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1 Curve sketching using calculus

1.1 Some General strategies for graphing polynomials

The following steps may be helpful in sketching a general polynomial.

1. Find the intercept on the Y axis (not because it’s particularly illuminating but because
it’s easy).

2. Note the degree of the polynomial. There are four possibilities:

i. If the degree is an even number and the coefficient of the dominant term is
positive, then for large positive and large negative values of x, y will be large and
positive.

ii. If the degree is even and the coefficient of the dominant term is negative, the value
of y will be large and negative for large values of x (both positive and negative).

iii. If the degree of the polynomial is odd and the coefficient of the dominant term
is positive, then for large positive and large negative values of x, the value of y
will be large positive and large negative respectively.

iv. If the degree of the polynomial is odd and the coefficient of the dominant term
is negative, then for large positive and large negative values of x, the value of y
will be large negative and large positive respectively.

3. Investigate where the curve is increasing and decreasing and whether it has any sta-
tionary points.

4. Find the points of inflection if desired.

5. Find the intercept(s) on the X axis if it is easy to do so.

Remember you don’t always need all these steps — calculate as much as you
need to get an idea of the shape. If a step is very difficult or laborious, leave
it out.

We will illustrate the above ideas with some examples.

Example:

Sketch the graph of y = x3 + x + 1.

Solution:

1. Find the intercept on the Y axis by putting x = 0. This gives y = 1. At least we now
have one point on the graph.

2. The degree is 3. Since the degree of the dominant term (x3) is odd and its coefficient
positive, we know that for large positive and large negative values of x, the value of y will
be large positive and large negative respectively. (Compute values for, say, x = 100 and
−100.)

So, from what we’ve learnt so far, the curve must look something like Figure 1.
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Figure 1: Illustration of information so far for y = x3 + x + 1.

3. At this point we will look at the derivative of x3 + x + 1 to determine the stationary
points (if any) and the intervals in which the curve increases or decreases.

Now dy
dx

= 3x2 + 1. This is always positive, which tells us that the curve is increasing
everywhere.

Therefore, there are no stationary points.

4. We can find any points of inflection by looking at the second derivative:

d2y

dx2
= 6x = 0

at x = 0.

For x < 0, d2y
dx2 < 0, so the curve is concave down; and for x > 0, d2y

dx2 > 0, so the curve is
concave up.

Accordingly, there is a point of inflection (a change in direction of the bend of the curve)
at (0, 1).

5. We would not normally bother with the X intercepts unless we need to know them.
Such knowledge does not, in the present case, add much to our picture of the curve. Since
y = −1 when x = −1 and y = 1, when x = 0, there must be a root between −1 and 0. A
better approximation of the location of this root can be found using numerical methods.

The graph of y = x3 + x + 1 is given in Figure 2.
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Figure 2: Graph of y = x3 + x + 1.

To summarise, note that we worked out the shape of the curve with almost no calculation
of values of the function. (The opposite of a computer graphing program.) Not only
was our deductive method faster than laborious computation, it offered far more insight
into the behaviour of the function and the shape of the graph. Also we used calculus
judiciously. Calculus plays a much smaller part in curve sketching than is commonly
believed; it is just one of the tools at our disposal.

Example: Sketch the graph of y = x4 − 2x2 + 7.

Solution:

1. The Y intercept is readily found to be (0, 7).

2. If x is large positive then y is large positive. If x is large negative then y is large
positive. Notice that the curve will be symmetrical about the Y axis because x appears
only as even powers. That is, f(x) = f(−x). This symmetry also implies, in this case,
that the curve is horizontal at (0, 7). Otherwise there would have to be a sharp point
(called a cusp) there, and polynomials don’t have cusps.

Figure 3: Knowledge so far of y = x4 − 2x2 + 7.
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3. The derivative of a quartic is a cubic and can have at most three roots. So there can be
at most three stationary points to a quartic. We can find the stationary points from the
derivative and draw up a table which summarises the changes of direction of the curve.

dy

dx
= 4x3 − 4x.

