Which question will you tackle?
Investigate life
Which question will you tackle?
Discover

Why do Honours? 2
How to .. 4
Course details - biology 8
Course details - biochemistry and microbiology..........................10

Explore

Directory of academics 12
Supervisors and projects 16

Additional information

Checklist and contact 58
Why do Honours?

If you are looking to improve your career prospects, open the door to further academic study, or simply indulge a passion, then honours is your next step.

For some students, an honours year is an introduction to further academic research with many using it as a pathway to undertake a PhD.

For others, it is a stepping stone to an interesting career in science and an opportunity to extend your knowledge on a topic of interest.

Today’s job market for scientific positions is very competitive. In fact, many entry level positions now require an honours degree.

Our honours graduates find employment in a wide variety of fields – including federal and state government departments and agencies and non-government organisations within medical, environmental and conservation areas. They tell us that the skills they learned in verbal and written communication and critical analysis of issues along with their broader scientific knowledge have been crucial to them in their work.

Others enter environmental consultancy companies, pharmaceutical companies, zoos, museums, hospitals or research institutions such as the Commonwealth Scientific and Industrial Research Organisation (CSIRO).

Honours is a challenging year, but students look back on it as a very rewarding period in their life.

Course objectives
- train students to carry out independent research;
- enable students to develop a specialist understanding of one area of science;
- integrate specialist knowledge into a broad appreciation of life and environmental sciences;
- enable students to use skills in research methodology and philosophy; and
- continue to engender and encourage enthusiasm and curiosity in science.
"For my honours project I explored how the nitrifying bacteria in compost affect the growth of the common button mushroom Agaricus bisporus. It has been very interesting to observe how microorganisms behave in their natural environment as opposed to inside the laboratory."

Shang-Yu Shueh
Microbiology Honours student 2017
How to Qualify for Honours

Qualify for honours

The Faculty of Science requires that to enrol in an honours unit of study you must have satisfied all the requirements for a pass degree and be considered by the School and the Faculty to have the required knowledge and aptitude to undertake an honours course.

To qualify for honours you also must have provisional acceptance of project supervision by at least one academic in the School of Life and Environmental Sciences.

Specific additional academic requirements for biology honours are:
- a minimum of 24 credit points of senior units of study relating to the intended honours area in biology;
- a minimum SCIWAM (science weighted average mark) of 65 for all intermediate and senior units of study attempted

Specific additional academic requirements for biochemistry and microbiology honours are:
- a minimum of 24 completed credit points of senior units of study relating to the intended honours area in biochemistry or microbiology;
- either a credit average in 48 credit points of relevant intermediate and senior units of study or a SCIWAM of at least 65

Graduates from other Australian Universities: The minimum requirement for acceptance into the honours program is SCIWAM of 65. The Faculty of Science will calculate your SCIWAM after you have applied. Otherwise, the requirements for application are the same as for graduates from the University of Sydney.

International students: The International Office will assess your academic record and advise whether it is equivalent to a pass degree from the University of Sydney, at the level required for entry into Honours.

Apply for honours

Step 1: Find a project and supervisor. Get confirmation from your potential supervisor(s) that they are willing to supervise you.

Step 2: Submit your supervisor details to SOLES.
- For internal students: visit canvas.sydney.edu.au/courses/7931/pages/honours
- For external students: email soles.education@sydney.edu.au
Step 3: For domestic students submit the Faculty of Science Honours application;

− sydney.edu.au/courses/courses/uc/bachelor-of-science-honours.html

For internal (currently enrolled) international students, submit the Faculty of Science Honours application (above) and also submit an international undergraduate student application form to the International Office for visa processing. Part-time enrolment is not available for international students.

For external international students, contact the appropriate Honours Coordinator (details on page 9 and 11 of this guide) before applying through the International Office. You will need to provide evidence in your application form that you have secured an academic contact/supervisor. You must complete an international undergraduate student application form and lodge this from at the International Office. Part-time enrolment is not available for international students.

Application deadlines

For semester 1, 2019 applications, the last day for lodging your Step 2 application with the School is 29 November 2018. The last day for lodging your Step 3 application with the Faculty is 30 November 2018. The Faculty will contact you in mid December 2018 to confirm your offer.

Deadlines for semester 2, 2019 applications are yet to be determined. Please check the website:

− canvas.sydney.edu.au/courses/7931/pages/honours

The closing date for University of Sydney honours scholarships is January 2019 (exact date to be confirmed).

− sydney.edu.au/scholarships/prospective/honours

Contact

SOLES Education
soles.education@sydney.edu.au
How to Qualify for Honours

Choose a supervisor

Talk to them!
- Firstly, read through the following pages to find supervisors whose research interests you. Check out the projects online too as there may be more detail or additional project options.
- Email or phone supervisors whose research interests you to set up a meeting.
- Next, come prepared with some questions about their research programs, and be prepared to answer questions about your interests and future plans.
- Finally, speak to more than one potential supervisor. A personality match between supervisor and student is almost as important as a matched interest in an area of science!

Meet academics and current students

Join us at the ‘Meet a supervisor’ event on Tuesday 11 September 2018 from 4:30pm - 6pm at the Admin Building Foyer. Chat with academics and current students in this informal setting and enjoy some drinks and nibbles.

For your chance to ask specific questions of the honours coordinators, come along to the information sessions:
- The biology session is on Wednesday 12 September 2018 from 12-1pm in the Eastern Ave Seminar Room 406.
- The biochemistry and microbiology session is on Wednesday 12 September 2018 from 1-2pm in New Law Seminar Room 028.
“Honours was a fantastic year! For me, it was a great opportunity to work in a remote part of Australia on some really cool wildlife. It was also a very rewarding experience in which I learnt so much, not just about my specific topic area, but it also gave me greater insight into the research process and what it involves.”

Tamara Potter
Biology Honours Student 2016/17
Course details - biology

Outline
Honours students in biology are required to:
− undertake a major research project under the supervision of an academic member of staff;
− write a thesis based on this research;
− present an introductory and final seminar describing their work;
− undertake research skills training, including how to design experiments and perform appropriate statistical analyses; and
− attend weekly school seminars

Assessment
A majority of your final mark, 80%, comes from your thesis. Your thesis is comprised of original research which through the guidance of your supervisor you have developed, carried out, and written up. Your thesis will be assessed by three academics, usually within the life and environmental sciences.

The coursework component is the smallest component, comprising only 20% of the final mark. This includes your research and development proposal (7.5%), experimental design assessment (5%) and opinion article (7.5%).

Calendar
You can begin honours in either semester, but be aware that honours starts before the regular semester. You should discuss which semester you should start honours with your supervisor, as many projects have field work that can only be done during certain times of the year.

Starting dates will be confirmed when you get your letter of offer.

− Early February (Semester 1 entry) or Late July (Semester 2 entry): Honours commences with an orientation day (mandatory). Please note: there are compulsory workshops on several days for the first six weeks.
− Early March (or late August): submission of written project proposal
− Late February (or mid-August): project proposal oral presentation
− Early April (or mid-September): submission of opinion article
− Mid-August (or mid-February): end of experimental work
− Mid-September (or mid-March): final seminar
− Mid-October (or mid-April): submission of thesis
Course codes

Biology honours:
BIOL4012, BIOL4013, BIOL4014, BIOL4015 and BIOL4016

Coordinator

Professor Ashley Ward
Room 324, Heydon-Laurence Building (A08)
The University of Sydney
E ashley.ward@sydney.edu.au
T (02) 9351 4778

Image credit (below and above): Aaron Greenville
Course details – biochemistry and microbiology

Outline

Honours students in biochemistry and microbiology are inducted into a joint program.

