Skip to main content
Unit of study_

Information Theory and Self-Organisation - CSYS5030

Year - 2020

The dynamics of complex systems are often described in terms of how they process information and self-organise; for example regarding how genes store and utilise information, how information is transferred between neurons in undertaking cognitive tasks, and how swarms process information in order to collectively change direction in response to predators. The language of information also underpins many of the central concepts of complex adaptive systems, including order and randomness, self-organisation and emergence. Shannon information theory, which was originally founded to solve problems of data compression and communication, has found contemporary application in how to formalise such notions of information in the world around us and how these notions can be used to understand and guide the dynamics of complex systems. This unit of study introduces information theory in this context of analysis of complex systems, foregrounding empirical analysis using modern software toolkits, and applications in time-series analysis, nonlinear dynamical systems and data science. Students will be introduced to the fundamental measures of entropy and mutual information, as well as dynamical measures for time series analysis and information flow such as transfer entropy, building to higher-level applications such as feature selection in machine learning and network inference. They will gain experience in empirical analysis of complex systems using comprehensive software toolkits, and learn to construct their own analyses to dissect and design the dynamics of self-organisation in applications such as neural imaging analysis, natural and robotic swarm behaviour, characterisation of risk factors for and diagnosis of diseases, and financial market dynamics.

Classes
Lectures, Laboratories

Assessment
Through semester assessment (100%)

Assumed knowledge
Competency in 1st year mathematics, and basic computer programming skills are assumed. Competency in 1st year undergraduate level statistics (for example, covering probabilities, conditional probabilities, Gaussian distribution, correlations, statistical significance/hypothesis testing and p-values). An exposure to linear algebra would be useful but not mandatory.

Details

Faculty: Engineering

Semester 2

03 Aug 2020

Department/School: Civil Engineering
Study Mode: Normal (lecture/lab/tutorial) evening
Census Date: 31 Aug 2020
Unit of study level: Postgraduate
Credit points: 6.0
EFTSL: 0.125
Available for study abroad and exchange: Yes
Faculty/department permission required? No
Location
Camperdown
More details
Unit of Study coordinator: Joseph Lizier
HECS Band: 2
Courses that offer this unit

Non-award/non-degree study If you wish to undertake one or more units of study (subjects) for your own interest but not towards a degree, you may enrol in single units as a non-award student. Cross-institutional study If you are from another Australian tertiary institution you may be permitted to undertake cross-institutional study in one or more units of study at the University of Sydney.

To help you understand common terms that we use at the University, we offer an online glossary.