ENGINEERS (FSAE)
Formula SAE is a student engineering competition where teams design, construct and race a small open-wheeled racing car at an annual event held by the Society of Automotive Engineers Australasia. Our FSAE team consists of undergraduate students who design and develop new ideas for use in later years, as well as vital components for the current year’s car.

www.sydneymotorsport.com.au

STUDENT SOCIETIES
We offer a wide variety of engineering, IT and project-management student-run clubs and societies. They provide study and leisure facilities as well as run regular events and networking opportunities. Whichever course you choose to study, there’ll be a related society for you to join, where you will find plenty of people who share your interests and can introduce you to new ones.

Find out more about the 200-plus clubs and societies on campus at www.usu.edu.au/Clubs-Societies.aspx
INTERNATIONAL OPPORTUNITIES

Participating in the Study Abroad and Student Exchange programs is an exciting and challenging way of broadening your horizons.

You can:
- internationalise your engineering and IT educational experience
- study and learn in a new environment with different perspectives
- establish professional and career opportunities through networking
- gain a broader view of the world and of Australia
- improve language skills and cultural understanding
- experience personal growth by developing self confidence and social skills.

The International Exchange Program enables you to undertake approved overseas study, with the credit achieved counting towards your degree at the University of Sydney.

You can study at one of the following faculty exchange partners or with almost 260 exchange partners in 30 countries. There is sure to be a program that will suit your academic and personal interests:
- Louisiana State University, USA Engineering (faculty-wide)
- Imperial College London, United Kingdom Engineering (Chemical, Mechanical)
- KTH Royal Institute of Technology, Sweden Engineering (Aeronautical, Chemical)
- Korea Advanced Institute of Science and Technology, Korea Engineering (Aeronautical)
- University of Tokyo, Japan Engineering (faculty-wide)
- Institut National Polytechnique de Toulouse (INP) France Engineering (Electrical, Chemical).

For more information visit sydney.edu.au/studentexchange

“Completing my industry placement in Singapore has added a new dimension to the overall university experience. The awareness of what working as a biomedical engineer encompasses is now clear and is truly a thing to look forward to.”

LAYALE HARBO
BACHELOR OF ENGINEERING
DANISH EXCHANGE

Four University of Sydney architecture and engineering students were recently accepted into ‘MADE by the Opera House’, a student exchange program between Australia and Denmark.

A collaboration between the Sydney Opera House and the Royal Danish Academy of Fine Arts, this program gives students the opportunity to advance their skills in the design capital of the world. Working with internationally renowned Henning Larsen Architects, they will gain invaluable insights and experience collaborating on real-world multidisciplinary projects.

Inspired by her fascination with the possibilities of form through integrated structural knowledge, exchange participant Laura Craft studied a combined architecture and civil engineering degree. Being part of MADE by the Opera House gives her a unique opportunity to integrate both disciplines in a practical setting.

VENTILATING VIETNAM

An innovative ventilation program designed by University of Sydney advanced engineering students is being trialled by Engineers without Borders (EWB) and Habitat for Humanity in Vietnam.

The students’ program won the 2012 cross-Tasman Engineers without Borders Engineering Challenge with a practical, cost-effective solution based on three simple components – wooden louvered windows, activated carbon-based dehumidifiers, and a solar chimney for year-round airflow. It can be implemented for only $20 per home.

The team consisting of Gordon Liang, John Mai, Rebecca Tan, Chantelle Thistleton, Warren Dang and Sammy Cheung and mentor honours student Catherine Goonan built scale prototypes of each component then tested their models in a wind tunnel. The EWB engineering challenge is a key component of the Advanced Engineering Program and focuses on developing simple, affordable solutions for cross-cultural development projects.

“I was one of the first students to graduate from a combined architecture and engineering degree in 2013. The Denmark exchange will be an incredible start to my full-time career.”

LAURA CRAFT
BACHELOR OF ENGINEERING/ BACHELOR OF DESIGN IN ARCHITECTURE

READ THE FULL STORY
If you come to study at Sydney, there’s plenty of support once you get here. We offer financial and academic support, industry experience and leadership development while you study.

SCHOLARSHIPS
We want to be a key part of your personal success story and scholarships are just one way the University of Sydney can support your achievements. Scholarships can give you the financial freedom to focus on your study. At undergraduate level, we offer a number of faculty scholarships, including our new Engineering Leadership Scholarship.

Scholarship opportunities are always being updated so visit our website to see what’s on offer at sydney.edu.au/engineering/scholarships

You should also visit sydney.edu.au/scholarships to take a look at other University scholarships that might be available to you and download the University’s guide to scholarships for new undergraduate students.

If you need help later on, the University offers bursaries, interest-free loans and emergency financial help, which you can apply for at any time during your studies.

ACADEMIC SUPPORT
Services such as the University Library, the Learning Centre and the Mathematics Learning Centre offer workshops, study materials and other support to help you develop the skills you’ll need for successful university study.

At our Summer and Winter Schools, you can take intensive versions of full-fee award subjects during the summer and winter breaks. This can help you to speed up the time it takes to complete your degree, repeat units of study or reduce your normal semester workload.

Our mentoring program pairs you with current students to help you with the transition from school to university.

We also offer bridging courses if you need to get up to speed for university study in areas such as mathematics and science (see page 18).

ACCOMMODATION
Choosing where to live may be one of the biggest decisions you’ll make when starting at university, but plenty of help is available.

The University’s Student Accommodation Services website gives you advice on how to decide where to live, budgeting, public transport options and costs, as well as tips to ensure that you are aware of all your rights and responsibilities when renting.

sydney.edu.au/accommodation

SUPPORT FOR INTERNATIONAL STUDENTS
The University provides a number of services specifically for international students. Our International Services team provides advice and assistance relating to academic programs for international students, as well as administrative services including application, admission, fee payment and enrolment services.

sydney.edu.au/internationaloffice

ENGINEERING LEADERSHIP SCHOLARSHIPS
If you are looking for an accelerated pathway to developing your leadership capability, while also extending your academic ability during your degree, then our engineering leadership scholarship is for you.

This scholarship is one of the most valuable engineering undergraduate scholarships offered in Australia in terms of financial support and leadership development. It provides:

– an annual structured professional experience placement with leading firms – so you can graduate with business and leadership skills without extending your degree

– leadership insights from working with Design Researcher, Professor Andy Dong, who is the Warren Centre’s Chair in Engineering Innovation, and the John Grill Centre for Project Leadership

– direct access to an industry mentor

– access to a valuable network, with regular interaction with alumni, government and industry leaders

– online networking and support forums

– an annual stipend of $18,000 (tax free) to support you through your degree.

MORE INFORMATION
Please contact us if you would like to speak with an adviser.

Within Australia
T 1800 SYD UNI (1800 793 864)
sydney.edu.au/ask-domestic

Outside Australia
T + 61 2 8647 1444
sydney.edu.au/ask-international
“I am excited to be one of the first Engineering Leadership Scholarship recipients. It gives me the best possible opportunity to develop my leadership capability and gain a more thorough understanding of the engineering industry. The professional experience and insights I will gain from my industry and academic mentors will give me a distinct advantage upon graduation.”

YANNICK DE SILVA
BACHELOR OF ENGINEERING (AERONAUTICAL)/BACHELOR OF COMMERCE
It’s never too early to start thinking about your university studies.

