Phase transitions under constraints: from confinement to complex networks

Kirill Glavatskiy

"Complexity, Criticality & Computation" (C3-2017)

Sydney, 11-13 December 2017
City growth

https://www.theguardian.com/cities/2014/feb/18/slime-mould-rail-road-transport-routes
Porous rocks

Phase transitions under constraints

K. Glavatskiy

http://perminc.com
Membranes in biology

Phase transitions under constraints

K. Glavatskiy
Membranes in chemistry

- Gas separation and filtration
- Fuel cells

Scientific Reports 6, 20430 (2016)

Phase transitions under constraints: from confinement to complex networks

- Phase transitions of confined fluids
- Fluid transport in channels
Nucleation

Wikipedia: nucleation

Journal of Thermal Science (2012), 21
Modelling the interface

- Current methodology

Density profile is a result of free energy minimization, assuming smooth variables.

- Surface tension is derived from density variation.

- Challenge

Apply methodology of planar interface to spherical interface.

- Problem of singularity
- Varying surface area
What we may expect:

What we actually see:
small bubble is not stable?
small bubble is not stable!

- Closed system
 - fixed amount of molecules, which can be in either of two phases: gas or liquid
- Compressible fluid
 - density may be adjusted
Phase transitions under constraints

K. Glavatskiy

Capillary model

- fix N (or m_{tot})
- obtain n and R_s

\[p_{\text{in}} - p_{\text{out}} = \frac{2\sigma}{R} \]

Thermodynamics:

\[T\,dS = dU + p\,dV - \mu\,dN \]

Equilibrium:

\[\mu_{\text{in}}(p_{\text{in}}, T) = \mu_{\text{out}}(p_{\text{out}}, T) \]
Phase transitions under constraints

K. Glavatskiy

Capillary model
large negative pressure leads to stretching of the liquid

resulting fluid density is lower than the coexistence one - «metastable» region
Summary: nucleation

- Confinement:
 - energy redistribution under constraints

- Altered phase diagram
 - closed system + compressible fluid

- Effect is larger for smaller system

- Apparent negative compressibility

- Restrictions on cluster size
Desalination 336, 97-109, (2014)
Carbon nanotube membrane

- Membrane model
- Energy profile at CNT entrance

(Gulin-González et al., 2006)
Viscosity

\[\Delta_s P = Q C \eta \left(\frac{1}{r_a^3} - \frac{1}{r_b^3} \right) \]

Poiseuille

\[\frac{\Delta_p P}{L} = Q \frac{8 \eta}{\pi r^4 + 4 \pi r^3 S} \]

Bernoulli

\[\Delta_B P = \frac{Q^2}{2 \pi \rho_b} \left(\frac{1}{r_a^2} - \frac{1}{r_b^2} \right) \]

\[\Delta P \] pressure drop
\[Q \] flow rate
\[r \] pore radius
\[L \] pore length

Phase transitions under constraints

Heinke & Karger, Phys Rev Lett (2011)

Fluid structure

density inside the pore

\[\rho(x) \Rightarrow \rho_a \]

density across the interface

\[\rho(x, z) \Rightarrow \rho(z) \]
Flow into CNT

- **Hydrodynamic resistance:**

 bending of the flow lamina at a geometrical obstacle

- **Thermodynamic resistance:**

 phase difference between inside and outside the membrane
Excess resistance

\[R_s = \int_{z_-}^{z_+} r(z) \, dz - r_-(z_s - z_-) - r_+(z_+ - z_s) \]
Adsorption isotherms: temperature

Phase transitions under constraints

K. Glavatskiy
Adsorption isotherms: temperature

Phase transitions under constraints
Adsorption isotherm: pore size

ρ, [mol/m3]

ρ, [bar]

CO_2, 1W

- Green: 4.00A
- Red dotted: 5.18A
- Yellow dotted: 8.68A
- Purple: 12.17A
- Blue: 29.64A
Adsorption isotherm: pore size

![Graph showing adsorption isotherm for different pore sizes.](image)
Comparison with internal resistance

Length of the nanotube, which has the same internal resistance as the interfacial resistance
Resistance vs pore size

\[R_{\mu} \text{ [m}^2\text{s J mol}^{-2}\text{K}^{-1}] \]

\[r, [\text{nm}] \]

\(CO_2, 5W \)
Resistivity vs pressure

$R_{\mu'} [m^2 s J mol^{-2} K^{-1}]$

$\rho, [\text{bar}]$

$\text{CO}_2, 1W$

- 4.00A
- 5.18A
- 8.68A
- 12.17A
- 29.64A
Summary: porous transport

- Confinement:
 - energy redistribution under constraints
- Altered phase diagram
 - closed system + compressible fluid
- Effect is larger for smaller system
- Phase transition leads to extra resistance
- Interactions with network are relevant
Thanks to

- David Reguera
- Dick Bedeaux
- Suresh Bhatia
- Peter Daivis

- J. Membrane Science 524, 738-745 (2017)