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Location of public charging stations, range limit, and long battery-charging time inevitably affect drivers’ path choice behavior and
equilibrium flows of battery electric vehicles (BEVs) in a transportation network. This study investigates the effect of the location
of BEVs public charging facilities on a network with mixed conventional gasoline vehicles (GVs) and BEVs. These two types of
vehicles are distinguished from each other in terms of travel cost composition and distance limit. A bilevel model is developed
to address this problem. In the upper level, the objective is to maximize coverage of BEV flows by locating a given number of
charging stations on road segments considering budget constraints. A mixed-integer nonlinear program is proposed to formulate
this model. A simple equilibrium-based heuristic algorithm is developed to obtain the solution. Finally, two numerical tests are
presented to demonstrate applicability of the proposed model and feasibility and effectiveness of the solution algorithm. The results
demonstrate that the equilibrium traffic flows are affected by charging speed, range limit, and charging facilities’ utility and that

BEV drivers incline to choose the route with charging stations and less charging time.

1. Introduction

Carbon-based emissions and greenhouse gases are critical
global issues, where transport sector is a significant contrib-
utor. A cost-effective strategy for reducing emissions is effi-
cient use of alternative fuels. Cities, businesses, and govern-
ments have recognized electric vehicles (EVs) as an indis-
pensable part of smart and sustainable city frameworks [1],
because, comparing to conventional internal combustion
engines, EV's are more energy efficient [2]. Moreover, battery
electric vehicles (BEVs), as a type of alternative fuel vehicles,
have been developed as a promising solution for reducing
local air pollution at the point of operation [3], greenhouse
gas emissions [4], dependency on fossil oil, and improving
energy safety. Furthermore, EVs can be utilized to store
energy from renewable resources, such as wind, wave power,
and solar cells, to smoothen out the daily power fluctuation
in low peak periods [5] with the development of vehicle-to-
grid (V2G) technology [6-8]. For consumers, the monetary

savings of switching to a BEV can be significant due to
cheaper electricity cost comparing with gasoline [9]. How-
ever, the early BEV users still suffer from the inconvenience
of limited driving range, long charging time, and insufficient
public charging stations [1, 10].

Currently the driving range of EVs can vary greatly
between 60km and 400km by model and manufacturer,
while most of them have ranges between 100 km and 160 km
[11]. The EVs can be recharged using plug-in charging or
battery-swapping facilities. The plug-in charging is catego-
rized by voltage and power levels, leading to different charg-
ing times. Slow charging usually takes hours to charge while
fast charging can achieve 50% charge in 10-15 minutes [11].
Range anxiety, when the driver is concerned that the vehicle
will run out of battery before reaching the destination, is
a major hindrance for the market penetration of EVs [12]
and will inevitably add a certain level of restrictions to BEV
drivers’ path choices, at least in a long future period prior
to the massive coverage of recharging infrastructures [13].
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Governments and automotive manufacturers have recog-
nized the environmental value of EVs and, therefore, are
encouraging BEV ownership through economic incentives
and more public charging station deployment [14].

Explicitly incorporating the range limit into facility loca-
tion problem (FLP) can be traced back to flow refueling
facility location problems (FRFLP) which utilized optimiza-
tion models to determine a set of locations to serve the
refueling demand in a network subject to a financial budget.
One branch of FRFLP sought to maximize demand coverage
by locating a fixed number of refueling facilities, which
was referred to as the maximal covering location problem
(MCLP). This problem has been typically formulated as
flow refueling location model (FRLM) [15-18], which served
demand along their shortest paths rather than demand at
their end points to maximize the coverage of these flows.
Typically, they used modifications of flow-capturing or flow
interception location models (FILM) [19, 20], which were
path-based version of MCLP. In FILM, for each O-D pair, the
shortest path between the O-D pair is considered as covered
if it passes through at least one node that contains a refueling
facility. The developed FRLM models have been compared
empirically for specific scenarios in order to choose one
location model over another [21]. Furthermore, in another
attempt, a flow-based refueling-station-location model was
proposed based on a set covering concept and vehicle-routing
logics considering both intercity and intracity travel [22, 23].
The above model was reformulated and a flexible mixed-
integer linear programming model was presented, which was
able to obtain an optimal solution much faster than the
previous set cover version. Moreover, the model also could
be solved in the maximum cover form [24].