There are a number of programs, workshops and activities that you can participate in to get a head start.

NCSS
The National Computer Science School (NCSS) is an intensive week-long computer programming and website development summer school for students going into Years 11 and 12. NCSS is about challenging you to think like a computer scientist and giving you an intensive programming experience in a university setting. As part of the program you will go on site visits and meet industry professionals.

NCSS is run by the University and Australia’s information technology research centre of excellence, NICTA, with strong support from both industry and government.

NCSS CHALLENGE
The NCSS Challenge is a five-week competition giving high-school students an opportunity to learn and experience computer programming.

The challenge is designed to cater for beginners, intermediate and advanced students – we will teach you how to program as you compete, rather than expecting you to be a coder already. However, if you are a seasoned coder, we have something for you too: advanced streams with problems ranging from the relatively simple through to the mind-bendingly hard.

GIRLS’ PROGRAMMING NETWORK
Do you want to improve your programming skills and meet other girls who are interested in IT too? The Girls’ Programming Network is an extracurricular program run by girls, for girls.

The program is a one-day workshop, in which participants will develop their own games, learn about digital media, sound, image and video manipulation and even create smartphone applications. The tutors are a mix of University IT students and professional software engineers from companies such as Google and Atlassian.

www.ncss.edu.au/gpn14

INTERACTIVE WORKSHOPS
Throughout the year, we invite high school students on campus to experience what it’s like to study engineering, project management and information technologies.

You can participate in fun, interactive workshops, tour our facilities and talk to our current students about study options and life at Sydney. During the workshops you might create your own avatar, build a signal railway, race in a fuel cell car challenge or participate in a desert-island scenario.

Our student ambassadors can also come to your school and run tailored activities with you and your classmates. For more information about campus or school visits, speak with your careers adviser.

SUMMER AND WINTER SCHOOLS
We partner with organisations throughout the year to deliver summer school programs for high school students interested in finding out more about engineering.

These programs include on-campus workshops and site visits to leading companies where you can see engineers in action on major project sites. You will be mentored by university students, engage in hands-on activities and learn about careers in engineering.

We partner with Engineers Australia for their Summer School program as well as with Engineering Aid Australia to deliver the annual Indigenous Australian Engineering Summer School (IAESS).

To find out how to apply for the 2015 IAESS visit: sydney.edu.au/engineering/iaess
We assume you have a minimum level of knowledge in certain subjects when you start a particular course. This assumed knowledge is not required for admission, but it will help you to understand and succeed in your studies. If you don’t have the assumed knowledge you might find it difficult to keep up, as your lecturers will expect that you already have this knowledge.

The following HSC subjects are assumed knowledge for our bachelor degrees. Refer to the table on pages 46–47 for assumed knowledge by course.

Engineering degrees
- HSC Mathematics Extension 1
- Physics and/or Chemistry

Information Technologies degrees
- HSC Mathematics Extension 1

Combined Engineering and Information Technologies degrees
- HSC Mathematics Extension 1
- Physics and/or Chemistry

Project Management degree
- HSC Mathematics Extension 1

If you are missing this background knowledge for the degree you’re interested in, you can complete a bridging course to bring you up to speed. The following bridging courses are held in February each year, just before the beginning of Semester One:
- Chemistry
- Mathematics
- Physics.

For more information, visit: sydney.edu.au/ug-bridging

ENTRY REQUIREMENTS
Entry scores vary from year to year. The ATARs referred to in this guide are those you would have needed to enter a particular course in 2014. You can use them as a guide to what scores might be required for entry in 2015.
FLEXIBLE ENTRY

At Sydney we want to attract the most promising students, whatever your background.

Our Flexible Entry Scheme looks at the whole you, not just your ATAR.

If you are completing Year 12 or an equivalent and are taking subjects relevant to your degree of interest, you may be eligible for our Flexible Entry Scheme. This scheme gives you the chance to receive an offer for a course if you achieve an ATAR that falls within five points of the published ranking.

There are two ways in which we assess your suitability for entry to our courses.

1. You are automatically assessed based on your performance in the HSC or equivalent subjects relevant to your chosen course
2. Beyond your academic achievements, leadership qualities will also be taken into consideration. You need to submit an online application outlining your leadership accomplishments at school or in the wider community. To support the application you can also supply documentary evidence of awards or other recognition you have received.

We then make an adjustment of up to five ATAR points for your chosen course*.

Flexible Entry is only available to domestic, recent school leaver applicants and does not apply to the combined degrees with commerce, law, medical science or design in architecture.

To find out more about flexible entry visit: sydney.edu.au/engineering/futurestudent/flexibleentry

We offer a number of other alternative entry pathways for Year 12 students. You may be eligible for more than one scheme. For more information visit: sydney.edu.au/access

*subject to course capacity
FLEXIBLE FIRST-YEAR PROGRAM

So you’re not sure in which area to specialise? Our Flexible First Year program gives you the time and freedom to discover where your strengths and interests lie before deciding where you’d like to specialise.

You can start your engineering or IT degree with the Flexible First Year program and then transfer, either at the end of your first semester or at the end of your first year, to one of the many specialisations we offer. You will still complete your degree in the normal time and be a fully qualified graduate in the area of your choice, with the required in-depth knowledge.

You may also be able to transfer to a stream requiring a higher ATAR in your second year, depending on your ATAR and your academic performance in your first year. Generally, you’ll need a credit average (65 percent) for streams requiring an ATAR in the low 90s, and a distinction average (75 percent) for those requiring an ATAR in the high 90s. But if you’ve already achieved the required ATAR for the stream you want to enter, then entry is assured.

If you are thinking of applying for a combined degree (see pages 42–44) you can choose to do the Flexible First Year program as the engineering component of the combined degree.

Make sure you apply for the appropriate combined degree via the Universities Admissions Centre (UAC).

Application for the Flexible First Year program is through UAC as usual. All the relevant information is available in the current UAC guide.

sydney.edu.au/engineering/futurestudent/flexiblefirstyear

When you enrol, you will need to choose between two streams:

Stream A: Aeronautical, Biomedical, Chemical and Biomolecular, Civil, Mechanical, Aeronautical (Space) or Mechanical (Space) Engineering.

Stream B: Biomedical, Electrical, Electrical (Computer), Electrical (Power), Electrical (Telecommunications), Mechatronics, Mechatronics (Space), Software Engineering, Computer Science and Technology or Information Technology.

Refer to page 18 for assumed knowledge.

BACHELOR OF ENGINEERING HONOURS (FLEXIBLE FIRST YEAR)

<table>
<thead>
<tr>
<th>ATAR</th>
<th>86.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511756</td>
</tr>
</tbody>
</table>
“I did Flexible First Year and I’d really suggest this to anyone who wants to do engineering. It gives you the opportunity to try out different types of engineering then make a decision.”

KATE MCDONELL
PhD (CIVIL ENGINEERING)
AERONAUTICAL

Aeronautical engineering focuses on the development and operation of aircraft – from design and manufacture to maintenance and operation – both within the Earth’s atmosphere and in space.

YOUR STUDIES
This four-year degree program covers all aspects of aeronautical engineering, including:
- aerodynamics
- propulsion
- mechanics of flight and flight control systems
- aircraft structure and materials
- aircraft design
- aerospace technologies
- remotely piloted aircraft (RPA) and autonomous unpioloted aerial vehicles (UAVs)
- multidisciplinary design optimisation
- the movement of air around an aircraft, analysed by using computational fluid dynamics and wind tunnel testing
- the latest software packages used by professional engineers in modern aircraft.