Students are required to:

- undertake a major research project under the supervision of an academic member of staff;
- write a thesis based on this research;
- present an introductory and final seminar describing their work;
- undertake research skills training involving six tutorials and an examination; and
- attend the weekly school seminar

Assessment

Your research thesis (65%) is expected to be approximately 50 pages in length (<12,000 words). You will also undertake a short (20-30 minute) oral examination to defend your research.

You will present a final seminar (10%) of approximately 20 minutes describing the aims of your project, the results you obtained, and the significance of the results in the context of the published literature.

The research skills training task (25%) consists of approximately six 2-hour tutorials run by the honours committee in small groups of six to ten students. In these tutorials, each student will be assigned a scientific paper and will run a discussion amongst the group on that manuscript. You will be assessed on your presentation as well as your participation in the group discussions. In the final examination, you receive a scientific paper and are required to write an appraisal of that paper, highlighting your opinions of the research described.

Calendar

- Early February: honours commences and orientation day. Please note: orientation day is compulsory for all students. The day will include information on laboratory safety, computer usage and safety within the school.
- Mid-February: submission of written project proposal
- Late February: project proposal oral presentation
- Late April until early June: coursework tutorials and examination
- Late July: progress presentation
- Mid-October: submission of thesis
- Late October: final oral presentation and oral examination
Course codes

Biochemistry honours:
BCHM4011, BCHM4012, BCHM4013 and BCHM4014

Microbiology honours:
MICR4011, MICR4012, MICR4013 and MICR4014

Coordinator

Associate Professor Andrew Holmes
Level 4 East, Charles Perkins Centre
Bldg D17
The University of Sydney
T +61 2 9351 2530
E andrew.holmes@sydney.edu.au
Academic directory
Find your supervisor here

You will work with world-class scientists and scientific infrastructure. You will learn a multitude of new skills, and discover how excellent research is done.

<table>
<thead>
<tr>
<th>Biology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Page</td>
</tr>
<tr>
<td>16</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>18</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>21</td>
</tr>
<tr>
<td>22</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>24</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>29</td>
</tr>
<tr>
<td>30</td>
</tr>
<tr>
<td>31</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>32</td>
</tr>
<tr>
<td>33</td>
</tr>
<tr>
<td>Page</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>35</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>39</td>
</tr>
<tr>
<td>38</td>
</tr>
<tr>
<td>40</td>
</tr>
<tr>
<td>41</td>
</tr>
<tr>
<td>42</td>
</tr>
<tr>
<td>44</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>45</td>
</tr>
<tr>
<td>48</td>
</tr>
<tr>
<td>49</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>50</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>52</td>
</tr>
<tr>
<td>53</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>54</td>
</tr>
<tr>
<td>55</td>
</tr>
<tr>
<td>56</td>
</tr>
</tbody>
</table>

Microbiology

<table>
<thead>
<tr>
<th>Page</th>
<th>Name</th>
<th>Research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>21</td>
<td>Dee Carter</td>
<td>fungi, evolution, genetics</td>
</tr>
<tr>
<td>22</td>
<td>Nick Coleman</td>
<td>biotechnology, biodegradation</td>
</tr>
<tr>
<td>23</td>
<td>Stuart Cordwell</td>
<td>proteomics, human health</td>
</tr>
<tr>
<td>28</td>
<td>Neville Firth</td>
<td>evolutionary genetics, antibiotic resistance</td>
</tr>
<tr>
<td>Page</td>
<td>Name</td>
<td>Research area</td>
</tr>
<tr>
<td>------</td>
<td>---------------------</td>
<td>---</td>
</tr>
<tr>
<td>29</td>
<td>Merran Govendir</td>
<td>microbiology</td>
</tr>
<tr>
<td>30</td>
<td>Ruth Hall</td>
<td>antibiotic resistance, genetics</td>
</tr>
<tr>
<td>32</td>
<td>Andrew Holmes</td>
<td>nutrition, human health, gut microbes</td>
</tr>
<tr>
<td>36</td>
<td>Michael Kertesz</td>
<td>soil microbes, plant-microbe interactions</td>
</tr>
<tr>
<td>38</td>
<td>Osu Lilje</td>
<td>physiological ecology</td>
</tr>
<tr>
<td>43</td>
<td>Timothy Newsome</td>
<td>viral genetics</td>
</tr>
<tr>
<td>47</td>
<td>Mark Read</td>
<td>computational microbiology, immunology</td>
</tr>
<tr>
<td>47</td>
<td>Peter Reeves</td>
<td>genetics, biosynthesis</td>
</tr>
<tr>
<td>50</td>
<td>Alistair Senior</td>
<td>biology, biochemistry and microbiology</td>
</tr>
<tr>
<td>51</td>
<td>Erin Shanahan</td>
<td>microbiology</td>
</tr>
</tbody>
</table>

Biochemistry

<table>
<thead>
<tr>
<th>Page</th>
<th>Name</th>
<th>Research area</th>
</tr>
</thead>
<tbody>
<tr>
<td>16</td>
<td>Alyson Ashe</td>
<td>molecular biology, genetics</td>
</tr>
<tr>
<td>17</td>
<td>Kim Bell-Anderson</td>
<td>nutrition, metabolism</td>
</tr>
<tr>
<td>18</td>
<td>Jennie Brand-Miller</td>
<td>nutrition, metabolism</td>
</tr>
<tr>
<td>20</td>
<td>Mary Byrne</td>
<td>molecular biology, genetics</td>
</tr>
<tr>
<td>20</td>
<td>Iain Campbell</td>
<td>molecular biology, genetics</td>
</tr>
<tr>
<td>21</td>
<td>Dee Carter</td>
<td>microbiology</td>
</tr>
<tr>
<td>21</td>
<td>Min Chen</td>
<td>plant molecular biology</td>
</tr>
<tr>
<td>22</td>
<td>Nick Coleman</td>
<td>microbiology</td>
</tr>
<tr>
<td>23</td>
<td>Arthur Conigrave</td>
<td>nutrition, metabolism</td>
</tr>
<tr>
<td>23</td>
<td>Stuart Cordwell</td>
<td>biochemistry, cell biology</td>
</tr>
<tr>
<td>25</td>
<td>Gareth Denyer</td>
<td>molecular biology, genetics</td>
</tr>
<tr>
<td>27</td>
<td>Sandro Fernandes Ataide</td>
<td>structural biology</td>
</tr>
<tr>
<td>28</td>
<td>Neville Firth</td>
<td>evolutionary genetics</td>
</tr>
<tr>
<td>31</td>
<td>Marcus Heisler</td>
<td>plant development</td>
</tr>
<tr>
<td>33</td>
<td>Markus Hofer</td>
<td>molecular biology, genetics</td>
</tr>
<tr>
<td>No.</td>
<td>Name</td>
<td>Specializations</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>34</td>
<td>Andrew Holmes</td>
<td>microbiology</td>
</tr>
<tr>
<td>34</td>
<td>David James</td>
<td>nutrition, metabolism</td>
</tr>
<tr>
<td>35</td>
<td>Melkam Kebede</td>
<td>nutrition, metabolism</td>
</tr>
<tr>
<td>36</td>
<td>Ann Kwan</td>
<td>structural biology</td>
</tr>
<tr>
<td>37</td>
<td>Mark Larance</td>
<td>nutrition, proteomics</td>
</tr>
<tr>
<td>39</td>
<td>Joel Mackay</td>
<td>structural biology</td>
</tr>
<tr>
<td>41</td>
<td>Jacqui Matthews</td>
<td>structural biology</td>
</tr>
<tr>
<td>42</td>
<td>Greg Neely</td>
<td>behavioural genetics, sensory perception</td>
</tr>
<tr>
<td>43</td>
<td>Timothy Newsome</td>
<td>microbiology and biochemistry</td>
</tr>
<tr>
<td>44</td>
<td>Benjamin Parker</td>
<td>proteomics, biochemistry and metabolism</td>
</tr>
<tr>
<td>47</td>
<td>Mark Read</td>
<td>computational microbiology, immunology</td>
</tr>
<tr>
<td>48</td>
<td>Jenny Saleeba</td>
<td>genetics, molecular biology</td>
</tr>
<tr>
<td>50</td>
<td>Alistair Senior</td>
<td>biochemistry, biology and microbiology</td>
</tr>
<tr>
<td>51</td>
<td>Samantha Solon-Biet</td>
<td>nutrition, metabolism</td>
</tr>
<tr>
<td>52</td>
<td>Murray Thomson</td>
<td>physiological ecology, marine biology</td>
</tr>
<tr>
<td>53</td>
<td>Jibran Wali</td>
<td>nutrition, metabolism, diabetes/obesity</td>
</tr>
<tr>
<td>55</td>
<td>Anthony Weiss</td>
<td>proteomics, biotechnology</td>
</tr>
<tr>
<td>56</td>
<td>Giselle Yeo</td>
<td>biochemistry</td>
</tr>
</tbody>
</table>
Supervisors and projects
Which question will you tackle?

