2019

2018

Talebian, N., Gilbert, B., Pham, C., Chariere, R., Karampour, H. (2018). Biaxial bending of cold-formed steel storage rack uprights - Part I: FEA and parametric studies. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2018)*, Rolla, Missouri: Missouri University of Science and Technology.

Talebian, N., Gilbert, B., Pham, C., Karampour, H. (2018). Biaxial bending of cold-formed steel storage rack uprights - Part II: Direct strength method. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2018)*, Rolla, Missouri: Missouri University of Science and Technology.

Pham, S., Pham, C., Rogers, C., Hancock, G. (2018). Experimental Studies of Cold-Formed Steel Beams Under Uniform Shear Forces with Minimal Bending Moments. *8th International Conference on Thin-Walled Structures - ICTWS 2018*, Lisbon, Portugal: DECivil/IST/UL - University of Lisbon.

Huynh, M., Pham, C., Hancock, G. (2018). Experiments on Screwed Connections in Shear using High Strength Cold-Reduced Sheet Steels. *Eighth International Conference on Thin-Walled Structures - ICTWS 2018*, Lisbon, Portugal: DECivil/IST/UL - University of Lisbon.

Huynh, M., Pham, C., Hancock, G. (2018). Modelling of Screwed Connections in Shear using High Strength Cold-Reduced Sheet Steels. *8th International Conference on Thin-Walled Structures - ICTWS 2018*, Lisbon, Portugal: DECivil/IST/UL - University of Lisbon.

Pham, S., Pham, C., Rogers, C., Hancock, G. (2018). New proposals for the direct strength method of design of cold-formed steel beams with holes in shear. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2018)*, Rolla, Missouri: Missouri University of Science and Technology.

2017

Nguyen, V., Hancock, G., Pham, C. (2017). Analyses of thin-
walled sections under localised loading for general end boundary conditions - Part 2: Buckling. *Thin-Walled Structures*, 119, 973-987.

Dias-da-Costa, D., Pham, T., Tu, J., Pham, C., Hancock, G., Proust, G. (2017). Observations on fracture toughness measurement: At the corners of G450 cold-formed steel channel sections subjected to tension. *The 8th European Conference on Steel and Composite Structures (EUROSTEEL 2017)*, Germany: Wilhelm Ernst und Sohn.

Pham, S., Pham, C., Hancock, G. (2017). On the design of cold-formed steel beams with holes in shear using the direct strength method. *The 8th European Conference on Steel and Composite Structures (EUROSTEEL 2017)*, Germany: Wilhelm Ernst und Sohn.

Pham, S., Pham, C., Hancock, G. (2016). A Direct Strength Method (DSM) of Design for Channel Sections in Shear with Square and Circular Web Holes. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016)*, Rolla, Missouri: Missouri University of Science and Technology.

Nguyen, V., Hancock, G., Pham, C. (2016). Analyses of thin-walled sections under localised loading for general end boundary conditions - Part 1: Pre-buckling. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016)*, Rolla, Missouri: Missouri University of Science and Technology.

Nguyen, V., Hancock, G., Pham, C. (2016). Analyses of thin-walled sections under localised loading for general end boundary conditions - Part 2: Buckling. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016)*, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C. (2016). Elastic Shear Buckling of Plates and Thin-Walled Channel Sections with Centrally Located Holes. *7th International Conference on Coupled Instabilities in Metal Structures (CIMS 2016)*, Baltimore: Johns Hopkins University.

Zelenkin, D., Pham, C., Hancock, G. (2016). Experimental and Numerical Studies on the Effect of Flange Restraints on Tension Field Action In Cold-Formed C-Sections in Shear. *8th International Conference on Steel And Aluminium Structures*, Hong Kong: University of Hong Kong.

Pham, C., Pelosi, A., Earls, T., Hancock, G. (2016). Experimental Investigation of Cold-Formed C-Sections with Central Square Holes in Shear. *Wei-Wen Yu International Specialty Conference on Cold-Formed Steel Structures (CCFSS 2016)*, Rolla, Missouri: Missouri University of Science and Technology.

Talebian, N., Gilbert, B., Pham, C., Chariere, R. (2016). Local and distortional biaxial bending capacity of cold-formed steel storage rack uprights. *7th International Conference on Coupled Instabilities in Metal Structures (CIMS 2016)*, Baltimore: Johns Hopkins University.

Huynh, L., Pham, C., Rasmussen, K. (2016). Mechanical Properties of Cold-Rolled Aluminium Alloy 5052 Channel Sections. *8th International Conference on Steel And Aluminium Structures*, Hong Kong: University of Hong Kong.

