Your Search Results

Quantum Control Theory

We address the challenge of creating efficient, error-resilient quantum control approaches for use in future quantum technologies. more...

Supervisor(s): Biercuk, Michael J. (Professor)

Quantum Enabled Sensing

Development of new quantum-enabled sensors providing unrivalled performance across a range of applications. more...

Supervisor(s): Biercuk, Michael J. (Professor)

Quantum Control with Trapped Ions

This project aims to develop novel techniques for the control of quantum systems using trapped atomic ions. more...

Supervisor(s): Biercuk, Michael J. (Professor)

Quantum Simulation and Large-Scale Entanglement

Developing techniques for the study of large-scale quantum simulators based on crystals of trapped atomic ions. more...

Supervisor(s): Biercuk, Michael J. (Professor)

Quantum transport in molecule/carbon-based nanostructures for new molecular electronic devices

Various projects available in the field molecular electronics and sensors. Large scale ab initio calculations will be used to investigate and predict novel structures and systems. A more...

Supervisor(s): Stampfl, Catherine (Professor)

Development of fractal asperity microstructures and their effects on frictional properties

Hierarchical structures exhibiting self-affinity are abundant in nature. We seek to characterise how the evolution of such self-affine topographies is governed by microstructural pa more...

Supervisor(s): Hanaor, Dorian (Dr)

Mechanism and control of diamond and graphene-based nanostructures using direct electric-field and laser excitation

To investigate the sculpting of carbon-based structures through controlled electric field and/or laser excitation, through first-principles based calculations. more...

Supervisor(s): Stampfl, Catherine (Professor)

Customising the acidity of novel nano-catalysts for desired catalytic reactions

To investigate through first principles calculations, the fundamental physics and chemistry of novel solid acid nano-catalysts with the overall goal of understanding and predicting more...

Supervisor(s): Stampfl, Catherine (Professor)

Nanocarbon based electrocatalysts

Using microorganisms, particularly bacterial cells, as a novel precursor to synthesize heterogeneous carbon materials as electrocatalytic catalysts for key electrochemical reactions more...

Supervisor(s): Chen, Yuan (Professor)