Wind Powered Cars for Years 3 and 4

Summary
Our Stage 2 STEM project, involved students and staff from Stage 2 along with 12 Year 2 students from a composite 2/3 class. Stage 2 designed the STEM project around our Science topic Smooth Moves, from the Primary Connections unit. Inspired by our initial Academy experience, it involved the design and production of wind powered cars. A hands-on parental STEM experience was provided for parents to fully understand their child’s school STEM experiences. The objective was to address a fictitious issue with a local car sales business. Students were to design and create a model car meeting specific criteria.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematics outcomes</td>
<td>MA2-1WM, MA2-2WM, MA2-3WM, MA2-18SP, MA2-9MG, MA2-10MG, MA2-11MG, MA2-12MG, MA2-14MG, MA2-15MG</td>
</tr>
<tr>
<td>English outcomes</td>
<td>EN2-2A, EN2-6B, EN2-7B, EN2-9B, EN2-12E</td>
</tr>
<tr>
<td>CAPA outcomes</td>
<td>VAS2.2, VAS2.3, VAS2.4</td>
</tr>
</tbody>
</table>

Statement of impact
The Wind Powered Cars project introduced students to collaborative, project based learning. The project successfully encouraged community engagement with colleagues, parents and students through information and practical sessions, presentations and showcasing. Implementing a teacher led STEM project initially, enabled the process, purpose and the outcomes of STEM to be clearly understood. Ultimately, identifying the value of student directed transdisciplinary STEM projects. Murwillumbah Public School is focusing on improving pedagogy through innovative, future focused teaching and learning practices integrating STEM with 21st Century Fluencies & ICT through an integrated curriculum.

For more information
Monique Williams | Murwillumbah Public School
E monique.williams30@det.nsw.edu.au
Wind Powered Car - STEM Project — Stage 2 Term 2

Our STEM project, Wind Powered Cars is designed for Stage 2 along with 12 Year 2 students from a composite 2/3 class. Stage 2 teachers have designed the STEM project around our Science topic Smooth Moves, from the Primary Connections unit. Inspired by our initial Academy experience, it involves the design and production of wind powered cars. A hands-on parental STEM experience will be provided for parents to fully understand their child’s school STEM experiences. The objective is to address a fictitious issue with a local car sales business. Students are asked to design and create a model car meeting specific criteria.

The Wind Powered Cars project introduces students to collaborative, project based learning. The project is designed to encourage community engagement with colleagues, parents and students through information and practical sessions, presentations and showcasing. Implementing a teacher led STEM project initially, will enable the process, purpose and the outcomes of STEM to be clearly understood. Murwillumbah Public School is focusing on improving pedagogy through innovative, future focused teaching and learning practices integrating STEM with 21st Century Fluencies & ICT through an integrated curriculum.

Purpose/context

Our STEM journey for Stage 2 at Murwillumbah coincides with a whole school STEM focus. Stage 2 has designed STEM projects around our Science topics. This project, inspired by our initial Academy experience, involved the design and production of wind powered boats and cars. A hands-on parental STEM experience will allow parents to fully understand their child’s school STEM experiences.

STEM is an integral component of our School Plan. Under Strategic Direction 1- Purpose Future Focused Learners, the focus for teachers is to integrate STEM with 21st Century Fluencies and ICT through an integrated curriculum. Enhancing our experience and understanding of STEM, we have secured the use of a STEM Share Kit for Term 4, 2018. Each class will introduce a variety of technology to the students. A whole school showcase and exploration is to be held, providing students with the opportunity to experiment with a variety of technologies in a non-restrictive environment, with coding at the core. This will provide the opportunity for both students and teachers in pursuing a STEM rich future in education at Murwillumbah Primary School.
Outcomes

Working Scientifically, Working Technologically, Physical World

A Student can:

› investigates their questions and predictions by analysing collected data, suggesting explanations for their findings, and communicating and reflecting on the processes undertaken ST2-4WS
› applies a design process and uses a range of tools, equipment, materials and techniques to produce solutions that address specific design criteria ST2-5WT
› describes everyday interactions between objects that result from contact and non-contact forces ST2-7PW