Along another track, a large variety of other approaches
have been proposed to address the locations of EV public
charging infrastructures. Huang et al. [11] proposed a geomet-
ric segmentation method to find the optimal location for both
slow and fast charging stations. Sweda and Klabjan [25] devel-
oped an agent-based decision support system and a variant
maximal covering location problem for EV charging infras-
tructure deployment. Asamer et al. [26], by using 800 electric
taxis’ operational data in the city of Vienna, Austria, proposed
a two-phase decision support system. Nie and Ghamami [3]
presented a conceptual optimization model to analyze travel
by EV along a long corridor whose objective was to select the
battery size and charging capacity (in terms of both the charg-
ing power at each station and the number of stations needed
along the corridor) to meet a given level of service. They
further proposed a fixed charge facility location model with
charging capacity constraints, considering drivers’ preference
for familiar parking lots [27]. Chen et al. [28] investigated
the optimal deployment of charging stations and lanes along
a long traffic corridor to serve the charging need of EVs
and examined the competitiveness of charging lanes over
charging stations. Xi et al. [29] developed a simulation-
optimization model that determined where to locate EV
charging stations to maximize their use by privately owned
EVs. Jung et al. [30] reported a simulation-optimization loca-
tion model including an upper level multiple-server alloca-
tion model with queueing delay and a lower level dispatch
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simulation and provided a solution algorithm that fea-
tured itinerary-interception, stochastic demand, and queue-
ing delay. Dong et al. [31] analyzed the impact of public
charging station deployment on increasing electric miles
traveled. By considering transportation and power networks
and maximizing the social welfare, He et al. [32] developed an
equilibrium-based modeling framework for locating plug-in
charging facilities. Riemann et al. [33] incorporated stochastic
user equilibrium (SUE) into a FCLM and aimed to capturing
the maximum EV path flow on a network. A global optimal
solution was applied to solve the proposed model. Wu and
Sioshansi [34] proposed a stochastic flow-capturing model to
optimize the location of fast charging stations, addressing the
uncertainty of BEV flows. Zhu et al. [35] proposed a model
that simultaneously handled the problem of where to locate
the charging stations and how many chargers should be estab-
lished in each charging station to minimize the total cost.
The location design problem of charging facilities can
be modeled as a Leader-Follower Stackelberg game where
the decision makers are the leaders who decide the facility
deployment and the BEV users are the followers who can
choose their paths freely. Most of the previous studies focused
on user equilibrium (UE) problems with BEVs. Among
these studies, Jiang et al. [13] first introduced a path-con-
strained deterministic traffic assignment problem and further
extended this work by considering trip chain and range
anxiety analysis [36-39]. Zheng et al. [40] presented a bilevel
model to locate charging facility and minimize all users cost
in the upper level and to find path-constrained equilibrium
BEV flows in the lower level. Jing et al. [41] provided a
comprehensive review for the equilibrium network modeling.
However, the driving distance limit, to the best of our knowl-
edge, has not been considered in stochastic network equilib-
rium models, especially in the mixed flow transport network.
Moreover, to tackle the range anxiety problem with a limited
budget, the charging facilities should be accessible to as many
EVs as possible [11]. It can be an efficient way to deploy the
public charging facilities on the links where most BEV drivers
use to increase the utilization and perception of the public
charging facilities, which promotes BEV acceptance and
relieve range anxiety [31]. Given the high cost of building pub-
lic charging stations and financial constraints, it is essential to
optimize the location of facilities in a network that provides
the maximum exposure and utilization by BEV drivers. Since
various factors influence BEV drivers’ charging decision,
such as stochasticity of range anxiety, initial battery energy
state, battery energy consumption ratio, and battery capacity,
considering those factors in the model is of great importance.
In this study, we present a novel bilevel public charg-
ing infrastructure location model that maximizes the total
captured BEV link flows, considering BEV range limits and
SUE principle to capture BEV drivers’ route choice behavior
in a network with mixed BEV and gasoline vehicles (GVs).
The objective of the upper level of the model is to cover the
maximum BEV link flows in a network by deploying a given
number of charging facilities. In other words, the model aims
to maximize the number of BEVs who can access the charging
facilities along their routes. In the lower level, the stochastic
traffic assignment on the network is the primary factor that
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determines the location of charging facility deployment. In
general, a network equilibrium problem with multiple vehi-
cle/mode classes cannot be written as a convex mathematical
programming model, due to the existence of the asymmetric
Jacobi matrix caused by different impacts on travel cost from
different vehicle/mode classes [42]. The approaches to deal
with the asymmetric Jacobian elements can be attributed to
Jiang and Xie [43] and Ryu et al. [44]. It should be noted that
relaxing the asymmetric restriction inevitably degrades the
realism of traffic assignment model. However, in our model,
the general compositions of path travel cost functions of the
two vehicle classes, that is, GVs and BEVs, are similar. The
only differences between these two types of vehicles lie in two
flow-independent terms, namely, charging facility utility and
charging time and thus their flow-time impacts on each other
are symmetric (i.e., the impact of GVs on the travel times of
BEVs is the same as the impact of BEV's on the travel times of
GVs).