Thus dy
dx

= 0 when 4x3 − 4x = 0 i.e. when x3 − x = 0.

Factorising: x(x2 − 1) = 0 so
x(x − 1)(x + 1) = 0

i.e. x = −1, x = 0, or x = 1.

The stationary points are at (−1, 6), (0, 7) and (1, 6)

A change can only occur at the stationary points, so we choose values on either side of
these points which are x = −1, x = 0, x = 1, and evaluate dy

dx
there. We can also sketch

an ‘attitude’ diagram from the table showing the direction of the curve.

From the table and ‘attitude’ diagram below we see there is a local minimum at (−1, 6)
and (1, 6), and a local maximum at (0, 7).

x −2 −1 −0.5 0 0.5 1 2

dy
dx

−24 0 1.5 0 −1.5 0 24

curve decreases horiz. increases horiz. decreases horiz. increases

attitude ↘ → ↗ → ↘ → ↗

(Remember: if dy
dx

< 0 the function is decreasing, if dy
dx

> 0 the function is increasing, and

if dy
dx

= 0 the function is locally stationary.)

We note from the position of the local minima that the curve never cuts the X axis. The
graph of y = x4 − 2x2 + 7 is shown in Figure 4.

Figure 4: Graph of y = x4 − 2x2 + 7.

Exercise 1.1

1. a. Estimate where the points of inflection are in the preceding example.
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b. Check your estimate using the second derivative.

2. Sketch the graph of y = (x − 1)4 + 8x.

3. Sketch the graph of y = −3x5 −10x3 −18x+31 . Find any turning points and points
of inflection.

1.2 Strategies for graphing functions in general

We can slightly modify our strategies for graphing polynomials to more general functions.
Instead of looking at the degree and sign of the dominant term of the polynomial, we will
look generally at the function we are given and see what can be deduced about its graph.
We will look at the behaviour of the function as x → ∞ (ie large positive values) and as
x → −∞ (ie large negative values).

Let’s illustrate this with an example.

Example: Sketch the graph of the function y = x2ex.

Solution:

1. The Y intercept is 0, since y = 02e0 = 0. (Note e0 = 1.)

2. The function y = ex is positive for all values of x and so, y = x2ex ≥ 0 for all values of
x. Therefore, the graph of y = x2ex is in the upper half plane for x �= 0 and touches the
X axis at x = 0.

Also, as x → ∞, y → ∞ and as x → −∞, y → 0.

3. Differentiating we have:

dy

dx
= x2ex + ex.2x

= xex(x + 2)

= 0 when x = 0 or x = −2.

(Note that ex > 0 for all x.)

The points (0, 0) and (−2, 4e−2) are stationary points.

From the table and ‘attitude’ diagram below we see there is a local maximum at (−2, 4e−2)
and a local minimum at (0, 0).

x < −2 −2 > −2, < 0 0 0

dy
dx

+ve 0 −ve 0 +ve

curve increases horiz. decreases horiz. increases

attitude ↗ → ↘ → ↗

We can now put all this information together and sketch the curve. The graph of y = x2ex

is given in Figure 5.
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Figure 5: Graph of y = x2ex.

Notice how the curve is asymptotic to the X axis as x → −∞. We deduced this from 2.
above as when x → −∞ y → 0, and y > 0 for all x �= 0.

We can see from our sketch that there are two points of inflection. We could find these
if we liked by examining the second derivative but in this case it is a lot of effort for not
much more information.

Exercise 1.2

1. Sketch the graph of y = tet.

2. Sketch the graph of y = 1
x2+3

.

1.3 Solutions to exercises

Solutions to exercise 1.1

1. a. By inspection of the graph in Figure 4, there are two points of inflection about
when x = −0.5 and when x = 0.5.

b. Differentiating the first derivative we get:

d2x

dx2
= 12x2 − 4

= 4(3x2 − 1)

= 0 when x2 = 1
3
, ie when x = ± 1√

3
.

So, x ≈ 0.58 or x ≈ −0.58.

