Wireless multi-hop networks, in various forms, e.g. wireless sensor networks, underwater sensor networks, vehicular networks, mesh networks and UAV (Unmanned Aerial Vehicle) formations, and under various names, e.g. ad-hoc networks, hybrid networks, delay tolerant networks and intermittently connected networks, are being increasingly used in military and civilian applications. Graph theory, particularly a recently developed branch of graph theory, i.e. random geometric graphs, is well suited to studying these problems. These include but not limited to: cooperative communications; opportunistic routing; geographic routing; statistical characterization (e.g. connectivity, capacity and delay) of multi-hop wireless networks; geometric constraints among connected nodes and their use in autonomous parameter estimation without manual calibration. This research will investigate the use of graph theory to solve problems in the above broad areas. Research outcomes will benefit almost all areas in wireless multi-hop networks, including routing, scheduling, mobility management, dimensioning, interference control, energy management and localization.
Electrical and Computer Engineering
Masters/PHD
Wireless multi-hop networks, in various forms, e.g. wireless sensor networks, underwater sensor networks, vehicular networks, mesh networks and UAV (Unmanned Aerial Vehicle) formations, and under various names, e.g. ad-hoc networks, hybrid networks, delay tolerant networks and intermittently connected networks, are being increasingly used in military and civilian applications. Graph theory, particularly a recently developed branch of graph theory, i.e. random geometric graphs, is well suited to studying these problems. These include but not limited to: cooperative communications; opportunistic routing; geographic routing; statistical characterization (e.g. connectivity, capacity and delay) of multi-hop wireless networks; geometric constraints among connected nodes and their use in autonomous parameter estimation without manual calibration. This research will investigate the use of graph theory to solve problems in the above broad areas. Research outcomes will benefit almost all areas in wireless multi-hop networks, including routing, scheduling, mobility management, dimensioning, interference control, energy management and localization.
http://www.ee.usyd.edu.au/people/guoqiang.mao/index.html
The opportunity ID for this research opportunity is 1344