A final-year major thesis offers you an opportunity to specialise in a particular field, such as helicopter design, structural optimisation or experimental aerodynamics.

There is a strong emphasis on hands-on learning throughout the degree program, including elementary flying experience.

YOUR CAREER
Aeronautical engineering is an international industry, so graduates of this degree have a wide choice of career opportunities and can practise in almost any country. The majority of our graduates find full-time employment within four months of graduation.

You’ll also be well equipped to work in a variety of other areas, including:
- aerospace technologies
- navigation systems
- low-speed aerodynamics, such as automobile design
- structural analysis
- control of machines
- engineering design
- computer operation and software engineering
- communication.

You can expect to be employed in aerospace manufacturing and assembly, design, research or certification positions in Australia or overseas. With initiative, you could go on to a senior management position and become a future leader in this discipline.

BACHELOR OF ENGINEERING HONOURS (AERONAUTICAL)

<table>
<thead>
<tr>
<th>ATAR</th>
<th>90.85</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511716</td>
</tr>
<tr>
<td>Duration</td>
<td>4 years</td>
</tr>
</tbody>
</table>
Mechanical engineering is a broad branch of professional engineering, and mechanical engineers are found in almost every type of engineering activity, from design through to development and construction.

YOUR STUDIES
This four-year degree program covers all aspects of mechanical engineering, including:
- power generation
- transport
- building services
- machinery
- manufacturing
- computer-aided design (CAD)
- advanced materials
- environmental studies.
Your studies can include extensive computer use in advanced areas such as finite element analysis and computational fluid dynamics.
You’ll have plenty of opportunities to make contacts from industry and for professional practice. You can choose to specialise in the final year of the course by selecting from a range of electives in areas such as renewable energy, power station design, advanced materials, advanced design and many others.

YOUR CAREER
As a mechanical engineer you’ll be involved in the design, management and maintenance of a diverse range of mechanical processes, including:
- energy systems
- logistics and transport
- environmental systems
- computing
- biomedical systems
- advanced materials
- management
- manufacturing
- oil and gas exploration
- vehicle and engine design.
The great diversity of applications for mechanical engineers means you’ll be highly sought after in both commercial and industrial fields, so you’ll have a huge range of career options to choose from.

BACHELOR OF ENGINEERING HONOURS (MECHANICAL)

<table>
<thead>
<tr>
<th>ATAR</th>
<th>91.05</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511729</td>
</tr>
<tr>
<td>Duration</td>
<td>4 years</td>
</tr>
</tbody>
</table>
“In high school I realised that I wanted to pursue a career in engineering, given my attraction to problem solving. During my degree, I undertook an internship and then an industry placement scholarship with Qantas. After graduation, they offered me a position as an aircraft performance analyst.”
MECHATRONIC

Mechatronic engineering is a multidisciplinary engineering field that provides the foundation for robotics, automation and the ‘intelligent’ products and devices that are ubiquitous in today’s society.

It draws on elements of mechanical engineering, electrical and electronic engineering, systems engineering and computer science.

BACHELOR OF ENGINEERING HONOURS (MECHATRONIC)

<table>
<thead>
<tr>
<th>ATAR</th>
<th>91.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511730</td>
</tr>
<tr>
<td>Duration</td>
<td>4 years</td>
</tr>
</tbody>
</table>

This course focuses particularly on developing your skills in digital electronics, microprocessors, computer control, software engineering and systems design within the context of mechanical engineering.

YOUR STUDIES

This degree integrates mechanical engineering, electrical engineering and mechatronic systems analysis and design over four years of study. The course covers all aspects of mechatronic engineering including:

- mechanism and machine analysis and design
- electrical circuit theory and electronics
- digital electronics and computer systems
- power electronics and electrical machines
- software engineering
- systems modelling and simulation
- mechatronic systems analysis, design and prototyping
- embedded and real-time systems
- computer-aided design (CAD)
- engineering materials properties and selection
- manufacturing engineering
- robotic systems and science
- thermo-fluid engineering
- biomedical engineering.

YOUR CAREER

Mechatronic engineers use their skills in a diverse range of industries including automotive and other transport sectors, mining, stevedoring, construction, agriculture, defence, computer systems and software design. As a mechatronic engineer you will find work in areas related to mechanical, electrical or software engineering, such as:

- automatic control systems
- microprocessors and embedded systems
- product design and development
- instrumentation
- robotics
- automation in industrial or non-traditional fields
- biomedical devices
- computing and networking
- manufacturing
- software design and programming
- technological systems analysis.
Combining key areas including orbital mechanics, space vehicles, ground station infrastructure, space avionics and space robotics, the space engineering specialisation at the University of Sydney is the only degree of its kind offered in Australia.

YOUR STUDIES
Space is a specialisation offered in the aeronautical, mechanical and mechatronic degree programs. It allows you to study all facets of space engineering, including:
- the fundamentals of engineering and how they relate to the space environment
- how materials are used in the space environment
- orbital mechanics
- satellite systems engineering
- structural analysis, design and manufacturing of space vehicle systems
- control and modelling of space vehicles
- analysis of the thermodynamic properties of systems such as re-entry vehicles
- the design of software, computing, electronics and sensing devices for space vehicles
- advanced space engineering projects that allow you to get hands-on experience with space robotics and nano-satellite technology.

YOUR CAREER
As a space engineer you’ll have the best of both worlds: knowledge and experience of your main degree stream as well as a specialised understanding of the space environment.

You’ll be able to find employment in the same engineering fields as your colleagues in your main degree, and also take advantage of opportunities in the space industry.

Some of our previous graduates have pursued careers within the aerospace, defence, environmental and research sectors, both nationally and internationally, in areas such as:
- design, analysis and manufacture of rocket propulsion systems, and satellite structures
- design of navigation and flight control systems for space vehicles, and study of the aerodynamic properties of launch vehicles
- design and build of satellite subsystems
- design and analysis of satellite remote sensing systems
- interplanetary space systems design
- space robotic systems.

BACHELOR OF ENGINEERING HONOURS (AERONAUTICAL) (SPACE)
- ATAR: 99.40
- UAC code: 511718
- Duration: 4 years

BACHELOR OF ENGINEERING HONOURS (MECHANICAL) (SPACE)
- ATAR: 98.05
- UAC code: 511732
- Duration: 4 years

BACHELOR OF ENGINEERING HONOURS (MECHATRONIC) (SPACE)
- ATAR: 99.80
- UAC code: 511733
- Duration: 4 years
Biomedical engineering is a multidisciplinary branch of engineering that combines knowledge of mechanical, mechatronic, electrical, chemical and materials engineering as well as IT with the life sciences of medicine, biology and molecular biology.

YOUR STUDIES
This four-year degree program covers all aspects of biomedical engineering, including the study of biomedical technology, biology, biomechanics, biomaterials, orthopaedic engineering, tissue engineering, medical regulation, bioelectronics, medical instrumentation, and computational simulation of biomedical systems.

Single degree students are required to complete one of the following majors: chemical and biomolecular engineering, electrical engineering, information technology, mechanical engineering or mechatronic engineering.

The study of biomedical engineering complements degrees in commerce, sports science, law, pharmacy, dentistry and medicine. Many biomedical engineering students have gone on to do graduate medical studies.

