

High Yield Plasma Polymerization of Nanoparticles

[2021-001]

Opportunity

Multifunctional polymeric nanoparticles have advanced the field of nanotechnology, particularly biomedicine, by introducing a promising platform for targeted delivery, diagnostics, and therapeutics. Their surfaces can be conjugated with ligands such as proteins, peptides, pDNAs, fluorescent markers and drugs for versatile applications ranging from site-specific targeting, to bioactive delivery, cancer therapy, bioimaging and topical immunisation. Conventional preparation processes require time-consuming chemical synthesis and multi-step protocols with complicated techniques common to wet-chemistry approaches. Consequently, dry, physical methods of material synthesis at the nanoscale have become extensively sought to produce polymeric nanoparticles with tailored physical and chemical properties.

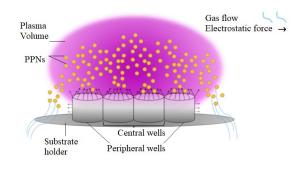
Technology

This technology is a simple, highly-scalable method for producing polymeric nanoparticles (PPN) that increases the PPN yield inside the well plates with a condensed and more uniform deposition pattern while preserving the PPN multifunctional surface characteristics that advances the field of biotechnology in a plethora of practical applications.

Inventors

Laura Haidar, Prof. Marcela Bilek, Dr Behnam Akhavan, Dr Stuart Tallis Fraser, Mark Baldry.

Intellectual Property Status


This technology is the subject of International PCT patent application PCT/AU2022/051135.

Gas inlet Ceramic insulators Rf electrode Window port Well-plate collector Substrate holder To vacuum system Pressure gauge Manual control valve

Commercial Opportunity

This technology represents a reproducible process that can be easily implemented by industry and automated.

The PPN produced by this process are able to covalently conjugate various functional ligands that provide a versatile platform to address applications in water purification, drug delivery, diagnostics, sensors, vaccines, biofunctionalised hydrogels and scaffolds. The platform is low-cost due to rapid, high-yield production in a dry scalable process with low-cost reagents. The reagent-free conjugation of ligands to these nanoparticles and their demonstrated non-toxicity removes hurdles to regulatory approval.

Contact Us

Mark Berlage

Commercial Theme Leader mark.berlage@sydney.edu.au +61 2 8627 4681 Commercialisation Office, Research Portfolio The University of Sydney T: +61 2 9351 4000 Sydney.edu.au/cdip