Ion Channel Drug Discovery

Computational Drug Discovery

Presented by
A/Prof Thomas Balle
Sydney School of Pharmacy
Brain and Mind Centre
Ion Channel Drug Discovery

- Primary focus: Pentameric ligand gated ion channels
- GABA_A, Nicotine, Serotonin 5-HT$_3$ and Glycine receptors

- Multiple different subunits, complex assembly pattern, complex pharmacology
- Receptors assembled in different stoichiometric forms - “subtypes of subtypes”
- “Novel” interfaces represent novel opportunities for drug discovery

- Identification, characterization and de-orphanisation of novel drug binding sites
Allosteric Modulators – Benzodiazepine type modulation

\[
\begin{align*}
\alpha_4 & \quad \beta_2 \\
(\alpha_4)_3(\beta_2)_2
\end{align*}
\]

Graph:
- **Y-axis:** Log[ACh] % of maximal ACh
- **X-axis:** Log[ACh] µM
- **Data Points:**
 - ACh
 - ACh+NS9283 (31.6 µM)
- **EC50:** 3.2 µM

Additional Information:
- EC50: 0.11 µM
- EC50: 1.1 µM
- EC50: 93 µM
- EC50: 0.11 µM

Molecule Structure:
- Benzodiazepine site
- Agonist site

Lindquist & Birnir, J. Neurochem. 2006
Techniques

– Dry Lab
 – Computer aided drug design
 – SAR analysis
 – Homology modeling
 – Pharmacophore modeling
 – Docking, fragment docking
 – Scaffold hopping
 – Molecular dynamics
 – Free energy perturbation

– Wet Lab
 – Oocyte electrophysiology
 – Molecular biology
 – Assay development
 – Screening
 – Compound characterisation
 – Radioligand binding assays
Techniques – Docking – Molecular Dynamics
Oocyte electrophysiology
What we would like from DDI

– DDI PhD scholarships
– DDI seed funding

– Medium - High-through put screening capabilities

– Access/collaborations large scale protein expression + X-Ray crystallography/Cryo-EM
– Access/collaborations Medicinal chemistry

– Access/collaborations using slice electrophysiology
– Access/collaborations in other behavioral models

– Access to ADME
Ion Channel Drug Discovery Team