2. When x = 0 y = (0 − 1)4 + 8(0) = 1.

The dominant term is x4. So for large positive and large negative values of x, y is
large and positive.

dy

dx
= 4(x − 1)3 + 8 = 0 when (x − 1)3 = −2

ie when x = 1 − 3
√

2. There is a stationary point at about (−0.26, 0.44).
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x −1 1 − 3
√

2 0

dy
dx

-24 0 4

curve decreases horiz. increases

attitude ↘ → ↗

There is a local minimum when x = 1 − 3
√

2, ie at about (−0.26, 0.44).

d2y

dx2
= 12(x − 1)2 and so

d2y

dx2
> 0 for all values of x �= 1. So, the curve must be

concave up everywhere. There are no points of inflection.

Figure 6: Graph of y = (x − 1)4 + 8x.

3. The graph of y = −3x5 − 10x3 − 18x + 31 passes through the point (0, 31).

When x is large positive, y is large negative. When x is large negative, y is large
positive.

dy

dx
= −15x4 − 30x2 − 18 which is negative everywhere, so the curve is decreasing

everywhere (no stationary points).

Looking at the second derivative:
d2y

dx2
= −60x3 − 60x = −60x(x2 + 1).

This is positive when x < 0 and negative when x > 0. Hence the curve is concave
up to the left of (0, 31) and concave down to the right of (0, 31). The graph of
y = −3x5 − 10x3 − 18x + 31 is given in Figure 7.
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Figure 7: Graph of y = −3x5 − 10x3 − 18x + 31.

Solutions to exercise 1.2

1. When t = 0, y = tet = 0e0 = 0. The Y intercept is 0.

y = tet is defined for all values of t. et > 0 for all values of t, so when t < 0,
y = tet < 0 and when t > 0, y = tet > 0. These regions in the plane are marked in
Figure 8.

As x → ∞, y → ∞. As x → −∞, y → 0.

Figure 8: Graph lies in the regions marked by an asterisk.

Differentiating we get:

dy

dt
= t.et + et.(1)

= et(t + 1).
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So, dy
dt

= 0 when t = −1. There is a stationary point at (−1,−e−1).

x < −1 −1 > −1

dy
dx

−ve 0 +ve

curve decreases horiz. increases

attitude ↘ → ↗

Therefore, there is a local minimum at (−1,−e−1).

To find any points of inflection we will need the second derivative.

d2y

dt2
= et.1 + (t + 1).et

= et(t + 2)

= 0 when t = −2.

So, there is a possible point of inflection at (−2,−2e−2).

To say if there is a point of inflection here for sure, we need to check that the concavity
of the curve changes.

For t < −2,
d2y

dt2
< 0 so the curve is ooncave down for t < −2. For t > −2,

d2y

dt2
> 0

so the curve is concave up for t > 0. The change in concavity at (−2,−2e−2) tell us
that there is a point of inflection here.

A sketch of the function y = tet is given in Figure 9.

Figure 9: Graph of y = tet.

2. When x = 0, y = 1
3

so the point (0, 1
3
) lies on the curve.

The function y =
1

x2 + 3
is defined for all values of x as the denominator is always

positive. Therefore, y =
1

x2 + 3
> 0 for all values of x and its graph is in the upper

half plane.

y =
1

x2 + 3
is symmetrical about the Y axis, as f(−x) = f(x).
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Also, when x → ∞, y → 0 and when x → −∞, y → 0 since the denominator is
positive and grows as x grows in magnitude.

Differentiating using the quotient rule we get:

dy

dx
=

(x2 + 3)(0) − (1)(2x)

(x2 + 3)2

=
−2x

(x2 + 3)2

= 0 when x = 0. (Note the denominator is always positive.)

So, there is a stationary point at (0, 1
3
).

x < 0 0 > 0

dy
dx

+ve 0 −ve

curve increases horiz. decreases

attitude ↗ → ↘

The point (0, 1
3
) is a local maximum.

A sketch of the graph of y =
1

x2 + 3
is given in Figure 10.

Figure 10: Graph of y =
1

x2 + 3
.


