Skip to main content
### Details

#####
Courses that offer this unit

Non-award/non-degree study If you wish to undertake one or more units of study (subjects) for your own interest but not towards a degree, you may enrol in single units as a non-award student. Cross-institutional study If you are from another Australian tertiary institution you may be permitted to undertake cross-institutional study in one or more units of study at the University of Sydney.
To help you understand common terms that we use at the University, we offer an online glossary.
## Media

## Student links

## About us

Year - 2020

Quantum Field Theory (QFT) is the basic mathematical framework that is used for a consistent quantum-mechanical description of relativistic systems, such as fundamental subatomic particles in particle physics. The tools of QFT are also used for description of quasi-particles and critical phenomena in condensed matter physics and other related fields. This course introduces major concepts and technical tools of QFT. The course is largely self-contained and covers alsoLagrangian and Hamiltonian formalisms for classical fields, elements of group theory and path integral formulation of quantum mechanics. The main topics include second quantization of various fields and description of their interactions, with the main focus on the most accurate fundamental theory of quantum electromagnetism. The last part of the course deals the concept of the renormalisation group, and its applications to critical phenomena in condensed matter systems. By completing this course, you will obtain knowledge of major concepts and tools of contemporary fundamental physics, that can be employed in a wide range of physics and physics-based research, starting from the description of profound effects in condensed matter physics and ending by the understanding of basic building blocks of the Universe .

Classes

lectures and tutorial/discussion sessions 3 hrs/week for 12 weeks

Assessment

4 x written assignments (50% total), final exam (50%)

Textbooks

L.H. Ryder, Quantum Field Theory, Cambridge University Press, (1996), F. Mandl and G. Shaw, Quantum FieldTheory, Wiley-Blackwell, (2010), M.E. Peskin and D.V. Schroeder: An Introduction to quantum field theory, Adison-Wesley (1995), T. Lancaster and S. J. Blundell Quantum Field Theory for the Gifted Amateur, Oxford University Press, (2014)

Assumed knowledge

A major in physics including third-year quantum physics

An average of at least 65 in 144 cp of units including (PHYS3x34 or PHYS3x42 or PHYS3x43 or PHYS3x44 or PHYS3x35 or PHYS3x40 or PHYS3941 or PHYS3x36 or PHYS3x68 or MATH3x63 or MATH4063 or MATH3x78 or MATH4078)

Faculty: Science

Semester 1

24 Feb 2020

Department/School: Physics Academic Operations

Study Mode: Normal (lecture/lab/tutorial) day

Census Date: 31 Mar 2020

Unit of study level: Honours

Credit points: 6.0

EFTSL: 0.125

Available for study abroad and exchange: Yes

Faculty/department permission required? No

Location

Camperdown

More details

Unit of Study coordinator: Bruce Yabsley

HECS Band: 2

Leadership for good starts here

ABN: 15 211 513 464

CRICOS Number: 00026A

TEQSA: PRV12057