Dr Alyson Ashe

alyson.ashe@sydney.edu.au
Honours stream: Biochemistry

Research interests
We study epigenetic regulation of gene expression – the interplay between the environment that an organism encounters during its lifetime, and the expression patterns of its genes. Importantly, these environmental signals can sometimes get passed between generations (Darwin was wrong!), and we are trying to understand how this occurs.

Projects
- A forward genetic screen for genes involved in male fertility and epigenetic inheritance
- Training predators to recognise novel invasive prey and prevent invasions
- In vitro labelling of nascent RNA molecules
- A forward genetic screen for genes involved in male fertility and epigenetic inheritance
- Investigating the mechanism of transgenerational epigenetic inheritance. (with Prof Joel Mackay)

Professor Peter Banks

peter.banks@sydney.edu.au
Honours stream: Biology

Research interests
My research focuses on the behavioural ecology of Australian wildlife and aims to develop ecologically-based solutions to conservation problems. I am interested in invasive species, urban wildlife and the ecology of chemical communication. I work mainly with mammals, including bats, and most of our work is field based and involves manipulative experiments.

Projects
- Reducing mice damage to wheat crops using chemical camouflage
- Training predators to recognise novel invasive prey and prevent invasions
- Habitat selection by introduced rats across the urban:bushland divide
Professor Madeleine Beekman
madeleine.beekman@sydney.edu.au
Honours stream: Biology

Research interests
The ‘Bee lab’ is interested in behavioural ecology, behavioural genetics and molecular genetics of social insects and slime molds. We study honey bees (particularly Thai and African ones) and Australian native stingless bees. We are particularly interested in cheating behaviour: when workers start laying eggs or changing caste. We also study population genetics of invasive ants and bees, and use the slime mold to address general evolutionary questions.

If you want to know more about the specific projects the lab offers, have a look at our website at http://sydney.edu.au/science/biology/socialinsects/. There is a special link for you to our project offerings.

Dr Kim Bell-Anderson
kim.bellanderson@sydney.edu.au
Honours stream: Biochemistry

Research interests
Kim’s lab investigates how nutrients and energy are metabolised and their impact on health and disease in animal models. The aims of this research are to increase understanding of the mechanisms underpinning the regulation of insulin action by nutrition. Ultimately we need to optimise nutrition for health to prevent and reduce the burden of chronic disease.

Projects
- How nutrients regulate insulin sensitivity
- The effect of the glycemic index on energy metabolism and glucose homeostasis
Professor Kathy Belov

kathy.belov@sydney.edu.au
Honours stream: Biology

Research interests
My research group focuses on the evolution of the adaptive immune system in marsupials and monotremes. Through our industry partnerships we undertake conservation genetics with some of Australia’s most threatened species, such as the Tasmanian devils, koalas and bilbies, ensuring our research is applied in real-time to conservation problems.

Projects
- Ferocious by nature: Tasmanian devil behavioural genetics

Professor Jennie Brand-Miller

jennie.brandmiller@sydney.edu.au
Honours stream: Biochemistry

Research interests
Carbohydrates – friend or foe? Our group’s research on food carbohydrates has provided evidence that foods with a high glycaemic index (GI) increase the risk of chronic diseases, thereby challenging conventional views on healthy diets. This has raised the current profile and reach of nutrition science, and its potential future impact.

Projects
- Salivary amylase gene (AMY1) copy number and the amount of starch digested in a meal
- Salivary amylase gene (AMY1) copy number and satiety/appetite responses to foods (co-supervised with Dr Fiona Atkinson)
Dr Ana Bugnot

ana.bugnot@sydney.edu.au
Honours stream: Biology

Research interests
My research focusses on the rehabilitation of marine habitats in Sydney Harbour in collaboration with the Sydney Institute of Marine Science. This involves the restoration of oyster reefs in the Sydney area. Large oyster reefs historically characterised estuaries on the South-East coast of Australia, and played crucial roles in estuaries by filtering water, providing habitat for fish and invertebrates and protecting shoreline ecosystems. This project aims to understand how re-introducing depleted oyster reefs can accelerate the rehabilitation of contaminated urban estuaries, enhance biodiversity and provide shoreline protection.

Projects
- Rehabilitating biodiversity by restoring oyster reefs
- The role of introduced species in restoration efforts
- Oyster predators and their effects on natural reefs
- Potential effects of oyster restoration in estuarine nutrient cycling

Professor Maria Byrne

maria.byrne@sydney.edu.au
Honours stream: Biology

Research interests
I have a wide interest in the biology of marine invertebrates. My research is focused in two interlinked areas, global change biology and marine invertebrate evolution to determine the response of marine biota to global change and to understand mechanisms underlying evolution in the sea.

Projects
- Evolution and Development
- The Impact of Climate Change Stressors on Marine Invertebrates
Associate Professor Mary Byrne

mary.byrne@sydney.edu.au
Honours stream: Biochemistry

Research interests
We are interested in the genetic regulation of plant shoot development. Working with the model system Arabidopsis, we are able to use a broad range of genetic and molecular tools to investigate details of how homeodomain protein transcription factors control shoot meristem maintenance and leaf patterning.

Projects
- Determining the role of BLH genes in leaf development
- Investigating how SAW genes control the shape of leaves.
- Developing tools for gene expression studies using CRISPR/Cas9.

Professor Emeritus Iain Campbell

iain.campbell@sydney.edu.au
Honours stream: Biochemistry

Research interests
Cytokines are important host response molecules. Learning how cytokines function in the brain to cause inflammation and disease remains an important puzzle to solve and is a major goal of our research. We seek to understand the precise signal transduction mechanisms and gene regulatory programs altered by cytokines in the brain and how this impacts the central nervous system to cause neurological disease.

Projects
- IL-6/gp130 cytokine signalling and actions in the brain
- Type I interferon signalling and actions in the brain (all projects in collaboration with and co-supervision of Dr Markus Hofer)
Professor Dee Carter
dee.carter@sydney.edu.au
Honours stream: Microbiology or Biochemistry

Research interests
Fungi have a huge impact on our health, food and environment. We are interested in how fungi are able to cause harm and resist treatment, and in new approaches to treat fungal diseases.