YOUR CAREER
Biomedical engineering is one of the fastest growing branches of engineering and employment opportunities are very broad.

Biomedical engineers design and manufacture implantable and external medical devices, including orthopaedic, cardiovascular and other electronic and surgical equipment. They often work in multidisciplinary teams in both the public and private sector and with medical professionals in educational and clinical roles.

For example, you could work as a clinical support specialist, instrumentation engineer, medical device assessor, patent examiner or field service engineer.
Chemical and biomolecular engineers turn raw materials into useful products for everyday life using chemistry, biology and physics. Such materials include fuels, pharmaceuticals and processed foods.

This discipline includes the traditional fields of petrochemicals, plastics, food production and drugs, environment and information technologies and the newer fields of nanotechnology and molecular biology.

YOUR STUDIES

When you study chemical and biomolecular engineering you’ll learn about the design and operations of both products and processes as well as research solutions to environmental problems.

Areas of study in the chemical engineering degree include:

- biochemical engineering
- biotechnology engineering
- energy and the environment
- green product and process design
- minerals processing
- process systems engineering
- sustainability.

This course includes the opportunity to undertake a one-year exchange program with a university in Europe, Asia or the US.

You may also be able to take part in a unique industrial placement scholarship program, giving you the opportunity to work full time undertaking high-level investigative projects, under industrial and academic direction.
You might choose to specialise in one of these areas or work across a range of fields, including:

– mining
– oil and gas processing
– coal, paper and chemical production
– petroleum and petrochemical production
– plastic and synthetic rubber manufacturing
– metals and ceramics manufacturing
– cement paints and glass manufacturing
– textile and synthetic fibre manufacturing
– food and beverage production
– pharmaceutical production
– environmental consulting
– process design
– business consulting
– computer programming
– banking and finance
– research and development.

BACHELOR OF ENGINEERING HONOURS (CHEMICAL AND BIOMOLECULAR)

<table>
<thead>
<tr>
<th>ATAR</th>
<th>8750</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511735</td>
</tr>
<tr>
<td>Duration</td>
<td>4 years</td>
</tr>
</tbody>
</table>
CIVIL

Civil engineers manage the design and construction of crucial modern infrastructure such as buildings, roads, railways, bridges, tunnels, dams and ports as well as systems for managing water, irrigation, sewage and floodwaters. They take a lead role in sustainable development.

YOUR STUDIES
When you study civil engineering at the University of Sydney, you’ll learn about all aspects of the field before choosing the stream in which you want to specialise.

During the first two years you will master the foundations of civil engineering, including the relevant science, mathematics, computing and introductory civil engineering subjects. There’s also a second-year surveying camp to enhance your practical skills – and make sure you have a good time as well!

At the end of third year you’ll usually undertake practical industry experience, working for 10–12 weeks in an engineering firm.

In fourth year you’ll specialise further, choosing elective subjects specific to civil engineering. Refer to pages 31–34 for these specialisations.

YOUR CAREER
As a graduate of this degree you’ll be a highly skilled professional with sound technical, managerial, organisational, financial, environmental and problem-solving skills.

You might choose to work in an office environment, investigating, planning, designing and managing projects, or you might prefer to supervise projects on site.

As a civil engineer you might choose to work in:
- construction
- mining
- resources
- manufacturing
- government
- project management and planning
- property development
- professional engineering practices
- contracting and consulting firms
- research institutions such as CSIRO.

BACHELOR OF ENGINEERING HONOURS (CIVIL)

<table>
<thead>
<tr>
<th>ATAR</th>
<th>UAC code</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>90.55</td>
<td>511741</td>
<td>4 years</td>
</tr>
</tbody>
</table>

OTHER OPTIONS
BACHELOR OF PROJECT MANAGEMENT (CIVIL ENGINEERING SCIENCE) (See page 37)
CONSTRUCTION MANAGEMENT

Construction engineers are responsible for managing construction projects, including conducting site surveys and materials testing, safety and quality assurance, as well as costing, procurement, budgeting, planning and scheduling of projects.

YOUR STUDIES
This is a civil engineering degree with a specialisation in organisation and management, design and construction, the economics of construction projects and project administration systems.
This degree has been designed to produce graduates with sound engineering knowledge and competency in the application of projects and programs in the construction industry.
This stream is particularly related to infrastructure and large projects with a specialisation in project management, including subjects in legal and contractual studies, costing and estimating and quality management.

YOUR CAREER
The construction industry in Australia and around the world is large and provides many opportunities for graduates.
You might choose to work in:
- construction
- mining
- resources
- industrial or manufacturing firms
- federal, state and local government or public agencies
- project management or planning
- property development for an owner or major commercial client
- professional engineering practices
- contracting or consulting firms
- research institutions such as CSIRO.

BACHELOR OF ENGINEERING HONOURS (CIVIL) (CONSTRUCTION MANAGEMENT)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ATAR</td>
<td>92.50</td>
</tr>
<tr>
<td>UAC code</td>
<td>511742</td>
</tr>
<tr>
<td>Duration</td>
<td>4 years</td>
</tr>
</tbody>
</table>
Environmental engineers analyse the environmental effects of past, current and future human activities to address any problems they cause. This includes developing effective methods of sustainably using natural resources and the safe treatment of water.

YOUR STUDIES
This is a civil engineering degree with a specialisation in the environmental solutions to human-made problems. It focuses on environmental issues, particularly water-related, that require a structural or civil engineering solution.

Our undergraduate program includes extensive research and experience in wind profiles, environmental fluids and coastal studies, a focus that, with specialisation in your final year, will help you influence environmental solutions.

YOUR CAREER
As an environmental engineer with a solid background in civil engineering your opportunities are endless. You might choose to work in:
- sustainable design
- renewable power
- pollution control
- environmental impact studies
- hydrology
- coastal design engineering
- ocean technology
- wind engineering.

BACHELOR OF ENGINEERING HONOURS (CIVIL) (ENVIRONMENTAL)

<table>
<thead>
<tr>
<th>ATAR</th>
<th>91.40</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511743</td>
</tr>
<tr>
<td>Duration</td>
<td>4 years</td>
</tr>
</tbody>
</table>
Geotechnical engineers examine the soil and rock layers that make up the Earth to design and build safe dams, tunnels, foundations and more. They investigate the ground conditions, determine material properties, design foundations and assess the risks associated with the ground.

Geotechnics is one of the fastest growing disciplines in civil engineering, and the University of Sydney was one of the first universities in the world to include it as a full specialisation. The University is also home to the Centre for Geotechnical Research, a leading international source of training, research, advice and expertise.

YOUR STUDIES
You’ll complete a civil engineering degree with a specialisation in your final year, including advanced study in foundations, computer modelling and environmental geotechnics.

YOUR CAREER
As a graduate of this degree you might find yourself working on a commercial building site in the city one day and drilling at a river crossing in far north Queensland the next.

As a geotechnical engineer you might choose to:

– investigate various sites to determine the bearing capacity of the given natural material
– determine appropriate ground improvement strategies
– design foundations, ensuring safety and serviceability
– design road, rail and canal cuttings through soil and rock
– work offshore, investigating and designing pipelines, cable routes and foundations for oil and gas production facilities
– design earth and rock-fill dams, making sure that they don’t collapse and minimising leakage
– design landfills for society’s waste products, protecting the environment
– carry out remediation of contaminated soil sites, cleaning up the environment.