Modeling a traffic network with realistic refueling behav-
iors may require accommodating different routing objectives
(e.g., minimization of travel time, charging time, and/or
fuel consumption), different refueling services (e.g., battery-
charging service or battery-swapping service), and different
types of vehicles (e.g., GVs and BEVs) [38]. All these factors
result in different path travel cost perception and route choice
behaviors. It is evident that BEV drivers have inherent differ-
ences in travel behavior from GV drivers and specifically
range limit, charging speed, and charging stations locations
have significant influence on BEV drivers’ decision-making
process [45].

This paper focuses on several factors to explicitly capture
BEV drivers’ behavior with the stochastic traffic assignment.
However, we understand the limitations of the stochastic
traffic assignment in the lower level for accurately capturing
realistic situations. It is believed that the results from this
paper can provide some guidelines for locating BEV charging
facility and basic insights of BEV drivers’ behavior. Despite
all the realistic situations, most data, such as demand, initial
battery state of charge, and actual range limit, are difficult to
obtain and this method and objective are easy to implement
especially at the early stage of expanding EV market share.
First, BEVS’ range limit is considered as travel distance such
that any path whose distance is greater than its range limit
(referred to as infeasible paths) would not be chosen if
the existing charging facility could not help finish the trip.
Second, availability of charging facility would affect the route
choice in a way that those infeasible paths may become feasi-
ble after recharging at the charging facilities on the path. Fur-
thermore, the utility theory is applied to charging facility;
that is, BEV drivers are more likely to choose the path with
charging facilities over others without charging facilities even
if they have equal path travel time. In addition, traffic conges-
tion effects on travel time are also taken into consideration in
BEV drivers’ route choice behavior but not in the range limit
constraint. Lastly, under the principle of perceived individual
cost minimization, the path cost structure in the lower level
model consists of flow-dependent path travel time, charging
time, and utility of charging facilities (equivalent to given
amount of travel time reduction). Specifically, the lower level

model can be stated as follows: in a traffic network with fixed
GV and BEV travel demand between each O-D pair and a
set of charging facilities at known locations, the problem is to
find such a traffic flow pattern that each trip maker chooses a
path along which his or her least perceived cost is minimized
and the vehicle can be charged before running out of energy
before arriving at the destination. Meanwhile, no one can
improve his/her perceived travel cost by unilaterally changing
a path. Given the sufficient coverage of gasoline stations and
GVs’ large fuel capacity, GVs route choice is not affected by
any other costs incurred by refueling requirement, except for
travel time.

The contributions of this study are threefold. Firstly, a
maximal flow-covering (MFC) model, that is, a modification
of classic MCLP, is proposed to maximize BEV flow coverage
by locating a fixed number of charging facilities in the bilevel,
equilibrium-optimization framework. Coverage is achieved
when the charging facilities are located on the BEV route.
Secondly, the effects of driving distance limit constraints,
charging facility availability, charging facility utility, and
traffic congestion are accommodated in BEVs route choice
behavior. The equilibrium BEV flow pattern is determined
endogenously by the general SUE traffic assignment model
with driving distance limit constraints, in which the mutual
interactions between the location of charging facilities and
resultant equilibrium BEV link flow patterns are modeled.
Finally a heuristic algorithm is proposed to solve the mixed-
integer nonlinear program.