Projects
- The use of antimicrobial honey and milk proteins to treat fungal infections
- Micro-cell variants in Cryptococcus and their role in infection
- Antifungal resistance in Cryptococcus

Professor Min Chen
min.chen@sydney.edu.au
Honours stream: Biochemistry or Biology

Research interests
Our research focus is on improving photosynthetic efficiency by modifying light-harvesting complexes and changing their energy transfer pathways, especially with unique photopigments. We use state-of-the-art molecular and biochemical approaches to understand the photosynthetic apparatus, including internal/external membrane pigment-binding protein complexes.

Projects
- The effect of iron on the photosynthetic apparatus
- Optimization of CRISPRs and their applications for discovery of genes related to the Chlorophyll biosynthetic pathway
- Diversity of light-harvesting complexes and their potential to improve photosynthetic efficiency
Dr Nicholas Coleman
nicholas.coleman@sydney.edu.au
Honours stream: Microbiology or Biochemistry

Research interests
Environmental microbiology, biotechnology, synthetic biology, bacterial evolution. Our lab takes inspiration from the incredible power of microorganisms to catalyse useful reactions. We are interested in the interface between microbes and anthropogenic chemicals; this includes studies of pollutant biodegradation, biocatalysis, and the movement of antibiotic resistance genes.

Projects
- Development of biocatalysts for green synthesis of epoxides
- Engineering bacteria for enhanced biodegradation of organochlorines
- Synthetic biology: Creation of an ethylene biosensor

Associate Professor Ross Coleman
ross.coleman@sydney.edu.au
Honours stream: Biology

Research interests
The Coastal and Marine Ecosystems group uses experimental and modelling approaches to understand the basis of animal distributions and interactions in coastal systems and how these interact with oceanic phenomena. My research looks at how and why biodiversity is spatially structured, and how organisms may behave or modify their physiology as to reduce the chances of being eaten.

Projects
- Wound-induced defence in seaweed
- Biodiversity and geomorphology of rocky shores under climate change
Professor Arthur Conigrave

arthur.conigrave@sydney.edu.au
Honours stream: Biochemistry

Research interests
Our research focuses on the molecular and cellular mechanisms that underlie nutrient sensing with a particular interest in nutrient-sensing G-protein coupled receptors including amino acid/calcium-sensing receptors and amino acid/glucose/fructose-sensing receptors that coordinate responses to nutrients.

Our work involves cell culture, molecular engineering, transfection and transduction of vectors and plasmids, protein detection and purification, analysis of protein interactions, biochemical pathway analyses and phenotypic characterisation of transgenic mouse models.

Professor Stuart Cordwell

stuart.cordwell@sydney.edu.au
Honours stream: Biochemistry or Microbiology

Research interests
The tools of proteomics have become essential in the study of health and disease in the post-genome era. Our group is primarily interested in understanding disease processes with the aim of discovering new protein- and peptide-based targets for the diagnosis of disease, as well as novel vaccines and better therapies. We investigate two broad biological systems: bacterial pathogens and ischemic heart disease.

Projects
− The role of N-linked protein glycosylation in bacterial pathogenesis
− Crosslinking mass spectrometry to define protein complexes in bacterial disease
− Post-translational modifications in cardiovascular disease
Dr Angela Crean

angela.crean@sydney.edu.au
Honours stream: Biology

Research interests
Not all sperm are created equal; they vary in size, shape, viability, motility, and swimming speed. The causes and consequences of this variability in sperm quality are often unknown. I am interested in how a male’s environment influences his sperm quality, and whether changes in sperm quality can influence traits in his offspring.

Projects
- What should a male eat to boost sperm quality?
- Do speedy sperm make fast growing babies?

Associate Professor Mathew Crowther

mathew.crowther@sydney.edu.au
Honours stream: Biology

Research interests
My research involves the ecology and evolution of native and introduced fauna, using a combination of field, laboratory and statistical approaches.

Projects
- What environmental factors determine the distribution, density and movement of koalas on a fragmented landscape
- What chemicals in cat fur cause a fear response in rodents (with Prof Iain McGregor, Psychology)
- Do native and introduced rodents show the same fear response to cat odours? (with Prof Iain McGregor, Psychology)
Dr Mark de Bruyn
mark.debruyn@sydney.edu.au
Honours stream: Biology

Research interests
I am a population geneticist focussing on molecular ecology, with an interest in the development and application of novel tools, such as environmental DNA, ancient DNA and wildlife forensics, for biodiversity science. I work across taxonomic groups, but have a keen interest in freshwater systems.

Projects
− Developing environmental DNA tools for rapid bio-assessment
− Has past climate change caused ‘reverse speciation’ in freshwater fishes?
− Assembling a phylogenetic framework for the Australia biota

Associate Professor Gareth Denyer
gareth.denyer@sydney.edu.au
Honours stream: Biochemistry

Research interests
Obesity causes disease through the secretion of cytokines from adipocytes and macrophages in adipose tissue. We discovered that the expression of inflammatory genes in adipocytes has a memory, with prior exposure causing larger responses. Our aim is to understand the ramifications of this phenomenon and define its underlying molecular mechanisms.

Projects
− Epigenetic regulation of adipocyte inflammatory gene expression
− Do human adipocytes show transcriptional memory?
Professor Chris Dickman

chris.dickman@sydney.edu.au
Honours stream: Biology

Research interests
The major focus of the Terrestrial Ecology Lab is to explore the factors that influence the distribution and abundance of terrestrial vertebrates. This research is inherently fascinating because it allows us to uncover and explain the causes of many intriguing patterns of vertebrate distributions in the Australian fauna. It is also of practical importance because so many species have declined or become extinct with the advent of European settlement, and there is a clear imperative to prevent further losses.

Dr Bradley Evans

bradley.evans@sydney.edu.au
Honours stream: Biology

Research interests
I have expertise in modelling and sensing natural (native) and semi-natural (i.e. agricultural) environments using both ground based sensors, airborne (planes and drones) and satellites. My research focuses on understanding the ecophysiology, climate and environmental constraints affecting biophysical models of plant growth and water use.

Projects
- High-resolution estimation of above ground biomass and plant productivity
- Using drones on farms to improve productivity
Dr Sandro Fernandes Ataide
sandro.ataide@sydney.edu.au
Honours stream: Biochemistry

Research interests
We use biophysical tools to investigate the structure and function of RNA-protein complexes and how they regulate cellular process. Especially, we are interested in how non-coding RNAs mediate epigenetic regulation in cancer and other related diseases. Our goal is to harness their functions for biomedical and biotechnological purpose.

Projects
- Biochemical characterization of a versatile transposase Tnp26
- Exploiting the bacterial SRP receptor as a drug target
Associate Professor William Figueira
will.figueira@sydney.edu.au
Honours stream: Biology

Research interests
The focus of research within my lab is the population ecology of marine fishes and includes a variety of projects from demographic studies to climate change and management. My group has an emphasis on quantitative analytical methods and we work in temperate and tropical environments using a variety of in-situ data collection techniques.