BACHELOR OF ENGINEERING HONOURS (CIVIL) (GEOTECHNICAL)

<table>
<thead>
<tr>
<th>ATAR</th>
<th>97.45</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511744</td>
</tr>
<tr>
<td>Duration</td>
<td>4 years</td>
</tr>
</tbody>
</table>
Structures

Structural engineers are responsible for the design of major structures such as high-rise buildings, industrial buildings, bridges, sports stadiums and exhibition centres.

Your studies
You’ll complete a civil engineering degree, specialising in your final year in studies that include advanced steel and concrete design and numerical analysis techniques.

You’ll learn about how forces (such as the weight of a building and environmental loads such as wind and earthquakes) are resisted by, and transferred through, structures and buildings to the ground.

Your career
As a graduate, you will be able to apply innovative, creative and technical skills to design and understand the strengths and properties of materials such as steel, concrete or timber.

In structural engineering you might choose a career as a:

– specialist structural design consultant
– technical sales consultant
– bridge engineer
– transport and urban planner
– construction manager
– site engineer
– materials engineer
– consultant to the oil and gas, mining, coastal or industrial sectors.

| BACHELOR OF ENGINEERING HONOURS (CIVIL) (STRUCTURES) |
|-----------------|----------------|
| ATAR | 94.90 |
| UAC code | 511745 |
| Duration | 4 years |

A student uses a DEMEC strain gauge instrument on concrete samples.
Electrical engineers design, create, develop and manage systems in areas such as computer systems, electronics and telecommunications.

YOUR STUDIES
This degree program includes foundation studies in physics, mathematics, computer science and basic electrical engineering principles, on which further studies in electrical circuits, electronics and computer systems, signals and communications, power systems, energy systems and management are based. Extensive computer-based problem-solving projects, and aspects of modern workplace management are also features of the program.

In your third and fourth years you can choose to specialise in one of the following areas:
- electronics and optics
- computer systems
- electromagnetics
- signal and communication systems
- telecommunications software.

YOUR CAREER
You might choose to work in:
- banking and finance
- power generation and distribution
- industrial electrical plant design and manufacture
- control systems management
- telecom providers
- computer companies
- network management
- multimedia and IT companies
- design of biomedical equipment and telecom devices
- military and defence.

BACHELOR OF ENGINEERING HONOURS (ELECTRICAL) (TELECOMMUNICATIONS) (COMPUTER)

<table>
<thead>
<tr>
<th>ATAR</th>
<th>90.60</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511750</td>
</tr>
<tr>
<td>Duration</td>
<td>4 years</td>
</tr>
</tbody>
</table>
Power engineers are responsible for the community’s electricity supply. This includes creating and managing the infrastructure required to supply power to major cities, regional and rural areas, railway lines, homes and businesses.

YOUR STUDIES

This degree program includes foundation studies in physics, mathematics, computer science and basic electrical engineering principles, on which further studies in electrical circuits, electronics, computer systems, signals and communications, power transmission, distribution and use, and management are based.

You’ll gain a deep understanding of power engineering at both system and device levels.

The program was designed in consultation with key industry partners and is complemented by real-world project work.

Areas of study include:
- design of electrical grids
- advanced monitoring
- diagnostics technologies
- renewable energy systems, such as wind and solar
- electronics associated with energy conversion and integration with the electrical grid
- smart grids.

YOUR CAREER

As a power engineer you might choose to work in government or industry, managing the electricity supply in Australia or overseas. Australia has a very high demand for power engineers. Demand overseas is also high, as developing countries rely on power infrastructure for their growth and development.

As a power engineer you might choose to work in:
- power generation, transmission and distribution
- renewable energy systems and alternative power sources such as solar and wind energy
- grid maintenance and stability
- power electronics
- electrical grid maintenance and protection
- research into intelligent smart grids
- power plant operation and control
- industrial plant management and construction.

BACHELOR OF ENGINEERING HONOURS (ELECTRICAL) (POWER)

<table>
<thead>
<tr>
<th>ATAR</th>
<th>87.65</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511748</td>
</tr>
<tr>
<td>Duration</td>
<td>4 years</td>
</tr>
</tbody>
</table>
PROJECT MANAGEMENT

Project managers help organisations deliver new products, services and infrastructure. They manage and implement new systems and processes and they effect change within organisations.

Project management is becoming a highly regarded discipline in its own right. ‘On-the-job’ training alone can no longer meet the needs of organisations or provide the fundamental project management skills required in today’s dynamic and complex environment.

YOUR STUDIES
This bachelor’s degree is unlike any other project management course in Australia. Based on a complex systems approach, it uses multidisciplinary theories and methods to investigate a particular phenomenon from a holistic viewpoint. It will provide you with fundamental project management skills that you can apply across any industry.

Core subjects include project management, project finance, complex project coordination, analytics, statistics, risk management, organisational behaviour and psychology.

These subjects are integrated with units of study from your chosen stream (listed below) from the start of your studies:
– Civil Engineering Science
– Built Environment
– Software.

This degree is an ideal complement to the Bachelor of Engineering and is also offered as a combined degree.

YOUR CAREER
Career opportunities are varied as project management skills are transferable across industries. Graduates will be highly sought after and could work in professional and management roles in property development, construction, mining, IT, banking and finance, state or federal government. They can also work in consultancy roles in the engineering, water, health or energy sectors.

Project management skills and methodologies can be applied to a variety of situations, including disease and disaster recovery scenarios where an innovative and dynamic approach is required.

BACHELOR OF PROJECT MANAGEMENT

<table>
<thead>
<tr>
<th>ATAR</th>
<th>86.25</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511785</td>
</tr>
<tr>
<td>Duration</td>
<td>3 years</td>
</tr>
</tbody>
</table>
SOFTWARE

Software engineering addresses all aspects of software production from strategy and design to coding, quality and management.

YOUR STUDIES
This degree program includes foundation studies in mathematics, computer science and computer system principles on which further studies in software design, development, security and management are built. These include programming languages, databases, operating systems, and enterprise and internet scale systems.

You can expect to study:
– programming and computer languages
– data structures
– algorithms and databases
– data-centric computing
– operating systems
– software project management.

A key feature of this program is that you can start specialising in your first year by choosing software engineering electives from many different areas, including:
– business software
– systems and hardware
– computer-aided design (CAD)
– multimedia
– biological information.

YOUR CAREER
Software engineers are in high demand both in Australia and overseas, particularly in Asia and the US. This demand is expected to grow significantly over the next decade.

You might choose a career as a:
– software engineer
– internet or multimedia developer
– web applications developer
– technical software specialist
– software implementation consultant
– internet software specialist
– software contractor
– design team leader
– systems administrator
– analyst programmer
– database application programmer.

You might find yourself designing advanced information systems in the business sector; building technical systems for the medical, power or transport industries; or developing new network technologies in the rapidly growing telecommunications area.

<table>
<thead>
<tr>
<th>BACHELOR OF ENGINEERING HONOURS (SOFTWARE)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATAR</td>
</tr>
<tr>
<td>UAC code</td>
</tr>
<tr>
<td>Duration</td>
</tr>
</tbody>
</table>

OTHER OPTIONS INCLUDE:
BACHELOR OF PROJECT MANAGEMENT (SOFTWARE) (See page 37)
BACHELOR OF COMPUTER SCIENCE AND TECHNOLOGY (See page 40)

A PhD student using an intelligent tutoring system that measures physiological signals to detect learner affective states.
INFORMATION TECHNOLOGY

If you are technically minded and would like to contribute to the future development and support of technology, this is the degree for you.