The remainder of this paper is organized as follows. In
Sections 2 and 3, we elaborate the problem definition and
formulation. Section 4 presents the solution methodology
and details its algorithmic implementations, while Section 5
describes the numerical results from applying the algorithmic
procedure for a small network and Sioux Falls network. In
the end, we conclude the article and point out some future
research directions in Section 6.

2. Problem Description,
Assumptions, and Notation

BEVs rely entirely on electricity as a single power source
and are designed to be charged at the charging facilities.
BEVS’ electricity consumption is typically proportional to the
driving distance, resulting in a driving range limit because
of the battery capacity. On the basis of current battery
technology, charging a BEV still takes more time than
refueling a GV’s fuel tank. The distance limit, the charging
time, and the location of the charging facilities inevitably
change BEV drivers’ route choice behavior in a stochastic
manner where BEV drivers may have imperfect information
regarding their travel cost over the entire mixed flow (i.e.,
BEVs and GVs) traffic network. The massive adoption of
BEVs requires a certain level of coverage of the charging
facility. Given the financial budget and high cost of installing
public chargers, it is a sound approach to maximize the pass-
ing BEV population on the links where charging facilities are
deployed.

This paper considers a strongly connected transportation
network with both BEVs and GVs demands, denoted by



G = (N, A), where N is the set of nodes and A is the set
of links. R ¢ N and S < N denote the sets of origins
and destinations, respectively. The objective of this proposed
bilevel model is to locate a given number of BEV charging
facilities for covering maximum BEV flows on the mixed
traffic flow network. All the candidate charging facility loca-
tions are grouped into a set of pseudonodes in the middle of
the links denoted by Z. GVs and BEVSs are distinguished by
their driving distance limits, travel cost composition, and the
availability of refueling facilities.

Without loss of generality, the following assumptions are
made:

(A1) The technological characteristics of BEVs and demo-
graphic features of BEV drivers are homogeneous in
the network, and so are GVs and GV drivers. Only
one type of BEV with identical driving distance limit
and battery consumption rate is considered.

(A2) Every vehicle is fully charged at its origin.

(A3) The variation of BEV drivers’ range anxiety level and
risk-taking behaviors are ignored.

(A4) A charging facility is deployed on the midpoint of the
link in the network.

(A5) The facilities have unlimited charging capacity.
Hence, an EV can get charged without delay after
its new arrival. En route charging time at the public
charging facilities is linear related to the remaining
distance to reach the destination.

(A6) The BEV link flow is covered if a charging facility
exists on this link.

(A7) The deployment of a charging facility on a route/path
would increase the “attractiveness” or “utility” of this
route. The utility of a charging facility is considered as
a fixed value and converted into travel time reduction.

(A8) Travel demand of both GV and BEV between each O-
D pair is fixed. That is, elastic and stochastic demands
are not considered in this model.

See the Notations for variables and parameters used
throughout this paper, where subscripts g and e indicate vari-
ables or parameters associated with GV and BEV, respectively.

3. Model Formulation

In this section, we formulate the bilevel optimization model
for the charging facility location problem. Bilevel problems
split the decisions of the system planner (leader, i.e., infras-
tructure developer in this paper) and system users (followers,
i.e., drivers) into two levels so that the subproblems are
solvable and an iterative approach can be used to achieve an
equilibrium state. The upper level aims at determining the
locations of charging facilities to increase an objective to max-
imize the covered BEVs flows assuming BEV's flows remain
unchanged. The lower level subproblem is characterized as
BEV drivers’ route choice behavior with a generalized travel
cost structure. SUE conditions with mixed BEVs and GVs
assuming fixed locations of charging facilities from the upper
level subproblem are analysed.
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3.1 Preliminaries. A feasible path for GVs between a given
O-D pair may be infeasible for BEVs because of the limited
driving distance range and absence of a charging facility.
Hence, a feasible path used by GV's can be decomposed into
several parts for BEVs according to whether a charging action
should be taken by BEV drivers at each charging station.
To model BEVs paths, three notions, namely, subpath, pure
subpath, and feasible subpath, proposed by Xie and Jiang
[38], are introduced in the formulation of the lower level
stochastic assignment problem and three charging action
based scenarios are analyzed as follows.