Projects
- Understanding the processes of seasonal persistence of tropical marine fishes
- Understanding linkages between environment and growth in settlement stage fishes
- 3D mapping of benthic marine systems and evaluating the role of structural complexity on the dynamics of biodiversity in these systems

Associate Professor Neville Firth
neville.firth@sydney.edu.au
Honours stream: Microbiology or Biochemistry

Research interests
Strains of Staphylococcus aureus that are resistant to antibiotics are a significant medical problem. My laboratory investigates the roles of mobile genetic elements in the evolution of antimicrobial resistance, with a focus on the molecular biology of plasmids that facilitate the acquisition, maintenance and dissemination of resistance genes in staphylococci.

Projects
- Genetics of S. aureus conjugative multiresistance plasmids
- Protein-protein interactions responsible for horizontal transfer of resistance plasmids
Dr Roslyn Gloag

ros.gloag@sydney.edu.au
Honours stream: Biology

Research interests
“The ‘Bee lab’ is interested in the behavioural ecology, behavioural genetics and molecular genetics of social insects, plus a few other critters. We study honey bees, their viruses, and Australian native stingless bees, and slime moulds. My own particular interests are the population genetics of invasive bees in Queensland and Austral-Asia, the ecology of native and introduced bees, including as crop pollinators, and the evolution of the honey bee sex determination system.

Projects
Check out the range of lab projects are our website at http://sydney.edu.au/science/biology/socialinsects/. There is a special link for you to our project offerings.

Associate Professor Merran Govendir

merran.govendir@sydney.edu.au
Honours stream: Microbiology

Research interests
My laboratory investigates how effective medicines are in animals. We do a lot of research into how antimicrobials work in koalas. We all know how unique koalas are, but because of their specialised Eucalyptus diet they have some very active metabolism pathways to eliminate eucalypt toxins and thus they can do some unusual metabolism conversions of antimicrobials. We have identified some koala specific antimicrobial metabolites. This project will involve the student working out a method to check whether these metabolites have some antimicrobial activity. You will be taught antimicrobial susceptibility testing and the successful student will need to have enthusiasm and high attention to detail.

Projects
- Investigating whether selected antimicrobial metabolites made by koalas have any antimicrobial activity
Dr Catherine Grueber
catherine.grueber@sydney.edu.au
Honours stream: Biology

Research interests
My research investigates how animal populations respond to natural and “unnatural” conditions: whether bringing threatened species into captivity to prevent extinction, or securing a more productive food supply through animal breeding. We use evolutionary theory, population genetics, computational modelling and meta-analysis to learn how to maximise species resilience for the future.

Projects
- Marsupials behind fences - conservation genetics of threatened species
- Evolutionary ecology of Tasmanian devil white markings - why do they vary so much?

Professor Ruth Hall
ruth.hall@sydney.edu.au
Honours stream: Microbiology or Biochemistry

Research interests
Projects in the Hall laboratory focus on the mechanisms that lead to accumulation of resistance to many different antibiotics in Gram-negative bacteria such as Acinetobacter, Escherichia coli, and Klebsiella. In particular, we study where resistance genes come from and how they are brought into and maintained in human pathogens.

Projects
- Becoming pan resistant - evolution of Acinetobacter baumannii multi-resistant clones
- Role of plasmids in the accumulation of resistance genes to generate pan resistance
- What distinguishes transposition of IS26 from other IS?
Associate Professor Marcus Heisler
marcus.heisler@sydney.edu.au
Honours stream: Biochemistry

Research interests
Our research focus is on developmental patterning in plants using the model species Arabidopsis thaliana. In particular, we are interested in how plants create their wonderful symmetrical arrangements of leaves and flowers and how particular organ shapes are formed. Our approach is to analyse development dynamically at cellular resolution using confocal microscopy and by using fine scale genetic perturbations to dissect intercellular signalling pathways. See: www.heislerlab.com

Projects
- Dissecting cell-cell communication underlying cell polarity coordination
- Investigating a developmental organiser involved in leaf morphogenesis

Associate Professor Murray Henwood
murray.henwood@sydney.edu.au
Honours stream: Biology

Research interests
Our research focuses on the molecular and cellular In the Plant Systematics Laboratory, our research is concerned with the recognition and documentation of patterns of variation in time and space within all elements of the Australian flora. To achieve these goals we use a variety of techniques and data-sources including fossils, geographic distributions, morphology and anatomy, and nucleotide sequences.

Projects
- Southern connections: understanding the role of Gondwana in the divergence and radiation of the ivies (Araliaceae)
Dr Catherine Herbert

catherine.herbert@sydney.edu.au
Honours stream: Biology

Research interests
My research team investigates key biological processes influencing the management of marsupial populations. We focus on having a solid foundation of knowledge to facilitate evidence-based wildlife management, with two key themes: (1) Understanding baseline population parameters and the basis of human-wildlife conflicts; and (2) Understanding how wildlife management approaches affect individual animals and broader population dynamics.

Projects
- Wildlife rehabilitation, “stress” and survival in brushtail possums
- Understanding factors influencing the survival of hand-reared brushtail possums post-release
- Understanding the movement behaviour of kangaroos and wallabies within the context of rapid urbanisation in Western Sydney

Professor Simon Ho

simon.ho@sydney.edu.au
Honours stream: Biology

Research interests
I am a computational evolutionary biologist and my research is based on analyses of genetic data to answer evolutionary questions. This usually involves the study of molecular clocks, evolutionary rates and timescales, and phylogenetic methods. My work spans a broad range of taxa, including vertebrates, insects, fungi, plants, and viruses.

Projects
- Rates of molecular evolution across the Tree of Life
- Phylogenomic estimation of evolutionary timescales
Associate Professor Dieter Hochuli
dieter.hochuli@sydney.edu.au
Honours stream: Biology

Research interests
My research focuses on insect-plant interactions, community ecology and conservation biology. Much of my work examines the ecology of urban environments and their biodiversity, identifying responses to landscape degradation and ecosystem stressors, as well as how to enhance greenspace in cities. I’m interested in projects scaling responses from individuals to landscapes in a range of systems.

Projects
- The ecology of greenspace in cities
- Are urban ecosystems hostile environments for biodiversity?
- How does biodiversity adapt to life in the city?

Dr Markus Hofer
markus.hofer@sydney.edu.au
Honours stream: Biochemistry

Research interests
Cytokinopathies are a group of debilitating diseases that are caused by inappropriate production of cytokines such as interferon-alpha and interleukin-6. Examples of cytokininopathies include Aicardi-Goutières syndrome and systemic lupus erythematosus. Our research group aims to identify the molecular mechanisms and key cellular targets that underlie cytokininopathies using in vivo and in vitro models.

Projects
- The role of blood vessels and immune cells in cytokininopathies.
Associate Professor Andrew Holmes

andrew.holmes@sydney.edu.au
Honours stream: Microbiology or Biochemistry

Research interests
Our gut microbiome has an enormous impact on our health through its contribution to digestion and interaction with the enteric endocrine, lymphoid and nervous systems. A dysfunctional host-microbiome interaction is a factor in many diseases including obesity, diabetes and inflammatory disorders.

Projects
- Quantifying the microbiome impact on nutrition and immune function
- Computer simulation of the diet-microbe-health interaction axis

Professor David James

david.james@sydney.edu.au
Honours stream: Biochemistry

Research interests
Our lab is interested in metabolic diseases like diabetes. We are interested in insulin signaling, insulin regulated GLUT4 trafficking, how diets interact with genetics to create different outcomes, the cause of insulin resistance and the role of mitochondria in this. Technologies include mass spectrometry, live cell imaging and bioinformatics.

