Skip to main content
News_

US Government investment in quantum

3 May 2016
The United States funds about half of the University's quantum research

An international consortium comprising European groups and Associate Professor Michael Biercuk's Quantum Control Laboratory at the University of Sydney has been awarded a multimillion-dollar grant from the United States Office of the Director of National Intelligence for research in quantum technology.

A logical qubit is considered a holy grail in quantum information.
Associate Professor Michael Biercuk

Talking quantum tech

Associate Professor Michael Biercuk interviewed on the Mark Bouris Show inside the new $150m Sydney Nanoscience Hub.

An international consortium comprising European groups and the University of Sydney has been awarded a multimillion-dollar research grant from the United States Office of the Director of National Intelligence for research in quantum technology.

Associate Professor Michael Biercuk’s Quantum Control Laboratory at the University of Sydney is the only team based in Australia that has been selected for funding, but builds on a long history of collaboration between US intelligence agencies and the Quantum Science Group at the University of Sydney.

The new consortium including the Quantum Control Laboratory – led out of cutting-edge laboratories at the new $150m Sydney Nanoscience Hub launched recently –  has now been selected by the United States government agency Intelligence Advanced Research Projects Activity (IARPA) as part of its LogiQ program, to help deliver a logical qubit (quantum-bit) based on trapped ions.  

“Ions represent a fantastic platform helping us to learn how we can exploit the most exotic phenomena in quantum physics as resources powering a new generation of technologies,” Associate Professor Biercuk said. 

“There remain enormous challenges bringing any quantum computing technology to reality, but trapped-ions have demonstrated the critical building blocks essential for this effort, decades ahead of other proposed technologies.”

Quantum computing promises dramatic advantages over conventional computation, but progress has been stymied by the fragility of systems obeying the strange rules of quantum physics.  The LogiQ program aims to overcome these challenges by effectively stabilizing the quantum hardware.

“A logical qubit is considered a holy grail in quantum information,” explained Associate Professor Biercuk. “The concept underlying this program is that delicate quantum states can be preserved indefinitely – and put to work performing useful computational tasks – if the information they carry is physically spread out over many qubits.” 

The LogiQ program funds open university and industry research towards overcoming the limitations of current multi-qubit systems by building a logical qubit from a number of imperfect physical qubits. 

“Achieving this requires a major undertaking combining fundamental quantum physics with practical engineering expertise because building a logical qubit requires the underlying quantum hardware to perform extraordinarily well.” 

Associate Professor’s Quantum Control Laboratory was sought out for its expertise in combining quantum physics with control engineering in order to make the quantum hardware more resilient to error. 

The techniques this group has pioneered in this area earned Associate Professor Biercuk a Eureka Prize for Outstanding Early Career Researcher last year, and his related collaborative work on quantum simulation with trapped ions has been named the #8 “world-changing experiment” by BBC Focus. 

“US agencies interested in how quantum technology can be applied to problems in intelligence and security provide the majority of my group’s research support,” Associate Professor Biercuk said. 

“They seek our expertise – and that of my colleagues in the Quantum Science Group – in learning how quantum systems can be coaxed into performing useful tasks and put to work in technological applications.

“While the primary interests relate to quantum computing, this research topic has broad impacts on a wide range of futuristic quantum technologies.”

Further reading:

Associate Professor Biercuk will be speaking at TEDxSydney at the Sydney Opera House on 25 May.

Vivienne Reiner

Media and PR Adviser (Science, Veterinary Science, Agriculture)
Address
  • Room 192, Level 1 Carslaw F07

Related articles

14 November 2019

Nanoscale neural network developed with Japan and US researchers

Neuromorphic network developed by Professor Zdenka Kuncic in collaboration with UCLA and the Japanese National Institute of Materials Science exhibited emergent brain-like behaviour resembling some cognitive functions.
13 November 2019

How transit scaling shapes our cities

A new study conducted by researchers from the University of Sydney reveals public transport investments in large metropolitan areas reap a better return, with more passengers adopting public transport, than those in smaller cities.
12 November 2019

Engineering doctorate awarded to Sir Michael Hintze AM

The University of Sydney has awarded an honorary doctorate in Engineering to Sir Michael Hintze AM for his philanthropic efforts and global contributions to engineering and business.
11 November 2019

NSW and Queensland bushfires: experts available for comment

How might bushfires threaten animals like the koala? What's the link between coal and CO2? University of Sydney experts are available for comment on issues related to bushfires.
11 November 2019

Scientists discover mood-altering brain receptor

International research has uncovered a receptor believed to be linked to negative moods, in a part of the brain that is little-understood. The discovery published in Science could lead to more targeted medications.