Subpath. A part of path k connecting O-D pair (r,s) is a
subpath if charging stations are located at the head and tail
nodes/pseudonodes of this part. A subpath consists of a
number of consecutive links and half links since we assume
charging stations locate in the middle of the links. We denote
kY, i,j € Z, as a subpath of path k, where charging station
i(j) is the head (tail) node of this subpath. l;s”] is the length
of the subpath.

Pure Subpath. Subpath k” is a pure subpath if there are no
other charging facilities on this subpath except i and j.

Feasible Subpath. Subpath k" is feasible on path k of O-D pair
(r,9), if its length is no greater than BEV driving distance
limit; that is, [, < D,,.

The concept of subpaths allows us to better illustrate the
BEV drivers’ path travel cost structure and add the driving
distance constraint.

The generalized path travel cost is composed of three
parts: path travel time, path charging time, and equiva-
lent travel time reduction (the utility of charging facilities
on attracting BEV drivers). Without loss of generality, we
consider 3 scenarios based on the relationship between the
driving distance limit D, and subpath distances. For a given
path k shown in Figure 1, path travel time and equivalent
travel time reduction are fixed and can be represented by a
consistent form: g +t,’;, where t;’, = 2-t;. Note that £, is a
nonpositive value.

Scenario 1. There is no need for charging. When [}’ < D,,
the BEV driver can reach the destination without en route
charging. The generalized path travel costis ¢}, = ¢" +2-t,.

Scenario 2. If any pure subpath distance exceeds the driving
distance limit D,, this path becomes infeasible to BEV drivers.
In other words, if path k cannot be decomposed into a set
of feasible subpaths, path k is not feasible. In this case, the
generalized path travel cost becomes extremely large and the
probability of choosing this path is zero.

Scenario 3. Charging is needed to reach the destination. If the
path distance is larger than the distance limit (i.e., [;>" > D,)
and the distances of its all pure subpaths are less than D,,
the BEVs need to charge at least once. BEVs would charge as
little as possible to reduce the path travel time. The minimum
charging time is £, = & ([>” — D,). The generalized path

so=rs _ 1S .40 rs
travel costis ¢j, = ¢~ +2 -1, + 1.
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lrs,ri V[L< ......... l.r_s,.ij .......... >l .l,((s_,j.s. .

<> Charging facility

.+ Origin

(") Destination
F1GURE 1: Illustration of subpaths definitions. We consider a path k
of O-D pair (r, 5), along which nodes i and j are located in the middle
of links ab, bs, respectively. There exist 3 pure subpaths denoted by
dotted lines, namely, k", k7 and k*,and another 3 subpaths K9, K,
and k™ by solid lines on path k. These subpaths are feasible if their
distance is less than the BEV driving distance limit D,.

For GVs, the generalized path travel cost is i, = ¢”.
Hence, BEV drivers are more likely to choose path k than GV
users under Scenario 1 due to the utility (attractiveness) of the
charging facilities on this path, while only GV drivers would
choose this path under Scenario 2 because of the infeasible
pure subpath. A trade-off between charging time and charg-
ing facility utility should be made to identify the generalized
travel cost difference of BEVs and GVs under Scenario 3. For
example, charging time of fast charging or battery swapping
may be shorter than the equivalent travel time reduction
converted from the charging facility utility, and thus more
BEVs would be assigned to this path even if they may need
several charging instances on this path. If multiple charging
stations are available on a path, BEV drivers will go through
the following process to decide whether charging should be
conducted at a station. Let us consider Scenario 3 only where
each pure subpath is feasible for BEV's to reach the destination
without running out of energy. When arrived at a charging
station, BEVs would not charge at the current charging
station if they can reach the next one without charging.

