University of Sydney Handbooks - 2017 Archive

Download full 2017 archive Page archived at: Mon, 28 Aug 2017 11:21:55 +1000

Table G – High Performance Buildings

Unit of study Credit points A: Assumed knowledge P: Prerequisites C: Corequisites N: Prohibition Session

High Performance Buildings Stream

ARCH9031
Research Report
12   
Note: Department permission required for enrolment
Available to Masters students only.
Semester 1
Semester 2
ARCH9045
Dissertation 1
12    P 48 credit points and a WAM of at least 75
C ARCH9046
N ARCH9031 or PLAN9018 or ARCH9060 or PLAN9010 or PLAN9011

Note: Department permission required for enrolment

Semester 1
Semester 2
ARCH9046
Dissertation 2
12    C ARCH9045
Semester 1
Semester 2
DESC9014
Building Construction Technology
6      Semester 1
DESC9015
Building Energy Analysis
6      Semester 1
DESC9048
Operational Facility Management
6      Semester 1
DESC9067
Mechanical Services
6      Semester 2
DESC9074
Project Management
6      Semester 2
DESC9147
Sustainable Building Design Principles
6      Semester 1
DESC9148
Sustainable Building Design Practice
6      Semester 1
DESC9153
Graduate Internship
6   
Note: Department permission required for enrolment
Masters students only. Graduate Diploma students with permission of the Program Coordinator. Advanced Standing will not be granted for this unit of study.
Intensive December
Intensive July
Intensive November
Semester 1
Semester 2
DESC9164
Lighting Technologies
6    N DESC9063
Semester 2
DESC9169
Daylight in Buildings
6    N DESC9106
Semester 2
DESC9194
Asset and Facility Management
6      Semester 1
DESC9195
Building Economics
6      Semester 2
DESC9196
Building Services
6    A DESC9200
Semester 1
DESC9197
Energy Management and Code Compliance
6    A DESC9014, DESC9015
P DESC9200
Semester 2
DESC9200
Introduction to Architectural Science
6      Semester 1
DESC9201
Indoor Environmental Quality (IEQ)
6      Semester 2
DESC9300
Research in Arch. and Design Science
6    N ARCF9001

Note: Department permission required for enrolment

Semester 1
Semester 2
DESC9673
Intelligent Building Control Systems
6      Semester 1
DESC9674
Building Information Management
6    P DESC9200 and DESC9014
Semester 1
DESC9675
High Performance Facades
6      Semester 1

High Performance Buildings Stream

ARCH9031 Research Report

Credit points: 12 Teacher/Coordinator: Program Director Session: Semester 1,Semester 2 Classes: Independent research under academic supervision. Assessment: Research proposal (10%), 10000 to 15000 word Report (90%). Final reports due by the end of the first week of the formal examination period. Mode of delivery: Supervision
Note: Department permission required for enrolment
Note: Available to Masters students only.
The report is a substantial piece of research conducted over one semester. It takes the form of report (between 10000 and 15000 words) on an approved subject of your choice. The report is an opportunity to advance your knowledge and skills in a particular area. The objective of the report is to allow you to develop research and analytic skills by undertaking an in depth study of your own selection. The expected learning outcomes of the report include the ability to think critically about a problem and develop an appropriate research methodology or analytical approach to address it; identify and access appropriate sources of information, research and literature relevant to the issues; undertake relevant primary and secondary research; and present your findings in a way that demonstrates academic and professional competence. A report generally includes a literature review to delineate a problem; a statement of research aims or objectives, as well as research questions; an explanation of research methods; presentation and analysis of data; and discussion of conclusions. Permission to continue the Report may be subject to a satisfactory research proposal being approved by your supervisor by week 3 of semester. Reports are due at the end of the first week of exams for the semester in which you are enrolled. The assessment is based solely on the submission of your report. The report is generally marked by two examiners, neither of whom is your supervisor.
ARCH9045 Dissertation 1

