2 Unit Bridging Course - Day 11

Inverse Functions

Collin Zheng




Definition

Consider the function f(x) = 2x, whose rule is to simply double
any input. For instance:
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Hence F~1(x) = %x, since the inverse operation of doubling is
halving.
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The inverse function of f(x), denoted f~(x), ‘undoes’ f by
directing the outputs of f back to their respective inputs.
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Hence F~1(x) = %x, since the inverse operation of doubling is
halving.

[Important: f~'(x) is not the same as {f(x)} ™' = ——.]

f(x)




Cancellation Property

But just as how the inverse operation of halving ‘undoes’ or
‘cancels’ out the act of doubling, doubling also undoes or
cancels the act of halving.
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= SYDNEY Cancellation Property

But just as how the inverse operation of halving ‘undoes’ or
‘cancels’ out the act of doubling, doubling also undoes or
cancels the act of halving.

Hence f and f~'! undo or cancel each other and are therefore
mutually inverse functions of each other.

The cancellation property of inverses can be stated as follows:

Cancelling Property of Inverses
f~1(f(x)) =x and f(f~'(x)) = x.

That is, f and ' applied in succession renders the input x
unchanged.
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Example

For f(x) = 2x and f~'(x) = 1x, we have:

F1((x)
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Example

For f(x) = 2x and f~'(x) = 1x, we have:

() = £1(2x) = (%)
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Example

For f(x) = 2x and f~'(x) = 1x, we have:

F1(F(x)) = 1~ (2x) = %(zx) —x,
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ie. 5[ doubling |25 haiving |-
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Example
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f(f~1(x))
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Example

For f(x) = 2x and f~'(x) = 1x, we have:
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5 SYDNEY Cancellation Property (cont.)

Example

For f(x) = 2x and f~'(x) = 1x, we have:

F1(F(x)) = £ (2x) = %(zx) = x,

ie. 5[ doubling |25 haiving |-

Also:

i.e. 4‘ halving ‘2—X>‘ doubling ‘—>
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y = X2

Since 32 and (—3)? both equal 9, the output y = 9 can be
traced back to two possible inputs: x =3 and x = —3.
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y = X2

Since 32 and (—3)? both equal 9, the output y = 9 can be
traced back to two possible inputs: x =3 and x = —3.

But outputs for functions must be unique, so would the inverse
function of y = x2 direct 9 back to 3 or —3?
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Caution: Inverse functions don’t always exist!
For instance, consider the function

y = X2

Since 32 and (—3)? both equal 9, the output y = 9 can be
traced back to two possible inputs: x =3 and x = —3.

But outputs for functions must be unique, so would the inverse
function of y = x2 direct 9 back to 3 or —3?

This is ambiguous, and hence we say that there does not exist
an inverse function for y = x2.
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Graphs of Inverse Functions

Important fact: For any function f whose inverse f~' exists,
their graphs are symmetric about the diagonal line y = x:
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Examples

Let’s look at a few more examples of inverse functions.

Example

Consider the function
f(x) = 3x,

where outputs are obtained by multiplying inputs by 3.

25/37



Examples

Let’s look at a few more examples of inverse functions.

Example

Consider the function
f(x) = 3x,

where outputs are obtained by multiplying inputs by 3.

Since inputs are recovered through the inverse operation of
division by 3, the inverse function of f is given by
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Examples (cont.)

Here are the graphs of f(x) = 3x and f~'(x) = }x plotted
together. Observe the symmetry of the two graphs about the
line y = x.

f(x) = 3x

27/37



Examples (cont.)

Example
Here’s one more example. Consider the function
f(x) = x5,

where outputs are obtained by cubing inputs.
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Examples (cont.)

Example

Here’s one more example. Consider the function
f(x) = x5,

where outputs are obtained by cubing inputs.

Since inputs are recovered through the inverse operation of
cube-rooting, the inverse function of f is given by
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Examples (cont.)

Here are the graphs of f(x) = x® and f~'(x) = ¥/x. Once
again, observe the symmetry between f and f~' about y = x.
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Obtaining Inverse Functions

For a general function f, how does one obtain its inverse
function f~1? There are two main steps:
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Obtaining Inverse Functions

For a general function f, how does one obtain its inverse
function f~1? There are two main steps:

Step 1: Since f~' recovers inputs from outputs, we first solve
the equation of the function for x.

For instance, given
y=3x+1,

we obtain
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For a general function f, how does one obtain its inverse
function f~1? There are two main steps:

Step 1: Since f~' recovers inputs from outputs, we first solve
the equation of the function for x.

For instance, given
y=3x+1,

we obtain

Step 2: Finally, we interchange x and y. Hence ' is given by:
x—1
3
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Practice Questions

Find the inverse functions of the following:
» f(x) =6x
» f(x)=4x -1
» f(x) = x5.
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Answers
- ) =5
1
> f71(X) = XI
> f’1(x) = V/x.
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» Given a function f, its inverse function f~7, if it exists,
undoes or cancels the operation performed by f.

» fand f~' are mutually inverse functions.

» The Cancellation Property holds for f and f~', where
f=1(f(x)) = x and f(f~"(x)) = x for all x.

» The graphs of two mutually inverse functions are
symmetric about the diagonal line y = x.

» The inverse function for y = f(x) is obtained by solving for
x and then interchanging x and y.
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