Projects
- Mapping new functions of insulin and exercise
- The interaction between diet and the genome in flies and mice
- Studying the mechanism of insulin resistance
- How does insulin regulate lipolysis
Dr Melkam Kebede

melkam.kebede@sydney.edu.au
Honours stream: Biochemistry

Research interests
There is a loss of pancreatic β-cell function in type 2 diabetes. This is characterised by reduction in glucose-stimulated insulin secretion. In β-cells, insulin is packaged and stored in secretory granules (SGs). Upon stimulation, these granules mobilize and fuse with the plasma membrane (PM), delivering insulin to the bloodstream. Our lab is interested in understanding the molecular composition of insulin SGs and how they control secretion properties under normal and disease conditions.

Projects
- Characterising insulin secretory granules as a function of age under normal conditions
- Characterising insulin secretory granules as a function of age under conditions of metabolic stress

Associate Professor Brian Jones

brian.jones@sydney.edu.au
Honours stream: Biology

Research interests
From understanding the basis of gene function to producing designer life forms, the breakthrough CRISPR/Cas and related technologies have opened a new world of possibilities. We are exploring ways to improve CRISPR/Cas function and are using it to manipulate one of the fundamental processes in biology, reproductive development in plants.

Projects
- Optimising gene knockout in embryonic cells
- Reproductive cell-specific CRISPR/Cas function
Associate Professor Michael Kertesz
michael.kertesz@sydney.edu.au
Honours stream: Microbiology

Research interests
As molecular microbial ecologists, we are interested in the functional microbial interactions between bacteria, fungi, plants and soil or compost. Soil and compost constitute highly dynamic and complex ecosystems and understanding microbial activity and interactions in these environments has major practical implications for sustainable food production.

Projects
- How bacteria provide crops with essential sulfur for growth
- Hot fungi - the role of thermophilic fungi in mushroom compost production
- Why fungi need bacteria for button mushroom cropping

Dr Ann Kwan
ann.kwan@sydney.edu.au
Honours stream: Biochemistry

Research interests
Increasingly, major progresses in biology and medicine are only possible through a combined effort from different fields. My laboratory is focused on solving important biological problems using a cross-disciplinary approach that range from molecular biology, cell culture, protein chemistry, biophysics, structure biology, modelling, microscopy, surface measurements and metabolomics.

Projects
- Engineering proteins and nanoparticles for drug delivery and coating applications
- Characterising and developing inhibitors to proteins implicated in periodontal and autoimmune diseases Project
- Investigating the effects on cellular signalling and communication with novel cancer and other therapies
Dr Mark Larance
mark.larance@sydney.edu.au
Honours stream: Biochemistry

Research interests
In animals, short periods of nutrient deprivation, such as intermittent fasting, have been shown to provide benefits with regard to cancer risk and ageing. I aim to identify how this is occurring at the protein-level, determine how intermittent fasting can improve metabolic health and improve the nutrient deprivation regimes for implementation in humans, for the prevention and treatment of cancer.

Projects
- Mapping Liver Protein-Protein Interactions Using Crosslinking and the Fusion Tribrid Mass Spectrometer
- Analysis of Human Plasma Protein Changes after Intermittent Fasting using Proteomics
- Identification of Transcription Factor Networks Regulated by Intermittent Fasting in Liver
Dr Tanya Latty
tanya.latty@sydney.edu.au
Honours stream: Biology

Research interests
We are invertebrate ecologists focused on: 1) Swarm intelligence in bees, ants and slime moulds and 2) insect pollination ecology, especially in urban and rural agriculture. 3) general invertebrate behaviour, especially social behaviours and foraging behaviour.

Projects
- Ants as engineers: how do meat ants build efficient roadways?
- Bee Group hunting in glue-shooting velvet worms
- Foraging behaviour of hoverflies
- Collective behaviour in soldier fly larvae
- Flower choice and irrationality in pollinators (bees or flies)

Dr Osu Lilje
osu.lilje@sydney.edu.au
Honours stream: Microbiology or Biology

Research interests
My research interest focuses on microbial ecology and how the eukaryotic microorganisms respond to changes in the environment. My research involves aseptic culture work, in vitro modelling, microscopy, environmental sampling, molecular analysis, conceptual and statistical modelling and molecular techniques such as next generation sequencing.

Projects
- Characterising isolated Labyrinthula, potential protistan pathogens of seagrasses
- Do environmental and anthropogenic factors influence aquatic microbial diversity?
Associate Professor Nathan Lo

Honours stream: Biology

Research interests
We are interested in the nexus between evolution, ecology, and genetics/molecular biology. We study evolution at a broad range of temporal scales and in diverse taxa. We use a variety of computational and molecular techniques, focusing on genomic data.

Projects
- How predictable is evolution? Investigating parallel genetic evolution in bacterial symbionts of native Australian cockroaches (with co-supervision by Professor Eddie Holmes)
- The role of the bacterial symbiont Midichloria mitochondrii in Australian paralysis tick biology
- How do genes switch on and off? We are exploring the mechanisms underlying transcriptional and epigenetic gene regulation and trying to design new molecules to modulate gene expression, with a focus on cancer. Projects may involve the following methods: mammalian cell culture, DNA, mass spectrometry, cloning, protein expression and purification, protein biochemistry, structural biology.
- How does the Nucleosome Remodelling and Deacetylase complex remode chromatin?
- Can we design targeted epigenetic modifier enzymes using CRISPR/Cas9 fusion proteins?
- Is the histone code really a transcription factor probe?

Professor Joel Mackay

Honours stream: Biochemistry

Research interests
How are genes switched on and off? We are exploring the mechanisms underlying transcriptional and epigenetic gene regulation and trying to design new molecules to modulate gene expression, with a focus on cancer. Projects may involve the following methods: mammalian cell culture, DNA, mass spectrometry, cloning, protein expression and purification, protein biochemistry, structural biology.

Projects
- How does the Nucleosome Remodelling and Deacetylase complex remode chromatin?
- Can we design targeted epigenetic modifier enzymes using CRISPR/Cas9 fusion proteins?
- Is the histone code really a transcription factor probe?

Which question will you tackle? Supervisors and projects
Dr Ezequiel Marzinelli
:e.marzinelli@sydney.edu.au
Honours stream: Microbiology or Biology

Research interests
I am broadly interested in marine ecology and microbial ecology. My research focuses on understanding the ecological processes that generate, maintain and impact marine ecosystems, and aims to develop solutions to environmental problems. I am particularly interested in the role microbes play on the resilience of habitat-forming hosts (kelps, seagrass, corals) to environmental stressors such as warming and pollution, and on restoration of these systems (see e.g. operationcrayweed.com). My research combines manipulative experiments with molecular tools, and its mostly field-based.

Projects
− Disturbance and phase-shifts in marine ecosystems
− Host-microbiome interactions and resilience
− Any aspects of marine ecology
Professor Jacqui Matthews
jacqueline.matthews@sydney.edu.au
Honours stream: Biochemistry

Research interests
The LIM-only (LMO) proteins play essential roles in normal development and disease. All of these proteins form multiprotein complexes that regulate gene expression, and we use predominantly in vitro techniques (molecular biology, protein engineering and chemistry, structural characterisation) to work out how complexes assemble, what they look like and how to modulate complex formation to treat disease.

Projects
- LMO2 - blood cell development / T-cell leukemia
- LMO4 - brain development / breast cancer

Associate Professor Clare McArthur
clare.mcarthur@sydney.edu.au
Honours stream: Biology

Research interests
My research explores the ecological interactions of herbivores with plants and predators: how herbivores solve the key foraging problem of eating without being eaten, how plants defend when they can’t escape and how the fear of predators modifies these interactions. These projects can be applied to conservation and management of both herbivores and plants.