Hancock, G., Pham, C. (2016). New section shapes using high-strength steels in cold-formed steel structures in Australia. In Cheng Yu (Eds.), *Recent Trends in Cold-Formed Steel Construction*, (pp. 221-239). Duxford: Elsevier.

Huynh, L., Pham, C., Rasmussen, K. (2016). Stub Column Tests and Finite Element Modelling of Cold-Rolled Aluminium Alloy 5052 Channel Sections. *8th International Conference on Steel And Aluminium Structures*, Hong Kong: University of Hong Kong.

Pham, C., Bruneau, L., Hancock, G. (2014). New Developments in the Direct Strength Method of Design for Cold-Formed Sections Subject to Shear. *The 7th International European Conference on Steel and Composite Structures (Eurosteel)*, Berlin: Ernst & Sohn Verlag fÃ¼r Architektur und technische Wissenschaften GmbH.

Pham, C., Hancock, G. (2015). Relationship between the semi-analytical finite strip methods for buckling of thin-walled sections under uniform and localised loading. *Eight International Conference on Advances in Steel Structures*, Lisbon, Portugal: DECivil/IST/UL - University of Lisbon.

Hancock, G., Pham, C. (2015). Relationship between the semi-analytical finite strip methods for buckling of thin-walled sections under uniform and localised loading. *Eight International Conference on Advances in Steel Structures*, Lisbon, Portugal: DECivil/IST/UL - University of Lisbon.

2014

Hancock, G., Pham, C. (2014). Buckling Analysis of Thin-Walled Sections under Localised Loading Using the Semi-Analytical Finite Strip Method. *The 7th International Conference on Thin-Walled Structures*, online: ICTWS.

Hancock, G., Pham, C. (2014). Developments in the finite strip buckling analysis of plates and channel sections under localised loading. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Lim, J., Hancock, G., Clifton, G., Pham, C. (2014). Direct Strength Method for Ultimate Strength of Bolted Moment-Connections between Cold-Formed Steel Channel Members. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Bruneau, L., Pham, C., Hancock, G. (2014). Experimental study of longitudinally stiffened web channels subjected predominantly to shear. *22nd International Specialty Conference on Cold-Formed Steel Structures*, St Louis, Missouri: Missouri University of Science & Technology.

Pham, C., Hancock, G. (2012). Elastic shear buckling of cold-formed channels: Comparisons of semi-analytical finite strip and spline finite strip methods. *Sixth International Conference on Coupled Instabilities in Metal Structures* CIMS2012, Scotland: Loughborough University.

Pham, C., Davis, A., Emmett, B. (2012). Experimental and numerical investigations of high strength cold-formed lapped Z purlins under combined bending and shear. *21st International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Missouri University of Science and Technology. [More Information]

Pham, S., Pham, C., Hancock, G. (2012). Shear buckling of thin-walled channel sections with complex stiffened webs. *21st International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Missouri University of Science and Technology.

2011

2010

Pham, C., Hancock, G. (2010). Direct strength design of cold-formed C-sections for shear. *20th International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C., Hancock, G. (2010). Direct strength design of cold-formed C-sections in combined bending and shear. *20th International Specialty Conference on Cold-Formed Steel Structures*, Rolla, Missouri: Missouri University of Science and Technology.

Pham, C., Hancock, G. (2010). Direct strength design of cold-formed sections for shear and combined actions. *International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010)*, Brazil: Federal University of Rio de Janeiro.

Pham, C., Hancock, G. (2010). Experimental investigation of high strength cold-formed SupaCee sections in shear. *International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010)*, Brazil: Federal University of Rio de Janeiro.

Pham, C., Hancock, G. (2010). Finite element analyses of high strength cold-formed SupaCee sections in shear. *International Colloquium on Stability and Ductility of Steel Structures (SDSS 2010)*, Brazil: Federal University of Rio de Janeiro.

2009

Pham, C., Hancock, G. (2009). Shear buckling of thin-walled channel sections with intermediate web stiffener. *Sixth International Conference on Advances in Steel Structures*, Hong Kong: Hong Kong Institute of Steel Construction.

2008

Pham, C., Hancock, G. (2008). Buckling studies of thin-walled channel sections in shear. *Fifth International Conference on Thin-Walled Structures*, Brisbane, Australia: Queensland University of Technology.

Pham, C., Hancock, G. (2008). Buckling studies of thin-walled channel sections under combined bending and shear. *Nineteen International Specialty Conference*, St Louis, Missouri: Missouri University of Science & Technology.

Pham, C., Hancock, G. (2008). Direct strength design of cold-formed purlins. *Fifth International Conference on Thin-Walled Structures*, Brisbane, Australia: Queensland University of Technology.