Credit points: 12 Teacher/Coordinator: An academic supervisor is required. Discuss with your program coordinator. Session: Semester 1,Semester 2 Classes: Research under academic supervision Prerequisites: 48 credit points and a WAM of at least 75 Corequisites: ARCH9046 Prohibitions: ARCH9031 or PLAN9018 or ARCH9060 or PLAN9010 or PLAN9011 Assessment: 15,000 to 25,000 word dissertation (100%) Mode of delivery: Supervision
Note: Department permission required for enrolment
ARCH9045 and ARCH9046 Dissertation 1 and 2 are only available to candidates with permission from an appropriate supervisor. Planning students should take PLAN9010 and PLAN9011 Planning Dissertations 1 and 2. Students enrol either full time over one semester (ARCH9045 and ARCH9046) or part time over two semesters (ARCH9045 then ARCH9046). The units are not assessed separately - a single dissertation is required. The appointment of a supervisor will depend on the topic chosen for the dissertation by the student. Students and their supervisors should complete an Independent Study Approval form and return it to the Student Administration Centre to effect enrolment. The aim of the dissertation is to train the student in how to undertake advanced study. The student should learn how to examine published and unpublished data, survey and experimental results, set objectives, organise a program of work, analyse information, evaluate this in relation to existing knowledge and document the work; and to allow the student to pursue an area of interest in greater depth than is possible in coursework or to investigate an area of interest which is not covered in coursework. The dissertation will normally involve a critical review of published material in a specified subject area, but it may also be an experimental or theoretical investigation, a feasibility study, a case study, a computer program, or other work demonstrating the student's analytical ability. The dissertation should be 15,000 to 25,000 words in length. The dissertation should contain a literature review, a research methodology, analysis of data, a discussion of results and conclusions. The dissertation will be judged on the extent and quality of the student's work, and in particular on how critical, perceptive and constructive the student has been in assessing his or her own work and that of others. Three typed A4 sized copies of the dissertation are required to be presented for examination. These may be in either temporary or permanent binding. If in temporary binding they must be able to withstand ordinary handling and postage. The preferred method is "perfect binding"; spring back, ring back or spiral binding is not permitted. Students are required to submit one copy in permanent binding on acid free paper for the library, including any emendations recommended by the examiners. For more details see the requirements for the PhD thesis in the Postgraduate Research Studies Handbook. Dissertations are due at the end of the first week of exams for the semester in which you are enrolled for Dissertation 2. The assessment is based solely on the submission of your dissertation. The dissertation is generally marked by two examiners.
ARCH9046 Dissertation 2

Credit points: 12 Teacher/Coordinator: An academic supervisor is required. Discuss with your program coordinator. Session: Semester 1,Semester 2 Classes: Research under academic supervision. Corequisites: ARCH9045 Assessment: 15,000 to 25,000 word dissertation (100%) Mode of delivery: Supervision
ARCH9045 and ARCH9046 Dissertation 1 and 2 are only available to candidates with permission from an appropriate supervisor. Planning students should take PLAN9010 and PLAN9011 Planning Dissertations 1 and 2. Students enrol either full time over one semester (ARCH9045 and ARCH9046) or part time over two semesters (ARCH9045 then ARCH9046). The units are not assessed separately - a single dissertation is required. The appointment of a supervisor will depend on the topic chosen for the dissertation by the student. Students and their supervisors should complete an Independent Study Approval form and return it to the Student Administration Centre to effect enrolment. The aim of the dissertation is to train the student in how to undertake advanced study. The student should learn how to examine published and unpublished data, survey and experimental results, set objectives, organise a program of work, analyse information, evaluate this in relation to existing knowledge and document the work; and to allow the student to pursue an area of interest in greater depth than is possible in coursework or to investigate an area of interest which is not covered in coursework. The dissertation will normally involve a critical review of published material in a specified subject area, but it may also be an experimental or theoretical investigation, a feasibility study, a case study, a computer program, or other work demonstrating the student's analytical ability. The dissertation should be 15,000 to 25,000 words in length. The dissertation should contain a literature review, a research methodology, analysis of data, a discussion of results and conclusions. The dissertation will be judged on the extent and quality of the student's work, and in particular on how critical, perceptive and constructive the student has been in assessing his or her own work and that of others. Three typed A4 sized copies of the dissertation are required to be presented for examination. These may be in either temporary or permanent binding. If in temporary binding they must be able to withstand ordinary handling and postage. The preferred method is "perfect binding"; spring back, ring back or spiral binding is not permitted. Students are required to submit one copy in permanent binding on acid free paper for the library, including any emendations recommended by the examiners. For more details see the requirements for the PhD thesis in the Postgraduate Research Studies Handbook. Dissertations are due at the end of the first week of exams for the semester in which you are enrolled for Dissertation 2. The assessment is based solely on the submission of your dissertation. The dissertation is generally marked by two examiners.
DESC9014 Building Construction Technology