Projects
- Quantify how mammalian herbivores such as swamp wallabies use odour and visual cues of plants when searching for food in complex natural landscapes (with Professor Peter Banks)
Associate Professor Greg Neely

greg.neely@sydney.edu.au
Honours stream: Biochemistry

Research interests
Our lab is focused on functional annotation of the genome. Our objective is to identify genes and coding mutations that participate in major age-related and neurological diseases. We combine human genomics data with functional validation in vivo to identify new genes that contribute to human neurological disease.

Projects
- Whole genome CRISPR screening in human cells
- Extending lifespan by increasing cognitive function
- Functional screening in stem cells to find new drugs

Dr Thomas Newsome
thomas.newsome@sydney.edu.au
Honours stream: Biology

Research interests
Dr Newsome established the Global Ecology Lab in 2018. Much of our work seeks to understand how species respond to human-induced changes to the landscape. Our work provides solutions to the challenges of wildlife conservation and management in a rapidly changing world.

Projects
- Can artificially distributed carcasses curb the cat threat and save the endangered night parrot from extinction?
- Can the sound of dingoes howling induce a landscape of fear?
Dr Timothy Newsome

timothy.newsome@sydney.edu.au
Honours stream: Microbiology or Biochemistry

Research interests
What viral pathogens have learnt about their host’s biology is written down in their genomes, a toolbox used to prise open their hosts, subvert signalling pathways and assemble viral progeny. Our research seeks to understand how viruses spread in a multicellular host and the role of viral infection on the host cytoskeleton and cell behaviour. We use viral genetics, biochemistry, cell biological analyses and advanced light microscopy to gain insight into these processes.

Projects
- Viral co-option of cancer signalling pathways to promote virus spread
- Virus transport mediated by microtubule motor complexes and the actin cytoskeleton
Professor Ben Oldroyd

benjamin.oldroyd@sydney.edu.au
Honours stream: Biology

Research interests
The ‘Bee lab’ is interested in behavioural ecology, behavioural genetics and molecular genetics of social insects and slime molds. We study honey bees (particularly Thai and African ones) and Australian native stingless bees. We are particularly interested in cheating behaviour: when workers start laying eggs or changing caste. We also study population genetics of invasive ants and bees, and use the slime mold to address general evolutionary questions.

Projects
- If you want to know more about the specific projects the lab offers, have a look at our website http://sydney.edu.au/science/biology/socialinsects/.

Dr Benjamin Parker

benjamin.parker@sydney.edu.au
Honours stream: Biochemistry

Research interests
My research aims to elucidate the pathways perturbed during metabolic stress. We use systems biology to understand how metabolic pathways are regulated during development, how they become dysregulated during disease, and how we can control pathways to prevent and / or treat disease.

Projects
- Mapping signal transduction pathways in exercise and type-2 diabetes
- Quantifying protein post-translational modifications during muscle development
Associate Professor Rosanne Quinnell

rosanne.quinnell@sydney.edu.au
Honours stream: Biology

Research interests
My main research area is in science education. I am interested in how students learn to practice science and I have a particular interests in student numeracy and in eLearning. I have been investigating student numeracy using several theoretical frameworks including the Thresholds Concepts Framework and Mindfulness with colleagues in School of Mathematics and Statistics and at UNSW.

Projects
- Please contact me to discuss a project in either science education or plant science

Professor David Raubenheimer

david.raubenheimer@sydney.edu.au
Honours stream: Biology

Research interests
I am a comparative nutritional ecologist, with a particular interest in the ways that nutrients influence the behaviour, physiology, life history and fitness of animals. My work spans species from insects to fish, birds, rodents and large mammals, including non-human primates (monkeys, lemurs and gorillas) and humans, and includes both field and lab studies.

Projects
- Foraging strategies of the Kakapo parrots
- Sex differences in foraging strategies in Australasian gannets in New Zealand
Dr Mark Read
mark.read@sydney.edu.au
Honours stream: Microbiology or Biochemistry

Research interests
Understanding the complex nature of biological systems requires new “constructionist” techniques. How do emergent states such as health or disease manifest from biological components? How do we intervene? These projects couple high-throughput technologies with modelling and machine learning answer these questions, predominantly in the gut microbiome and the immune system.

Projects
- Disease diagnostics and prognostics based on the gut microbiome
- Designing interventions to correct a dysbiotic gut microbiome
- How do immune cells hunt for pathogens and cancers?

Professor Peter Reeves
peter.reevesl@sydney.edu.au
Honours stream: Microbiology

Research interests
O antigen is a polysaccharide covering Gram-negative bacterial cells. It helps pathogens survive the host innate immune system, but also is immunogenic and used in vaccines. The individual sugars and their linkages vary even within species, so they are antigenically diverse, with many serotypes each with a distinct set of genes for synthesis. We work on the genetics of this diversity, regulation of O-antigen biosynthesis, and vaccine development.

Projects
- Specificity of each Wzx flippase protein for its own O antigen
- Assembling new gene clusters for novel polysaccharides
Dr Emily Remnant

emily.remnant@sydney.edu.au
Honours stream: Biology

Research interests
"The ‘Bee lab’ is interested in behavioural ecology, behavioural genetics and molecular genetics of social insects and slime moulds (yes, you have read that correctly). We study honey bees, their viruses, and Australian native stingless bees. My research investigates honey bee virus evolution and competition, the genetics of host-parasite interactions, and the functional role of epigenetics in bees.

Projects
Check out the range of lab projects at our website at http://sydney.edu.au/science/biology/socialinsects/. There is a special link under ‘prospective students’ for our project offerings.

Dr Jenny Saleeba

jenny.saleeba@sydney.edu.au
Honours stream: Biochemistry

Research interests
My philosophy is that scientific progress at the molecular level comes into its own when small molecular changes affect the phenotype of the whole organism. For this reason, we investigate the effect that small genetic changes have on the whole organism and the way in which phenotypic differences are encoded by the genome.

Projects
- Genetics of complex traits
- Genomics of an inherited eye disorder, superficial chronic keratitis, in the Australian Racing Greyhound
Research interests
I am interested in how environmental change and variability affect the physiology of animals, and thereby movement, behaviour, and ecology. I use techniques ranging from molecular to whole-animal observations. For recent projects, have a look at my publications on Google Scholar or Web of Science, and contact me if you are interested in doing an honours project in this field.
Professor Richard Shine

rick.shine@sydney.edu.au
Honours stream: Biology

Research interests
I study the ecology and evolution of reptiles and amphibians – partly because they are so damn interesting, and partly because we need to understand these creatures if we are to have any hope of conserving their populations. My studies span the range from tropical snakes and invasive cane toads, through to endangered snakes and lizards in New South Wales.

Projects
- Rapid evolution in cane toads
- Novel approaches to cane toad control

Dr Alistair Senior

alistair.senior@sydney.edu.au
Honours stream: Biochemistry, Biology and Microbiology

Research interests
I am interested in the effects of diet on organismal life-history. That is, how does what an organism eat affect how long it lives and how much it reproduces? I address these questions using a range of techniques including experiments, meta-analysis and computational simulation.

Projects
- The nutritional geometry of developmental noise
- The quantitative genetics of diet and life-history
- Comparative meta-analytic insights in to diet and variation in lifespan
Dr Erin Shanahan
erin.shanahan@sydney.edu.au
Honours stream: Microbiology

Research interests
We are interested in understanding how host-microbiome interactions influence health. Disruption to the gut microbial community is implicated in the development and progression of chronic gastrointestinal diseases, metabolic disorders and colorectal cancer. Diet is a key factor driving host-gut microbiota interactions. Therefore we aim to understand how nutrient availability influences functional properties of the microbiota, and how microbial metabolites influence the gut epithelium, immune homeostasis and colorectal cancer risk.

