Stations in Distribution Systems.

IEEE Transactions on
Distributed MPC-Based Optimal Scheduling for EV Charging
Information
href="http://dx.doi.org/10.1109/TCSI.2019.2929180">[More
Information]

2019

Dispatch of Virtual Energy Storage Systems in Smart
Distribution Networks for Loading Management. IEEE
Transactions on Systems, Man, and Cybernetics: Systems,
49(4), 776-786. [More
Information]

Frequency Control of Networked Microgrids. 2019 IEEE PES
Innovative Smart Grid Technologies Asia (ISGT 2019),
Chengdu: Institute of Electrical and Electronics Engineers
(IEEE). <a
href="http://dx.doi.org/10.1109/ISGT-

Multi-Time Slot Economic Dispatch. 2019 IEEE Power and
Energy Society General Meeting (PESGM 2019), Atlanta: IEEE
Computer Society. [More
Information]

wholesale electricity price targeting using an output-based
mechanism. Applied Energy, 242, 1050-1063. [More
Information]

Riaz, S., Marzooghi, H., Verbic, G., Chapman, A., Hill, D.
(2019). Generic Demand Model Considering the Impact of
Prosumers for Future Grid Scenario Analysis. IEEE
Transactions on Smart Grid, 10(1), 819-829. [More
Information]

frequency control with electric spring aggregators and
leader-follower consensus. IET Generation, Transmission
and Distribution, 13(9), 1700-1708. <a
Information]

Topology on the Stability of Inverter-Based Microgrids. IEEE
Transactions On Power Systems, 34(5), 3970-3972. [More
Information]

Resistance with Application to Graph Laplacian Definiteness
and Power Network Stability. IEEE Transactions on Circuits
and Systems Part 1: Regular Papers, 66(11), 4415-4428. [More
Information]

Distributed MPC-Based Optimal Scheduling for EV Charging
Stations in Distribution Systems. IEEE Transactions on
Industrial Informatics, 15(2), 638-649. [More
Information]

Caro-Ruiz, C., Pavas, A., Mojica-Nava, E., Ma, J., Hill, D.
(2019). Qualifying Transmission Line Significance on
Cascading Failures using Cut-sets. 13th IEEE PES PowerTech
Conference (PowerTech 2019), Milan: Institute of Electrical
and Electronics Engineers (IEEE). [More
Information]

Short-Term Residential Load Forecasting Based on LSTM
Recurrent Neural Network. IEEE Transactions on Smart Grid,
10(1), 841-851. [More
Information]

Fault Detection for a Class of Closed-Loop Systems via
Deterministic Learning. IEEE Transactions on Cybernetics,
49(3), 897-906. [More
Information]

power flow Jacobian for static voltage stability. International
<a
Information]

analysis of distribution systems based on network-load
2270-2280. [More
Information]

side frequency control of power systems. International Journal of Electrical Power and Energy Systems, 105, 709-716. <a
Information]

2018

Adaptive Coordinated Voltage Control. IEEE Transactions On
Power Systems, 33(3), 2321-2330. [More
Information]

Ahmadyar, A., Riaz, S., Verbic, G., Chapman, A., Hill, D.
Limits with Respect to Frequency Performance. IEEE
Transactions On Power Systems, 33(4), 4444-4453. [More
Information]

Kong, W., Dong, Z., Hill, D., Ma, J., Zhao, J., Luo, F. (2018). A
Hierarchical Hidden Markov Model Framework for Home
Appliance Modeling. IEEE Transactions on Smart Grid, 9(4),
3079-3090. [More
Information]

2017

2016

2015

2014

2013

2012

2007

Institute of Electrical and Electronics Engineers (IEEE). [More Information]

2006

2005

2003

2002

2001