Credit points: 6 Teacher/Coordinator: Mr Michael Muir Session: Semester 1 Classes: 5-day intensive (9am-5pm) Assessment: Two assignments (1x40%, 1x60%) Mode of delivery: Block mode
This unit covers three related areas of investigation: basic building construction practices, advanced building construction practices and sustainable construction. It begins by introducing a number of recurrent themes in construction in Australia at the present time including the idea of building culture, the various modes of delivery and variety of classifications of buildings and building elements, rational construction and construction detailing from first principles. There follows a review of construction techniques of domestic scaled buildings using, where appropriate, examples of well documented and/or accessible exemplars. The second part of the unit reviews current approaches to building technologies employed in more complex public and commercial scaled buildings, particularly with regard to processes of structural system selection, façade systems design and construction and material performance. The fundamentals of heat transfer and effects of external conditions on indoor comfort, aspects of the National Construction Code and integration of services into the building fabric relevant to building services engineers will also be reviewed. Again, accessible exemplars will be covered. Finally the unit will review current issues related to key attributes of buildings which make them sustainable, particularly with regard to material selection, appropriate detailing for energy and resources conservation and building reuse and recycling.
DESC9015 Building Energy Analysis

Credit points: 6 Teacher/Coordinator: Dr Christhina Candido Session: Semester 1 Classes: 5-day intensive (9am-5pm) Assessment: Assignment 1 (40%), Assignment 2 (60%) Mode of delivery: Block mode
The aim of the unit is to acquaint students with the range of analytical and design tools available for low energy building design; to provide the opportunity for students to become proficient at using some of these tools. Among the techniques and tools explored are: climate data analysis; graphical and model techniques for solar studies; steady state and dynamic heat flow analysis; simplified methods for sizing passive solar elements; computer models of thermal performance; modelling ventilation; estimating energy consumption. Emphasis is given to tools which assist the design of the building fabric rather than building systems. At the end of the unit it is expected that students will: be aware of the importance of quantitative analysis in the design of low energy buildings; have an understanding of the theoretical basis of a range of analytical techniques; be familiar with the range of techniques available for building energy analysis; be able to apply many of these to design analysis; be familiar with the range of thermal analysis computer software available; and be able to use a software package to analyse the thermal performance of a typical small scale building. All of the assignments are designed to provide students with hands-on experience of each of the analysis tools.
DESC9048 Operational Facility Management

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 1 Classes: 5-day intensive (9am-5pm) Assessment: 2000wd individual assessment (30%); 4000wd group assignment (50%); presentation and written paper (20%) Mode of delivery: Block mode
Operational Facility Management is a service industry concerned with the day-to-day operations required to run an organisation's facilities. Primarily facility operation has to satisfy the user organisation's statutory responsibilities. Beyond that, whilst some major costs (such as rates, land taxes, Insurance premiums, etc.) are fixed, other costs are amenable to management. Operational Facility Management necessarily requires those charged with the task to evaluate where their effort is spent and where the significant resourcing costs lie, thus allowing them to prioritise and match their effort to the effect.
This unit will involve considerations of subcontracting and examine 'best practice' guidelines for both hard and soft service provision.
DESC9067 Mechanical Services

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 2 Classes: 5-day intensive (9am-5pm) Assessment: Assignment (90%); participation (10%) Mode of delivery: Block mode
This unit reviews the need for and application of Mechanical services in the built environment - in particular commercial buildings. Mechanical services are responsible for significant portion of energy and water consumption in buildings. Thus they have become important components of most modern building complexes, with a strong influence on other services and the architecture. This unit provides an introduction to these services by experienced presenters, including from the industry, for recent graduates or diplomats in mechanical engineering and an understanding of fundamental principles and practice for people from backgrounds other than mechanical engineering. Students will acquire skills in appreciation of impact of mechanical services on the environment, including recent mandatory regulations, together with estimating ventilation, cooling and heating requirements, design of simple ventilation, air conditioning and smoke hazard management systems, combined with an overview of water, refrigerant, ducted systems, with applicable equipment, energy, noise, human comfort, air quality criteria. Principles of heat transfer and fluid flow are applied to applications of mechanical ventilation, air conditioning and smoke hazard magagement, to satisfy regulations and standards, occupant and community expectations. The practical basis of the programme leads to a design assignment involving selecting equipment and systems to provide mechanical services in a building.
DESC9074 Project Management

