Molecular mechanism of photo-regulation in cyanobacteria

Summary

Red-light perception and red-shifted chlorophylls: evolutionary consequences. The importance of red light is highlighted by the diversity of photoreceptors and the potential enhanced photosynthetic efficiency by using red-shifted chlorophylls. Elucidating photoregulatory mechanism driven by red/far-red light will allow us to understand the formation and evolutionary significance of red-shifted chlorophylls.

Supervisor(s)

Professor Min Chen

Research Location

School of Life and Environmental Sciences

Program Type

Masters/PHD

Synopsis

Light is both an energy source and a deliverer of environmental information. There are two kinds of photopigment-binding protein complexes in photosynthetic organisms: one to absorb and convert sunlight as the energy source, and another to sense sunlight as an environmental information carrier. Different photosynthetic pigments allow the organism to use a wider spectral region of sunlight. The discovery of red-shifted chlorophylls in two cyanobacteria has expanded how photosynthetic organisms take advantage of red-shifted chlorophylls (Chl d and Chl f) to extend their spectral absorption (Chen et al. 2010; Chen and Blankenship 2011). The unique ecological niche where organisms that use red-shifted chlorophylls (Chl d and Chl f) were found (Kuhl et al. 2005; Chen et al 2010; Mohr et al. 2010; Behrendt et al. 2011; Larkum et al. 2012) raises a number of interesting questions. How do these cyanobacteria produce red-shifted chlorophylls? What kind of photoregulatory mechanisms do these cyanobacteria use to sense light conditions? Is far-red light necessary for the formation of the red-shifted chlorophylls?

The project will focus on identify the red-light perception molecules and their relationship with chlorophyll modification.  The project will involve using sequence analysis (bioinformatic comparisons), PCR/RT-PCR, protein isolation, SDSPAGE and proteomic analyses.

Additional Information

•    Current PhD/Hons topics being undertaken at the location or with the supervisors
Three PhD Projects are being undertaken in A/Prof Chen’s laboratory.
1.    Light-harvesting systems in Chromera velia
2.    Function of antenna systems in a newly isolated cyanobacterium containing chlorophyll f
3.    Global protein analysis of cyanobacterium Acaryochloris marina under various oxygen-stressed conditions.

•    Is the opportunity also available for Honours students?
Yes, one-year potential projects are available for honours students. Details please contact A/Prof Min Chen (min.chen@sydney.edu.au)

•    Techniques, methodologies, research approaches, technologies, etc., employed by the project - e.g., electron microscopy, textual analysis, etc.
Pigment and pigment-bound protein analyses are performed by using a spectrophotometer, fluorescence photometer and other molecular spectral analysis methods.

General protein isolation and characteristic methods, such as electrophoresis (SDS-PAGE, IEF, Western Blotting, Native electrophoresis, 2-D gel, peptide mass finger printing and other proteomic analysis.

Chromatographic anaylsis such as HPLC (high-performance liquid chromatography), FPLC (Fast protein liquid chromatography), gel filtration and ion-exchanging columns for proteins and protein-complexes purification.
DNA, RNA isolation, PCR (DNA as templates) and RT-PCR (RNA as templates), Gene transformation and functional studies in vitro.

General biochemical and molecular biological experiences are required for potential students who want to study inthe laboratory. Hons A or similar experiences is required.

• Scholarships/funding available
ARC Centre of Excellent for Translational Photosynthesis (2014-2020)
Biosynthesis of chlorophylls (ARC Future Fellow, 2013-2016)
ARC Discovery Project (2012-2014)

HDR Inherent Requirements

In addition to the academic requirements set out in the Science Postgraduate Handbook, you may be required to satisfy a number of inherent requirements to complete this degree. Example of inherent requirement may include:

- Confidential disclosure and registration of a disability that may hinder your performance in your degree;
- Confidential disclosure of a pre-existing or current medical condition that may hinder your performance in your degree (e.g. heart disease, pace-maker, significant immune suppression, diabetes, vertigo, etc.);
- Ability to perform independently and/or with minimal supervision;
- Ability to undertake certain physical tasks (e.g. heavy lifting);
- Ability to undertake observatory, sensory and communication tasks;
- Ability to spend time at remote sites (e.g. One Tree Island, Narrabri and Camden);
- Ability to work in confined spaces or at heights;
- Ability to operate heavy machinery (e.g. farming equipment);
- Hold or acquire an Australian driver’s licence;
- Hold a current scuba diving license;
- Hold a current Working with Children Check;
- Meet initial and ongoing immunisation requirements (e.g. Q-Fever, Vaccinia virus, Hepatitis, etc.)

You must consult with your nominated supervisor regarding any identified inherent requirements before completing your application.

Want to find out more?

Contact us to find out what’s involved in applying for a PhD. Domestic students and International students

Contact Research Expert to find out more about participating in this opportunity.

Browse for other opportunities within the School of Life and Environmental Sciences .

Keywords

Photosynthesis, evolution of oxygenic photosynthesis, chlorophyll, light-harvesting complexes, phycobiliproteins, chlorophyll-binding protein complexes, proteomics of membrane-bound protein complexes, Protein structural models. Stress-response plant physiology (light, oxygen and nutrients), biosynthesis of chlorophyll and other photopigments. Acaryochloris, blue-green algae, cyanobacteria, Bioinformatics and functional genomics, hongdechloris

Opportunity ID

The opportunity ID for this research opportunity is: 1309

Other opportunities with Professor Min Chen