This course has been developed in consultation with industry to ensure that graduates are equipped for the challenges of working in this dynamic area. It offers streams in computer science and information systems.

The computer science stream involves the study of computers and the programs that run on them. You’ll graduate with sound knowledge and skills in:

– computer languages such as Java, C, C++ and Python
– computer programming, including the study of algorithms, data structures, networks and operating system internals.

The information systems stream involves creating computer systems that satisfy individual and organisational needs, making computer systems work for people. It includes:

– strategic planning
– system development
– system implementation
– network design and management
– operational management
– end-user needs and education.

YOUR STUDIES

In the first two years you’ll build a solid foundation with core studies in programming, databases, system analysis, algorithms and professional IT practice. In later years you can choose subjects such as multimedia, operating systems, human-computer interaction and artificial intelligence.

In third year you will work on an industry-related group project, while fourth year allows in-depth study in an area of your choice, such as data mining, high-performance computing and knowledge management. If you are interested in a research career, you can include a substantial research project to obtain honours.

We encourage you to explore other interests by enrolling in units from areas such as psychology, languages, biology, philosophy, geography and commerce. This gives you domain-specific knowledge useful to the application of information technologies in that area.

OTHER OPTIONS INCLUDE:

BACHELOR OF ENGINEERING HONOURS (SOFTWARE) (See page 38)
BACHELOR OF COMPUTER SCIENCE AND TECHNOLOGY (See page 40)
BACHELOR OF PROJECT MANAGEMENT (SOFTWARE) (See page 37)

YOUR CAREER

As an IT specialist with an excellent combination of knowledge and practical experience, you’ll be able to create and manage business applications, websites, systems and the IT environment for organisations in any industry.

You’ll be able to choose a career in:

– information and communication technology (ICT) research and development
– consultancy and change management
– software development
– systems analysis
– software architecture
– IT technical advice.

Graduates are eligible for associate membership of the Australian Computer Society.

BACHELOR OF INFORMATION TECHNOLOGY

ATAR	97.80
UAC code	511797
Duration	4 years

A group of students using the TableTop, a novel collaborative surface computing platform developed by researchers at the University.

LEARN MORE
COMPUTER SCIENCE AND TECHNOLOGY

Our two computer science and technology degree programs will prepare you to become a professional at the forefront of information technology. They offer streams in computer science and information systems.

BACHELOR OF COMPUTER SCIENCE AND TECHNOLOGY

Your studies
The Bachelor of Computer Science and Technology will prepare you to work at the cutting edge of information technology. After you have completed core studies in programming, databases, system analysis and professional IT practice, you will pursue a course of study along one of two streams: information systems or computer science.

The information systems stream comprises the study of the direct application of software design and development to the business domain. You will gain an understanding of the principles and techniques involved in the analysis, design, implementation and maintenance of computer systems within a business environment.

The computer science stream involves the study of computers and computer programs. It will suit you if you’re more technically minded and want to contribute to the future development and support of computer technology.

You are encouraged to explore your interests by enrolling in units from a range of other disciplines such as psychology, languages, biology, philosophy, geography or commerce.

Your career
This degree offers you a broad range of career options in areas such as information and communication technology, research and development, government policy, finance and banking, education, biomedicine, consultancy, change management, software analysis and development, and computer systems administration.

You might choose to work as a computer programmer, a computer systems administrator or a computer systems manager.

BACHELOR OF COMPUTER SCIENCE AND TECHNOLOGY (ADVANCED)

Your studies
The Bachelor of Computer Science and Technology (Advanced) is a more challenging variant of the Bachelor of Computer Science and Technology, and will appeal to you if you have substantial programming experience, aptitude and/or a high ATAR.

The course has the same flexible structure as the Bachelor of Computer Science and Technology, except that students complete a significant amount of their study in advanced units, where more sophisticated and challenging topics and approaches are covered.

You will choose units of study from a wide range of areas including networking, human-computer interaction, graphics, object-oriented design, internet software platforms, artificial intelligence, and e-business analysis and design.
As in the Bachelor of Computer Science and Technology, all students will enrol in one of two streams: information systems or computer science. An additional honours year is available to eligible students.

Your career
You’ll be equipped to work in areas such as information and communication technology, research and development, government policy, finance and banking, education, biomedicine, consultancy, change management, software analysis and development, or computer systems administration.

“Everyone was so welcoming. Since first year I’ve felt like I was part of a thriving community of students and academics.”

GEORGINA WILCOX
PhD STUDENT,
BACHELOR OF COMPUTER SCIENCE AND TECHNOLOGY (ADVANCED)

As in the Bachelor of Computer Science and Technology, all students will enrol in one of two streams: information systems or computer science. An additional honours year is available to eligible students.

Your career
You’ll be equipped to work in areas such as information and communication technology, research and development, government policy, finance and banking, education, biomedicine, consultancy, change management, software analysis and development, or computer systems administration.

“Everyone was so welcoming. Since first year I’ve felt like I was part of a thriving community of students and academics.”

GEORGINA WILCOX
PhD STUDENT,
BACHELOR OF COMPUTER SCIENCE AND TECHNOLOGY (ADVANCED)

OTHER OPTIONS INCLUDE:
BACHELOR OF INFORMATION TECHNOLOGY (See page 59)
BACHELOR OF ENGINEERING HONOURS (SOFTWARE) (See page 58)
BACHELOR OF PROJECT MANAGEMENT (SOFTWARE) (See page 37)
COMBINED DEGREE OPTIONS

BACHELOR OF ENGINEERING HONOURS/BACHELOR OF PROJECT MANAGEMENT

<table>
<thead>
<tr>
<th>ATAR</th>
<th>90.75</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511784</td>
</tr>
<tr>
<td>Duration</td>
<td>5 years</td>
</tr>
</tbody>
</table>

This combined degree provides students with a solid foundation and complementary skills in engineering and project management. Designed in consultation with industry, graduates of this combined degree will be highly sought after due to their ability to understand the various aspects of project management more quickly than they would with ‘on-the-job’ training.

You can combine any of the Bachelor of Engineering Honours specialisations with a Bachelor of Project Management.

Subjects in the Bachelor of Project Management include:
- project finance
- project-based organisational behaviour
- project coordination
- risk management
- contract negotiation
- sustainability
- international project management
- an industry-based capstone project.

BACHELOR OF ENGINEERING HONOURS/BACHELOR OF COMMERCE

<table>
<thead>
<tr>
<th>ATAR</th>
<th>95.10</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511760</td>
</tr>
<tr>
<td>Duration</td>
<td>5 years</td>
</tr>
</tbody>
</table>

This combined degree program extends the management component of the Bachelor of Engineering Honours to satisfy the growing demand for engineering professionals with business skills.

You can combine any of the Bachelor of Engineering Honours specialisations with a Bachelor of Commerce. In addition to your engineering specialisation, this program allows you to complete one major and one minor in any area of commerce.

Some units of study are compulsory, including introductory commerce units in accounting, economics and econometrics.

Subject areas in commerce include:
- accounting
- business information systems
- commercial law
- econometrics
- economics
- finance
- industrial relations and human resource management
- international business
- management
- management decision sciences
- marketing.