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 2 Classes: 5-day intensive (9am-5pm) Assessment: Two assignments (1x40%, 1x60%) Mode of delivery: Block mode
Project Management is specific form of establishing, programming, and coordinating an activity having a specific start point and end point. This body of knowledge - as for example in the Project Management Book of Knowledge (PMBOK) - needs to be understood in general terms. Initially project managers must identify and define the services that are needed, (scope) and that their employers are willing to endorse. The activities requiring to be carried out need to be sorted and sequenced; the materials, labour and plant required need to be estimated and procured. Projects involve the management of information, and communications. This unit will develop the student's ability to ascertain and document the scope of a project, schedule a programme, and understand the difficulties in directing it. This unit approaches the profession of Project Management as a cooperative undertaking rather than adversarial: it promotes the adoption of soft-skills rather than that of forceful command and supervision.
DESC9147 Sustainable Building Design Principles

Credit points: 6 Teacher/Coordinator: Mr Daniel Ryan Session: Semester 1 Classes: 5-day intensive (9am-5pm) Assessment: Two assignments (1x35%, 1x65%) Mode of delivery: Block mode
This unit aims to develop a critical understanding in students of building design principles that reduce the impact of the built environment on energy, water and material resource flows. Students will gain an overview of technical strategies that reduce the environmental impact of buildings and develop an awareness of the benchmarks and metrics used to judge the implementation of environmental design principles. The unit pays particular attention to design principles that relate to the environmental performance of the building fabric and the thermal and hydraulic systems of buildings.
DESC9148 Sustainable Building Design Practice

Credit points: 6 Teacher/Coordinator: Mr Daniel Ryan Session: Semester 1 Classes: 5-day intensive (9am-5pm) Assessment: Two assignments (1x40%, 1x60%) Mode of delivery: Block mode
Assessing building performance and integrating environmental building systems and construction forms the core of sustainable building design practice. This advanced unit explores the methods, workflows and regulatory frameworks to design best-practice sustainable buildings. It develops your ability to work as a sustainable building consultant. You will learn how to evaluate and critique the environmental performance of real-world projects and set targets and apply strategies to improve designs. The unit also reviews working methods for integrated design and will develop your ability to communicate environmental performance to other design team members.
DESC9153 Graduate Internship

Credit points: 6 Teacher/Coordinator: Associate Dean (Education) Session: Intensive December,Intensive July,Intensive November,Semester 1,Semester 2 Classes: Fieldwork Assessment: Log book signed by practice supervisor and 2000wd report on the benefits of the internship (100%); pass/fail only Mode of delivery: Professional practice
Note: Department permission required for enrolment
Note: Masters students only. Graduate Diploma students with permission of the Program Coordinator. Advanced Standing will not be granted for this unit of study.
The aims of the internship are to provide a direct link between the academic core of the course and the disciplines and methods of practice; to enable candidates to experience aspects of practice and provide the opportunity for them to work in areas of the field outside their specific expertise; to enable candidates to observe, analyse and comment on the interaction between theoretical and practical issues of their Program as it is practiced, and to establish connections between practice and the development of relevant research programs. The internship is intended to provide the opportunity for students to work in various situations in their Program's area. A secondary intention is that students use the opportunities of placement to broaden their own experience beyond the limitations of their chosen discipline. Candidates must find a suitable professional placement. Permission to enrol is given after the proposed placement has been approved by the Program Director. The host organisation will nominate a supervisor for the student for the internship. The student must complete at least 120 hours of full or part-time experience, supervised by a practicing designer (or other professional depending upon the field). A log-book of each day's work, signed by the supervisor must be submitted on completion. A 2000-word report on the benefits of the internship must also be produced. At the end of the internship the student will: demonstrate that they have completed a program of work (through a log-book); present a report; analyse their experiences and compare these to the theoretical content of the units they have completed, and suggest appropriate research directions so as to improve the complementarity of theory to practice.
DESC9164 Lighting Technologies