Projects
- Host-microbiome interactions in the intestinal microenvironment
- The functional microbiota: understanding how microbes contribute to tumour development in the gut

Dr Samantha Solon-Biet
samantha.biet@sydney.edu.au
Honours stream: Biochemistry

Research interests
Diets low in protein and high in carbohydrate delays ageing and extends lifespan in mice. Exactly how this occurs is unclear. My work investigates the underlying nutrient signalling pathways that drive these responses with the goal of using nutritional interventions to delay the onset age-related disease and extend healthy lifespan.

Projects
- Is reducing branched chain amino acid intake the key to improving metabolic health?
Associate Professor Charlotte Taylor

charlotte.taylor@sydney.edu.au
Honours stream: Biology

Research interests
My research focuses on an integration of urban ecology, scientific literacy and biodiversity education. My students work across a wide range of topics, from the ecology of urban birds (parrots, mynas and noisy miners) to the ecological literacy of kindergarten children and pre-service teachers.

Projects
- Urban biodiversity and resource availability
- Eco-literacy – how do you think like a biologist?

Dr Murray Thomson

murray.thomson@sydney.edu.au
Honours stream: Biochemistry or Biology

Research interests
Stress and reproduction in animals can be investigated using diverse approaches including behavioural studies, physiology, cell biology and microscopy. Most of my recent research focuses on the marine isopod Cirolana harfordi that, gives live birth, is a social animal and represents the evolutionary transition from sea to land.

Projects
- Social and amphibious behavior of the marine crustacean Cirolana harfordi
- How Cirolana harfordi deals with the stress of salinity changes
- A custom project on stress and or reproduction in marine organisms
Dr Jibran Wali
jibran.wali@sydney.edu.au
Honours stream: Biochemistry

Research interests
My research focuses on how dietary carbohydrate, protein and fat interact and how this can cause obesity and diabetes. I am investigating the differences in the metabolic effects of major dietary carbohydrates (glucose, fructose, starch and sucrose). This involves in vivo assessment of the metabolic status of laboratory mice maintained on experimental diets and in vitro examination of nutrient signalling pathways.

Projects
- Comparing the impact of the major dietary monosaccharides (glucose vs fructose) on metabolic health.
- How are the effects of consuming different types of carbohydrates influenced by the protein and fat content of the diet?

Professor Ashley Ward
ashley.ward@sydney.edu.au
Honours stream: Biology

Research interests
I’m interested in all aspects of animal behaviour. I have supervised a diverse range of honours topics: cleaner wrasse behaviour on the reef, courtship behaviour and mate choice decisions, the physiology that underlies behaviour, and, predator-prey interactions. My main research is focussed on collective behaviour in animals, how animal groups work and how the function.

Projects
- How the many become one: collective behaviour in natural systems
- Learning and information use in animal groups
Professor Glenda Wardle

glenda.wardle@sydney.edu.au
Honours stream: Biology

Research interests
My research explores why plants, animals, populations and ecosystems vary and how this contributes to their persistence. I especially love arid ecology and using experiments and models in clever ways to advance the knowledge we have to manage and conserve the ecosystems that support us.

Projects
- Study the population biology of Plantago lanceolata as part of a global team
- Experimentally test how adding nutrients or imposing drought changes the species composition and ecosystem processes of arid grasslands

Associate Professor Charles Warren

charles.warren@sydney.edu.au
Honours stream: Biology

Research interests
My lab investigates how plants function and interact with soil. The scope of this research includes the roles of plants and soil microbes in processes at the ecosystem scale, for example, ecosystem cycles of carbon, nitrogen and phosphorus.

Projects
- Diversity and co-existence of plant species, is it related to strategies of nitrogen uptake?
- Co-evolution of plant and microbial strategies for dealing with P deficiency
Professor Anthony Weiss
tony.weiss@sydney.edu.au
Honours stream: Biochemistry

Research interests
We are building elastic tissue components in the Charles Perkins Centre. Our biomaterials have been used in four human clinical trials. We now seek Honours students interested in participating in making the next generation of elastic biomaterials for organ and tissue augmentation and repair.

Projects
- Cell: molecule interplay in the assembly of human elastic tissue
- Accelerated wound repair for human burn patients
- 3D artery constructs

Dr Thomas White
thomas.white@sydney.edu.au
Honours stream: Biology

Research interests
We are broadly interested in questions of behaviour and evolution, and enjoying using non-model invertebrates — such as butterflies and spiders — to understand how animals perceive and interact with the world at large. Much of our current research is centred on visual communication, and we draw on manipulative experiments, observation, and modelling to test and refine theory.

Projects
- The biology of dynamic information exchange.
- Illuminating the evolution of iridescence.
- The coevolution of visual signals, signalling behaviour, and sensory systems.
Dr Camilla Whittington

camilla.whittington@sydney.edu.au
Honours stream: Biology

Research interests
We study evolutionary innovations including viviparity (live birth/pregnancy), which has evolved convergently hundreds of times in both vertebrates and invertebrates. We use genetics/genomics, histology, morphology and physiology to study the reproductive biology of lizards, fish, marsupials, and invertebrates. Please see my lab website for more information.

Projects
- Fundamental biology of pregnancy in sharks or lizards
- Male pregnancy in seahorses
- Evolution of insect viviparity

Dr Giselle Yeo

giselle.yeo@sydney.edu.au
Honours stream: Biochemistry

Research interests
My research spans the basic characterisation of stem cell behaviour to translational applications in tissue engineering and regenerative medicine. I am interested in the interconnected roles of extracellular matrix proteins and growth factors in modulating a range of stem cell responses, including recruitment, growth, maintenance of stemness and functional differentiation. I am also interested in harnessing the bioactivity of molecules to develop functional materials for stem cell expansion, directed specialisation and targeted delivery for therapeutic applications.

Projects
- Investigating tropoelastin-activated signalling in mesenchymal stem cells
- Development of implantable hydrogels encapsulated with stem cells
Which question will you tackle?

Supervisors and projects
Additional information
Checklist and contact

Local students

- Read about the available projects and arrange to meet with potential supervisors
- Submit your online Honours and Graduate Diploma Projects Application Form by the closing dates listed on page 5.
- Submit your online Faculty of Science Honours Application Form to the Faculty of Science by the closing date listed on page 5.

International students

- Read about the available projects and arrange to meet with potential supervisors
- Submit your online Honours and Graduate Diploma Projects Application Form with your choice of three supervisors by the closing dates listed on page 5.
- Submit an International Undergraduate Student Application Form to the International Student Office for visa processing.
- Submit your online Faculty of Science Honours Application Form to the Faculty of Science by the closing date listed on page 5.

Contact

SOLES Education Support
Level 5, Carslaw Building (F07)
The University of Sydney
E soles.education@sydney.edu.au
T (02) 9114 1535
“Honours gave me experience in problem solving, project management and analytics. Plus it improved my communication skills and I had a blast!”

Jessica Higgs (Honours graduate)
Why do Honours with us?

Our School is made up of world class researchers and experienced and effective mentors. You will find a broad range of research projects available to meet your specific interests spanning biochemistry, ecology, microbiology, animal behaviour, genetics and evolution. Finally, our Honours alumni find employment in a wide variety of fields - with an Honours degree in life and environmental sciences behind you, the choice is yours!