Comprehensive List of syllabus outcomes being addressed

<table>
<thead>
<tr>
<th>Science/Technology</th>
<th>Maths</th>
<th>English</th>
<th>Visual Arts</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST2-9PWST, ST2-14BE, ST2-7MW-T, ST2-1WS-S, ST2-4WS, ST2-5WT, ST2-7PW, ST2-2DP-T, ST2-3DP-T, ST2-11Di-T, ST2-1VA, ST2-2VA, ST2-3VA</td>
<td>MA2-1WM, MA2-2WM, MA2-3WM, MA2-18SP, MA2-9MG, MA2-10MG, MA2-11MG, MA2-12MG, MA2-14MG, MA2-15MG</td>
<td>EN2-2A, EN2-6B, EN2-7B, EN2-9B, EN2-12E</td>
<td>VAS2.2, VAS2.3, VAS2.4</td>
</tr>
</tbody>
</table>

MATHS
* sketching/drawing 3D
* time – stopwatch
* measuring distance
* collecting data
* creating graphs
* interpreting data/graphs
* mass - weight

LITERACY
* communicating in a group
* write recount
* description
* explanation

SCIENCE
* gravity – natural force
* friction
* wind/contact force
* motion
* force
* movement
* surface (effects)

TECHNOLOGY
* stopwatch
* ruler
* video
* camera

CAPA
* drawing
* design
* construction

ENGINEERING
* create
* construction
Evidence of work for assessment purposes

Assessment Criteria, Observations, Work Samples

Marking Rubric: STEM Project Stage 2 Term 1 2018 Wind Powered Car

<table>
<thead>
<tr>
<th>Students name</th>
<th>Date</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Limited</th>
<th>Basic</th>
<th>Sound</th>
<th>High</th>
<th>Outstanding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demonstrates knowledge and understanding of The Learning Pit</td>
<td>No evidence</td>
<td>Pasted into Book</td>
<td>Pasted with evidence of understanding</td>
<td>Pasted with a high level of understanding</td>
<td>Pasted with an outstanding level of understanding</td>
</tr>
<tr>
<td>Design plan produced</td>
<td>No design plan</td>
<td>Basic design plan</td>
<td>Sound design plan</td>
<td>Highly detailed design plan</td>
<td>Outstanding design plan</td>
</tr>
<tr>
<td>Diagram is labelled</td>
<td>No labelling</td>
<td>1-2 items are labelled</td>
<td>3-4 items are labelled</td>
<td>5-6 items are labelled</td>
<td>All items are labelled</td>
</tr>
<tr>
<td>Materials Listed (used)</td>
<td>No materials listed</td>
<td>A few materials listed</td>
<td>Some materials listed</td>
<td>Most materials used are listed</td>
<td>All materials used are listed</td>
</tr>
<tr>
<td>Uses critical and creative thinking to create a model of a wind powered car</td>
<td>No model produced</td>
<td>Basic evidence</td>
<td>Sound evidence</td>
<td>High level</td>
<td>Outstanding level</td>
</tr>
<tr>
<td>Model successfully meets the 5 specific criteria</td>
<td>No criteria met</td>
<td>1-2 criteria met</td>
<td>3-5 criteria met</td>
<td>N/A</td>
<td>N/A</td>
</tr>
<tr>
<td>Works well in collaborative groups</td>
<td>No evidence of collaboration</td>
<td>Some evidence of collaboration</td>
<td>Sound level of collaboration</td>
<td>High level of collaborative skills demonstrated</td>
<td>Outstanding collaborative skills at all times</td>
</tr>
</tbody>
</table>

Score

- Limited: 5
- Basic: 10
- Sound: 10
- High: 5
- Outstanding: 5

Total Score: 50
Project Details

DESIGN BRIEF
Hayes Toyota in Murwillumbah would like to develop and design a car that does not need petrol. The solution they believe is using Earth’s natural forces to generate propulsion.

TASK
Design and create a car that does not run on petrol.