Credit points: 6 Teacher/Coordinator: Ms Wenye Hu Session: Semester 2 Classes: 5-day intensive Prohibitions: DESC9063 Assessment: Two assignments (2x50%) Mode of delivery: Block mode
This unit covers the technologies employed in generating, distributing, and controlling light in illuminated environments. Students learn the advantages and disadvantages of different hardware options for various lighting applications. A brief history of lighting technologies and the physical processes involved with electrically generating light are included in this unit. Practical characteristics of currently popular lamp types, as well as emerging lighting technologies, are presented. The effects of integral luminaires and other light fittings on the resulting illumination are covered, as are the electrical requirements of different lighting technologies. This unit also includes calculation techniques for predicting the illumination in spaces from lighting products. The selection, operation, and implications of lighting control options are discussed. The underlying principles and practical consequences of the different characteristics of various lighting technologies are emphasised to enable students to independently evaluate future innovations in lighting technologies.
DESC9169 Daylight in Buildings

Credit points: 6 Teacher/Coordinator: Assoc Prof Wendy Davis Session: Semester 2 Classes: 5-day intensive (9am-5pm) Prohibitions: DESC9106 Assessment: Group Report (30%), Individual Assignment (70%) Mode of delivery: Block mode
Daylight can be used in buildings to reduce the energy spent on electric lighting and create aesthetically appealing interiors. Design decisions that affect the success of daylighting in a building span every phase of the design process, from site selection to the application of interior finishes. This unit discusses the role of daylight in indoor illuminated environments. Calculations to predict the quantity and distribution of daylight in spaces and predict the effects of shading devices are covered. Students learn about the local and global variables that influence daylight availability, recognize the challenges and opportunities with daylight in interior spaces, and the appropriate use of daylighting technologies. Modelling tools (Radiance based) will be used in order to assess the efficacy of selected daylight strategies.
DESC9194 Asset and Facility Management

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 1 Classes: 5 weeks lectures/tutorials; 6 hours additional tutorials Assessment: Assignment 1: Written Assignment - Individual (30%); Assignment 2: Written Assignment - Group (40%); Project Critique/Class Presentation (30%) Mode of delivery: Block mode
Property and physical infrastructure are essential elements of business operations and organisational functions. This unit of study will examine the key issues in built assets and facilities management (FM), and how they relate to strategic management within the context of high performance buildings. The unit will enable students to develop an understanding of strategic asset management, portfolio planning, benchmarking of operational services, mandatory code compliances, and business needs for high performing facilities. The functions of facilities management within built assets have a direct relationship with the organisation's performance within a constantly changing business environment. A technical understanding of built assets is a prerequisite to optimising business efficiency and future-proofing against market changes. The unit is taught using a case-study methodology with students working through actual industry projects, thus stimulating a broader appreciation of the FM work involved and encouraging students to work collaboratively and creatively towards practical solutions.
Textbooks
Booty, F. (2009). Facilities Management Handbook. Oxford: Butterworth-Heinemann
DESC9195 Building Economics

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 2 Classes: 5-day intensive (9am-5pm) Assessment: Individual Written Assignment 1 (30%); Group Written Assignment 2 (40%); Project Critique/Class Presentation (30%) Mode of delivery: Block mode
Investors associated with the property industry require at the outset Return On Investment (ROI) evaluations before committing capital. This unit of study examines the economic principles as they apply to buildings, from capital growth and life cycle management perspectives. The focus is on economic and financial practices required for high performing building assets, contract procurement strategies, cash flow analysis, return on investment for retro-fitting, and economic appraisals of existing or new building assets. This unit will develop an understanding of carbon accounting in relation to building management and its importance to sustainable built asset portfolios. The unit, taught by case studies, will equip students with an understanding of economic principles and professional tools necessary for the procurement and management of real estate property, facilities and buildings at optimum economic and environmental performance.
Textbooks
Langston, C. A. (2005). Life-cost approach to building evaluation. Sydney: UNSW Press
DESC9196 Building Services