BACHELOR OF ENGINEERING HONOURS/BACHELOR OF SCIENCE

<table>
<thead>
<tr>
<th>ATAR</th>
<th>90.50</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511770</td>
</tr>
<tr>
<td>Duration</td>
<td>5 years</td>
</tr>
</tbody>
</table>

This combined degree program is well established and popular, and emphasises the strong scientific foundations of engineering. The Bachelor of Engineering Honours emphasises specific practical aspects of science and technology, while the Bachelor of Science emphasises fundamental scientific principles. Combining the two degrees expands your career options in both fields.

You can combine any of the Bachelor of Engineering Honours specialisations with a Bachelor of Science. In addition to your engineering specialisation, this program allows you to complete two majors in any area of science.

Science majors include:
- biochemistry
- biology
- chemistry
- computer science
- geology
- mathematics
- physics
- psychology.

Note: Although you may have achieved the ATAR for the combined degree, you need to still achieve the ATAR for the stream of engineering you wish to take as part of the combination.
This combined degree program allows you to complete the Bachelor of Engineering Honours along with any arts subjects. The Bachelor of Engineering Honours emphasises practical aspects of science and technology, while the Bachelor of Arts provides choices to balance and complement your engineering studies. This allows you to pursue your interests or develop your strengths outside the field of engineering, producing engineers with broader capabilities. You can combine any of the Bachelor of Engineering Honours specialisations with a Bachelor of Arts. You will undertake more engineering subjects in your first three years, and complete your Bachelor of Arts subjects in the later part of the course.

Areas of study in arts include:
- anthropology
- Asian studies
- history
- languages
- philosophy
- statistics.

This combined degree program encompasses the core elements of the engineering and medical science degrees, and is designed for people interested in including engineering and medical sciences in their future endeavours. Such multidisciplinary study will enable you to adapt to the changing needs of the profession. This program is also an ideal base for postgraduate research in the biomedical field, or for vocational graduate coursework programs such as medicine or dentistry.

You can combine any of the Bachelor of Engineering Honours specialisations with a Bachelor of Medical Science. You will undertake more engineering subjects in your first three years, and complete your Bachelor of Arts subjects in the later part of the course.

Areas of study in commerce include:
- accounting
- business information systems
- commercial law
- econometrics
- economics
- finance
- industrial relations and human resource management
- international business
- management
- management decision sciences
- marketing.

This combined degree program offers you the opportunity to study both civil engineering and architectural design simultaneously over five years. Your engineering studies will teach you to analyse the forces within a structure and to design its skeleton to support these forces, while your architectural studies will emphasise the conceptual and aesthetical aspects of the design process. You’ll acquire skills that will make you an asset to both the structural design and architectural professions.
BACHELOR OF INFORMATION TECHNOLOGY/BACHELOR OF ARTS

<table>
<thead>
<tr>
<th>ATAR</th>
<th>92.95</th>
</tr>
</thead>
<tbody>
<tr>
<td>UAC code</td>
<td>511765</td>
</tr>
<tr>
<td>Duration</td>
<td>5 years</td>
</tr>
</tbody>
</table>

This combined degree program extends the Bachelor of Information Technology to satisfy the increasing demand for employees with both an extensive technical understanding of IT and essential skills in disciplines from the humanities, languages and social sciences.

You can combine both IT streams with a Bachelor of Arts:
- computer science
- information systems.

YEAR 1

- Introduction to Programming
- Data Structures
- Professionalism in Engineering and IT
- Foundations of Computer Systems
- Differential Calculus
- Linear Algebra
- Statistics
- Structure of Language
- Language and Social Context

YEAR 2

- Algorithms and Complexity
- Operating Systems and Machine Principles
- Database Systems 1
- Systems Analysis and Modelling
- Introduction to Logic
- Syntax
- Phonetics and Phonology
- Discourse Analysis

YEAR 3

- Management of IT Projects and Systems
- Human-Computer Interaction
- Database Systems 2
- IT elective
- Statistical Tests
- Functional Grammar
- Japanese 1/Japanese 2

YEAR 4

- Statistical Natural Language Processing
- Major Development Project
- Knowledge Discovery and Data Mining
- Computer Applications in Linguistics
- Advanced Data Models
- Japanese 3/Japanese 4

YEAR 5

- Research Methods
- Research Thesis A
- Research Thesis B
- Knowledge Management Systems
- IT elective
- Japanese Culture
- Japanese Sociolinguistics

Subject choices are dependent on availability.

Note: It is also possible to enrol in a Bachelor of Science (Advanced) or a Bachelor of Science (Advanced Mathematics) in a combined course. To do this students need to achieve an ATAR (or equivalent) sufficient for admission into a Bachelor of Science (Advanced) or a Bachelor of Science (Advanced Mathematics).
“I chose a combined mechatronic engineering and computer science degree for the huge range of career possibilities it opens up. Plus, graduates with strong complementary skills are highly sought after by industry. I’ll be able to bring a diverse range of skills to my future employer.”

