Your Search Results

Self-Assembly and Self-Organization in Complex Distributed Systems

The aim of this project is use a range of algorithmic techniques (graph theoretic, game theoretic, information theoretic) to study and gain insight into the processes of self-assemb more...

Supervisor(s): Zomaya, Albert Y. (Professor), Vadas, Mathew (Professor)

Parallel Stochastic Optimization Algorithms

This project is investigating the application of unorthodox optimization techniques such fuzzy logic, genetic algorithms, neural networks, simulated annealing, ant colonies, Tabu se more...

Supervisor(s): Zomaya, Albert Y. (Professor), Vadas, Mathew (Professor)

MicroRNAs as Regulators of Cellular Programs

This project involves modeling the role of transcription factors and miRNAs in the control of systems implicated in maintaining and regaining optimal health. more...

Supervisor(s): Zomaya, Albert Y. (Professor), Vadas, Mathew (Professor)

Resilience and distributed systems for a healthy society

This project aims to develop an understanding of the link between the nature of distributed systems and the resilience that underpins healthy future societies. more...

Supervisor(s): Zomaya, Albert Y. (Professor), Vadas, Mathew (Professor)

Biological metaphors and resilience

The project will seek inspiration from biological networks to optimize the resilience of public health systems. more...

Supervisor(s): Zomaya, Albert Y. (Professor), Vadas, Mathew (Professor)

Complex Networks and Performance

The project aims to develop a social network based model and operational constructs for exploring individual behaviour in relation to choice and personal health. more...

Supervisor(s): Zomaya, Albert Y. (Professor), Vadas, Mathew (Professor)

Exploring the link between international trade and the global obesity epidemic

The project aims to investigate the link between global trade patterns in food commodities and the global obesity epidemic. more...

Supervisor(s): Lenzen, Manfred (Professor)

Refining cell-based therapies to cure diabetes

The most promising route for a cure for type 1 diabetes is the use of insulin-secreting cells to replace those that have died. more...

Supervisor(s): Thorn, Peter (Professor)

The role of regulatory T Lymphocytes in aberrant human immune responses

The focus is to phenotypically and functionally characterise T regulatory cells in aberrant immune responses  e.g. autoimmune and allergic diseases. more...

Supervisor(s): Nanan, Ralph (Professor)