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 1 Classes: 5-day intensive (9am-5pm) Assumed knowledge: DESC9200 Assessment: Assignment (60%); Seminar (40%) Mode of delivery: Block mode
Technological advances have transformed virtually every aspect of building services including vertical transportation, fire detection and protection, hydraulics and plumbing, heating ventilation and air conditioning, electrical and lighting, security and data networking. This unit develops a critical understanding of the principles of selection, operation and management of these service systems in buildings of larger-than-domestic scale. Upon completion of the unit, students will be able to contribute competently to the decision-making processes related to these systems, and to be aware of the implications of these decisions upon both building design and operational performance. Students will also gain an understanding of the fundamentals of building services functioning, technologies currently available, along with the design and performance implications of competing solutions. Performance metrics to be discussed include energy consumption, space requirements, accessibility for maintenance, and impacts on adjacent floors. Topics will also include the roles of the facilities manager and building services manager in achieving high performance from building service systems. Utilisation of facilities management tools including state-of-the-art software packages will be discussed along with the inclusion of building services within Building Information Modeling and Management strategies.
Textbooks
Parlour, R.P. (2000). Building Services: a Guide to Integrated Design Engineering for Architects. Pymble, NSW: Integral Publishing
DESC9197 Energy Management and Code Compliance

Credit points: 6 Teacher/Coordinator: Dr Christhina Candido Session: Semester 2 Classes: 5 wks Lecture, Lab, Tutorial; 7 hrs additional tutorials Prerequisites: DESC9200 Assumed knowledge: DESC9014, DESC9015 Assessment: Assignment 1 (40%); Assignment 2 (60%) Mode of delivery: Block mode
Objectives of this unit are to give students an understanding of energy consumption issues in buildings against the backdrop of escalating energy and carbon emission reduction targets for the built environment. In order to meet these targets, new design and operational management techniques are needed, including energy auditing, retrofitting and energy efficiency optimisation techniques. This unit is primarily concerned with energy management in buildings and Code compliance in Australia. The unit will expose students to the processes and considerations involved in undertaking an energy audit in buildings. Active energy systems and their fundamentals may be reviewed. Finally, methods of assessing energy performance will be covered, with emphasis on energy simulation. Understanding and application of Australian standards and rating schemes such as NCC/Section J, NABERS Energy, GBCA¿s Green Star, Living Building Challenge, etc will also be explored.
DESC9200 Introduction to Architectural Science

Credit points: 6 Teacher/Coordinator: Dr Christhina Candido Session: Semester 1 Classes: 5-day intensive (9am-5pm) Assessment: Assignment (40%), Exam (60%) Mode of delivery: Block mode
This unit aims to explore the scientific concepts of heat, light and sound, and from this develops foundational principles and methods applicable to buildings. It is divided into five topics: climate and resources: thermal environment: building services: lighting; and acoustics. Students will gain an understanding of the terminology, physical values and metrics in each of these topics, and how they apply to the design and function of buildings. Theoretical models to predict key physical values in buildings are presented and used in assessments. Learning is supported by measurement exercises. This unit has a focused pedagogy intended for all graduate students in Architectural Science. It is a common core unit for all of the programs (Audio and Acoustics, High Performance Buildings, Illumination Design and Sustainable Design). Students within these programs should undertake this unit in their first semester of study if possible.
DESC9201 Indoor Environmental Quality (IEQ)

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 2 Classes: 5-day intensive (9am-5pm) Assessment: Lab-based assignment (40%); Exam (60%) Mode of delivery: Block mode
Humans' thermal, visual, auditory and olfactory senses determine the perceived quality of a built environment. This unit analyses built environments in context of these human factors. This unit relates human experience of buildings to the main dimensions of Indoor Environmental Quality (IEQ): thermal, acoustic, lighting and indoor pollution. This understanding of human comfort perceptions is contextualised by an understanding of the various approaches to the evaluation of built environmental performance. You will study post-occupancy evaluation tools and workplace productivity metrics. Regulations from Australia and abroad will be explored to understand their impact on acoustics, thermal comfort, lighting, indoor air quality and ventilation. The unit also pays particular attention to sustainability rating tools from around the world, including GreenStar, NABERS, LEED and BREEAM. This unit gives students extensive hands-on experience in laboratory- and field-based methods of IEQ research and building diagnostics. A recurring theme will be instrumental measurements of indoor environments, and how they can be analysed in relation to perceptual and behavioural data collected from occupants of those environments.
DESC9300 Research in Arch. and Design Science