DESIGN CRITERIA
Your design must:
• Weigh between 50 and 300 grams
• Be powered by wind
• Travel at least 3 metres
• Carry 4 marbles
Stage 2: STEM

<table>
<thead>
<tr>
<th>INTELLECTUAL QUALITY:</th>
<th>QUALITY LEARNING ENVIRONMENT:</th>
<th>SIGNIFICANCE:</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.1 Deep knowledge</td>
<td>1.4 Higher order thinking</td>
<td>3.1 Background knowledge</td>
</tr>
<tr>
<td>1.2 Deep understanding</td>
<td>1.5 Metalanguage</td>
<td>3.2 Cultural knowledge</td>
</tr>
<tr>
<td>1.3 Problematic knowledge</td>
<td>1.6 Substantive communication</td>
<td>3.3 Knowledge integration</td>
</tr>
<tr>
<td>2.1 Explicit quality criteria</td>
<td>2.4 Social support</td>
<td>3.4 Inclusivity</td>
</tr>
<tr>
<td>2.2 Engagement</td>
<td>2.5 Student self-regulation</td>
<td></td>
</tr>
<tr>
<td>2.3 High expectations</td>
<td>2.6 Student direction</td>
<td></td>
</tr>
</tbody>
</table>

Syllabus Outcomes/Content

ST2-4WS investigates their questions and predictions by analysing collected data, suggesting explanations for their findings, and communicating and reflecting on the processes undertaken.

ST2-5WT applies a design process and uses a range of tools, equipment, materials and techniques to produce solutions that address specific design criteria.

ST2-7PW describes everyday interactions between objects that result from contact and non-contact forces.

MA2-1WM uses appropriate terminology to describe, and symbols to represent, mathematical ideas.

MA2-2WM selects and uses appropriate mental or written strategies, or technology, to solve problems.

MA2-3WM checks the accuracy of a statement and explains the reasoning used.

MA2-18SP selects appropriate methods to collect data, and constructs, compares, interprets and evaluates data displays, including tables, picture graphs and column graphs.

Learning Activity

Classroom
- Revisit, discuss vocabulary of movement, force and motion
- Introduce STEM, the meaning of STEM and what we are going to do with it
- Look at the Learning Pit, the meaning of it and discuss the vocabulary
- Discuss with students ‘group work’, how it feels and what it looks like when working in a collaborative group. List roles/responsibilities.
- Introduce the task to the students/groups. Discuss as a class.
- Invite an expert to talk to the students about the design process and things they may need to consider.
- Discuss and show materials they will be given access to, to complete the task.
- Explicit teaching of drawing designs
- Explicit teaching of data analysis and representation
- As a class revisit design brief and criteria. Discuss what Hayes Toyota would have to do to design and make a successful petrol-less car

Literacy Continuum

- Vocabulary knowledge – 8, 9, 10, 11
- Aspects of Speaking - 8, 9, 10, 11
- Reading Texts - 8, 9, 10
- Comprehension Cluster - 8, 9, 10
- Aspects of Writing - 8, 9, 10, 11

Resources

- Smooth Moves unit (already taught)
- Learning pit poster and images (google)
- Scrapbooks
- Group work cooperative stencil
- Groups listed
- Materials for Construction
 - paper clips, masking tape, pipe cleaners, paper, card, rubber bands, transparency film, balloons, straws, skewers, pop sticks, drinking cups,
ST2-4WS investigates their questions and predictions by analysing collected data, suggesting explanations for their findings, and communicating and reflecting on the processes undertaken

ST2-5WT applies a design process and uses a range of tools, equipment, materials and techniques to produce solutions that address specific design criteria

Autonomous Learning	Grid Paper
• Students draw a model and label each part with materials used	
• Students decide in their group, which design they are going with and why	
• Students begin building their prototype, timeframe of 30 minutes	
• Testing Day: Each class tests their prototypes, one group at a time. Data is recorded – weight, distance, speed (time)	
• Students analyse data collected. They represent data for graph for weight, distance and speed	
• Students interpret data collected, record findings and draw conclusions	
• Students write an Explanation covering the details of their testing and the findings	
• Write a Recount showing what happened throughout the STEM projects process.	Scrapbooks

Materials for Construction
paper clips, masking tape, pipe cleaners, paper, card, rubber bands, transparency film, balloons, straws, skewers, pop sticks, drinking cups

Constructions
Ramp/Board
Fans
Stopwatch
Measuring tape
Paper/Texta
Video
Camera

Literacy Books

Evaluation/Reflection:

Were students engaged in the project?
Were students able to work in collaborative groups?
Was the criteria set, met by students? Why, Why not.
How can we improve our projects in the future?
How do we work towards student led projects?

Adapted from Sturt Public School’s program by Monique Williams