HARRY SMITH
BACHELOR OF ENGINEERING (MECHATRONIC)/BACHELOR OF SCIENCE
<table>
<thead>
<tr>
<th>COURSE</th>
<th>YEARS</th>
<th>KEY AREAS OF STUDY</th>
<th>ASSUMED KNOWLEDGE</th>
<th>ATAR</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flexible First Year (Bachelor of Engineering Honours), (Bachelor of Computer Science and Technology), (Bachelor of Information Technology)</td>
<td>1</td>
<td>Flexible First Year allows you to decide your eventual engineering specialisation after completing one year of full-time study.</td>
<td>HSC Mathematics Extension 1, Physics and/or Chemistry (Depending on your chosen stream)</td>
<td>86.45</td>
<td>20</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Aeronautical)</td>
<td>4</td>
<td>Aerospace technology, control systems, low-speed aerodynamics, materials, structural analysis</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>90.85</td>
<td>22</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Mechanical)</td>
<td>4</td>
<td>Industrial management, materials, mechanical design, mechanics of solids, system control, thermodynamics</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>91.05</td>
<td>23</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Mechatronic)</td>
<td>4</td>
<td>Electronic devices and circuits, industrial management, introductory electrics, mechanical design, power electronics and drives</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>91.95</td>
<td>25</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Aeronautical)(Space)</td>
<td>4</td>
<td>Aerospace structures, composite materials, mechanics, propulsion, space electronics, space engineering</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>99.40</td>
<td>26</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Mechanical)(Space)</td>
<td>4</td>
<td>Flight mechanics, mechanical dynamics, satellite communications systems, smart materials and structures, space engineering</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>98.05</td>
<td>26</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Mechatronic)(Space)</td>
<td>4</td>
<td>Computers in real time, mechatronics, satellite communications systems, space engineering</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>99.80</td>
<td>26</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Biomedical)</td>
<td>4</td>
<td>Biomedical technology, fundamentals of biomedical engineering, human biology, materials, mechanical design</td>
<td>HSC Mathematics Extension 1, Physics and Chemistry</td>
<td>90.15</td>
<td>27</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Chemical and Biomolecular)</td>
<td>4</td>
<td>Energy and environment, bioengineering, materials engineering, minerals processing, process control and optimisation, oil, gas, petroleum and petrochemicals, food and beverage, biotechnology, sustainable development, business and economics</td>
<td>HSC Mathematics Extension 1, Chemistry</td>
<td>87.50</td>
<td>28</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Civil)</td>
<td>4</td>
<td>Civil engineering design, concrete and steel structures, engineering geology, fluids, introduction to structural concepts, soil mechanics</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>90.55</td>
<td>30</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Civil) (Construction Management)</td>
<td>4</td>
<td>Project formulation, project management IT, project planning and tendering, structural mechanics, surveying, transport engineering and planning</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>92.50</td>
<td>31</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Civil)(Environmental)</td>
<td>4</td>
<td>Chemistry, environmental decision making, environmental mechanics, geotechnics, introduction to structural concepts, water resources engineering</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>91.40</td>
<td>32</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Civil)(Geotechnical)</td>
<td>4</td>
<td>Concrete and steel structures, environmental geotechnics, finite element methods, geology, geotechnical engineering, structural mechanics</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>97.45</td>
<td>33</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Civil)(Structures)</td>
<td>4</td>
<td>Bridge engineering, concrete structures, introduction to structural concepts, steel structures, structural dynamics, structural mechanics</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>94.90</td>
<td>34</td>
</tr>
<tr>
<td>COURSE</td>
<td>YEARS</td>
<td>KEY AREAS OF STUDY</td>
<td>ASSUMED KNOWLEDGE</td>
<td>ATAR</td>
<td>Page</td>
</tr>
<tr>
<td>--</td>
<td>-------</td>
<td>---</td>
<td>--</td>
<td>-------</td>
<td>------</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Electrical) (Telecommunications) (Computer)</td>
<td>4</td>
<td>Digital devices and circuits, digital system design, foundation of computer systems, foundations of electrical circuits, software development, circuit analysis, fundamentals of feedback control, operating systems, real-time computing, switching devices and circuits, data communications and the internet, electronic devices and circuits, microcomputer systems, optical systems, satellite systems, signals and systems, wireless engineering, wireless networking, network security</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>90.60</td>
<td>35</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Electrical) (Power)</td>
<td>4</td>
<td>Power electronics and drives, engineering and electromagnetics, electrical energy systems and management, digital signal processing, electronic circuit design, communications, embedded computing, management for engineers</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>87.65</td>
<td>36</td>
</tr>
<tr>
<td>Bachelor of Project Management</td>
<td>3</td>
<td>Civil engineering science, built environment and software. Studies include project management, project finance, complex project coordination, analytics, statistics, risk management, organisational behaviour and psychology</td>
<td>HSC Mathematics Extension 1</td>
<td>86.25</td>
<td>37</td>
</tr>
<tr>
<td>Bachelor of Engineering Honours (Software)</td>
<td>4</td>
<td>Data communications and the internet, network programming, operating systems, signals and systems, software validation and verification</td>
<td>HSC Mathematics Extension 1, Physics</td>
<td>91.05</td>
<td>38</td>
</tr>
<tr>
<td>Bachelor of Information Technology</td>
<td>4</td>
<td>Introduction to programming, databases, systems analysis in the first two years; networking, human-computer interaction, graphics, object-oriented design, internet software platforms, artificial intelligence and e-business analysis and design</td>
<td>Mathematics or HSC Mathematics Extension 1 (depending on subjects chosen)</td>
<td>97.80</td>
<td>39</td>
</tr>
<tr>
<td>Bachelor of Computer Science and Technology</td>
<td>3</td>
<td>Computer science, information systems</td>
<td>Mathematics or HSC Mathematics Extension 1 (depending on subjects chosen)</td>
<td>81.80</td>
<td>40</td>
</tr>
<tr>
<td>Bachelor of Computer Science and Technology (Advanced)</td>
<td>3</td>
<td>As for Bachelor of Computer Science and Technology (above) but with study at an advanced level. This is a more challenging variant of the Bachelor of Computer Science and Technology for applicants with substantial programming experience and aptitude and/or a high ATAR. It has the same flexible structure as the Bachelor of Computer Science and Technology but students take a significant amount of their study (including half of third year) in advanced units, encompassing more challenging topics and approaches to IT. As part of the third-year advanced study, students undertake a large group development project of industrial relevance. Students who perform well may apply to transfer to the four-year Bachelor of Information Technology (page 39).</td>
<td>Mathematics or HSC Mathematics Extension 1 (depending on subjects chosen)</td>
<td>89.95</td>
<td>40</td>
</tr>
</tbody>
</table>
HOW TO APPLY
ENTRY OPTIONS AND THE APPLICATION PROCESS

CHOOSE YOUR COURSE
Use this brochure to explore what you can study at Sydney or visit our website to find out what ATAR and other entry requirements you need for the courses that interest you.
sydney.edu.au/courses

VISIT US ON OPEN DAY
The best way to get a feel for the campus is to visit us on Open Day. Explore the campus, enjoy the atmosphere, and learn more about our courses and facilities by attending mini lectures, activities and tours. In 2015, Open Day is on Saturday 29 August.
sydney.edu.au/openday

EXPLORE YOUR ENTRY OPTIONS
If you’re not sure you’ll reach the ATAR cutoff for your preferred course, check to see if you’re eligible to apply for one of our alternative entry pathways.
sydney.edu.au/engineering/futurestudent/flexibleentry
sydney.edu.au/access

APPLY FOR SCHOLARSHIPS
We award more than 500 scholarships to undergraduate students each year. See page 14 to learn more about them.
sydney.edu.au/engineering/scholarships
sydney.edu.au/scholarships

APPLY THROUGH UAC
You should submit your application online through the Universities Admissions Centre. On-time applications are due by 30 September 2014. A late fee applies to applications after this date.
www.uac.edu.au
WHAT’S NEXT
ENROLMENT AND ORIENTATION

COME TO INFO DAY
Info Day on Tuesday 6 January 2015 is an opportunity to visit us, discuss your options and finalise your subject choices. You will be able to talk with academics and current students, attend mini lectures, and get the answers to any questions you still have.
sydney.edu.au/infoday

RECEIVE YOUR OFFER
The University of Sydney makes the majority of offers in three of the UAC offer rounds – main, late and final. After UAC has received your high school results, you will be sent an offer for your highest preference where you meet the entry requirements.
sydney.edu.au/start/offers

ACCEPT YOUR OFFER AND ENROL
If you receive an offer to study with us, congratulations! The next step is to accept your offer. You do this by enrolling in your chosen course.
sydney.edu.au/start/enrolment

ATTEND ORIENTATION AND O-WEEK
Orientation is an action-packed opportunity to dive into the social and academic experiences of campus life. It’s a great time to make friends, attend official welcome events, and enjoy a huge and varied program of entertainment. Orientation happens in the first week of semester.
sydney.edu.au/orientation

The University of Sydney Union (USU) runs the three-day O-Week festival during Orientation Week – the largest event of its kind in Australia.
www.oweek.com.au

SEE FOR YOURSELF
There is only so much a guide can tell you about what it means to be a University of Sydney student. So jump online, and watch a few of our videos to see what student life is really like.
sydney.edu.au/engineering/videos
www.youtube.com/user/uniofsydney
Future Students Contact Centre
Level 4, Jane Foss Russell Building (G02)
University of Sydney NSW 2006
T 1800 SYD UNI (1800 793 864) (in Australia) and
+61 2 8627 1444 (outside Australia)

Or you can ask a question online:
sydney.edu.au/ask-domestic
sydney.edu.au/ask-international
sydney.edu.au/engineering