Credit points: 6 Teacher/Coordinator: Assoc Prof William Martens Session: Semester 1,Semester 2 Classes: 5 workshop sessions (1 hr/wk for first five weeks) followed by individual student supervision by an appropriate staff member, and returning for the final oral report (in-class presentation) in Week 13 of the semester. Prohibitions: ARCF9001 Assessment: Individual project based: 1 x 1500wd research proposal (30%); 1 x 3500wd final written report (50%); 1 x final oral report (20%) Mode of delivery: Block mode
Note: Department permission required for enrolment
This unit aims to prepare students for undertaking a research project in the various sub-disciplines of Architectural and Design Science. It begins with the workshop-based presentation of foundations of experimental science relevant to research projects within these sub-disciplines. It highlights principles of experimental design and methods of data collection and analysis. Examples of previous projects undertaken by graduate students in Design Science will be presented, as appropriate, in any of the following areas: Audio and Acoustics, Building Services, Facilities Management, Illumination Design and Sustainable Design). Although this unit has a focused pedagogy intended for all graduate students in Design Science, enrollment may be expected by other coursework students within the Faculty of Architecture, Design and Planning, such as those undertaking the Master of Interaction Design and Electronic Arts (M.IDEA).
DESC9673 Intelligent Building Control Systems

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 1 Classes: 5-day intensive (9am-5pm) Assessment: Assignment (60%), Seminar/site visit (40%) Mode of delivery: Block mode
The term 'intelligent buildings' was coined some thirty years ago with the advent of Direct Digital Controls (DDC), but only recently can buildings can truly be considered 'intelligent' thanks to advances in sensor technology, control systems theory, information technology, and electronics in general. This unit presents an overview of intelligent buildings from the Building Management and Control System (BMCS) perspective, focusing specifically on Heating Ventilation Air Conditioning (HVAC) processes, plus other building services including security, lighting, and vertical transportation. Fundamentals of control systems theory and technology will be presented. State-of-the-art BMCS capabilities will be demonstrated in relation to optimising the environmental, workplace productivity and economic performance of buildings. Sustainability issues covered by the unit include the role of BMCS in monitoring and managing energy and carbon footprint, water resources and indoor environmental quality (IEQ). The learning outcomes of this unit of study will include sufficient understanding of building controls to enable optimum building performance. It will also provide a platform for critical analysis of control and operational strategies adopted through techniques such as diagnostics and trend logging of parameters such as energy, water, temperature, humidity, to mention a few.
DESC9674 Building Information Management

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 1 Classes: 5-day intensive (9am-5pm) Prerequisites: DESC9200 and DESC9014 Assessment: Assignments (1x40%, 1x60%) Mode of delivery: Block mode
This unit will introduce students to the theory and practice of building information management and modelling. The unit starts with building management, which brings knowledge and skill on how to operate buildings to optimise performance. It also introduces Building Information Modelling (BIM), which is a digital representation of physical and functional characteristics of a facility. Building information models are shared knowledge resources about a facility, forming a reliable basis for decisions during its life-cycle from earliest conception to demolition. The unit explores the wider use of building information models not only in design but also in construction management, facility management, post construction evaluation, and retrofitting. By bringing together the building management and the information modelling, the unit responds to emergent requirements within the building sector for new tools and practices to offset the growing complexity in the design and construction of high performance buildings.
DESC9675 High Performance Facades

Credit points: 6 Teacher/Coordinator: Prof Richard de Dear Session: Semester 1 Classes: 5-day intensive (9am-5pm) Assessment: Assignments (1x40%, 1x60%) Mode of delivery: Block mode
This unit explores advanced building façades and their role in reducing environmental impacts while simultaneously enhancing indoor environment quality for building occupants. Advanced façades are those that are designed, analysed, procured and operated as a system. Optimisation of the often conflicting performance criteria of cooling load, lighting and daylighting, sound isolation, occupant comfort, costs and aesthetics requires an integrated approach from the whole team including architects, project managers, suppliers and engineers, from the earliest stages of the advanced façade design process. Specific topics to be covered in this unit include the integrated design approach to façades, the fundamental building physics determiningfaçadeperformance, structural façade typologies, solar control façades, daylighting façades, double-skin façades, ventilated façades and dynamicfaçadesystems. Variousanalyticalprocedures and simulation tools for the evaluation of high performancefaçadedesigns will also be examined.Costs and benefits of various design approaches will also be assessed from both owner and occupant perspectives.