3.2. Bilevel Model Formulation. Given the key concepts and
terms above, we define the upper level problem as

max Fx,v(x)]

1
Subject to  E[x,v(x)] <0,

where v(x) is implicitly determined in the lower level problem

min fIxv]

)
Subject to e [x,v] <0,
where F and E are the objective function and constraints
of the upper level problem while f and e are those of the
lower level distance-constrained SUE model. F models the
total covered BEV link flows and E guarantees the number of
charging facilities to be equal to the given design value. x and
v are decision variables for upper and lower level problems;

that is, x and v denote charging facility locations and BEV
link flow pattern, respectively. Subsequent sections detail
the mathematical properties of both upper and lower level
subproblems.

Furthermore, in the lower level distance-constrained SUE
problem in mixed traffic flow networks, the link performance
functions are assumed to be a BPR (Bureau of Public Road)
type function as follows:

v 4+v.  \*
to (v Vas) = 11 (1 +0.15x (gT) ) N
a

ac€A.

As thk and tg are flow-independent, we can easily obtain
the Jacobi matrix for the lower level problem, with its
elements given for GVs and BEVs, respectively, as follows:

—7S _ 3
ackg _ aclrcse 06 tO rs (Va’g + Va:e) (4)
0 - 0 - Z a~ak H 4 .

Vae  OVag acA a

This proves that the Jacobi matrix is symmetric so that the
lower level model can be established as a convex mathemati-
cal problem.

3.2.1. Upper Level Formulation. The upper level problem
aims to maximize the total covered BEV link flows with the
deployment of a given number of charging facilities, where
the network coverage is defined as the total sum of BEV link
flows on only links with charging facility. That is,

max Zva’exa (5)
Subject to Zxa = p. (6)
acA

Equation (6) is the budget constraint and can be relaxed as
locating the maximum number of p facilities in the network
as shown in constraint (7). Consider

0< Zanp. (7)

acA

3.2.2. Lower Level Problem. The lower level problem is to
obtain the equilibrium BEV flow under SUE routing principle
in a congested mixed traffic network considering charging
facility locations. The network is assumed to be connected;
that is, there is at least one path connecting each O-D
pair. We formulate the flow conservation and nonnegativity
constraints in the mixed traffic network as follows:

Ve = 2D figOukt 20D fiaOuir Vae A
ros kK TS Lk

4 =) fis, V(rs)
k

4’ =) fur V(r5) (8)
k

TS rs
kg = 0, V(r,s), ke Kg

=0, V(rs), keK].



The link travel cost functions are assumed to be separable
between different network links, and they are positive, mono-
tonically increasing, and strictly convex as well. The travel
cost for GV drivers includes travel time only, whereas BEV
drivers travel cost consists of travel time, charging time, and
charging facilities” utility. The perceived path cost is equal to
the generalized path travel cost plus a random error term.

TS —T'S s
Chy = Chy t &1 kK € K

oAA +€ ke K (9)
ke — ke> e

Under SUE, for each O-D pair, GV and BEV flows are dis-
tributed on those paths that experience a minimum perceived
travel cost and no user can improve its perceived travel cost
by unilaterally changing its path. The probability that path k
is chosen (by both GV and BEV drivers) can be expressed as

PP (CP)=Pr[C <C, VreK”, r+k]. (10
Thus, the SUE path flows are the solution of the following
equations:

fo =P (Cr), Vk e K, Y (r,s) (1)
S U (CE), YkeKD, V(ns).  (12)

It has been proved that adding side constraints directly
into the general SUE model does not generate the probit-
based SUE traffic assignment with side constraints [46].
Jing et al. [47] proposed a solution framework by properly
selecting the path set for each O-D pair to ensure the
distances of all the used paths are within the BEV range limit
with no charging facilities in the network. We extend that
SUE model with path-distance constraints to include public
charging facilities.

min Z (v)

_ _zqrssrs [CI‘S (v) qe ;S [Crs (V)]

= (13)
+ Z"ata (Va) - Z J;)Vﬂ ta (w) dw

— 1Y )20,

V(r,s), ke K,

Subject to  f}, (De
(14)

(i j) € 2.

The objective function (13) of the lower level problem is
the classical unconstrained minimization model proposed by
Shefhi [48], whose solution is equivalent to SUE conditions
satisfying network constraints (8). The novelty of this prob-
lem lies in the introduction of subpaths in path selection
procedure in constraints (14). It is easy to decide whether a
charging action should be taken when arriving at a charging
station to make sure BEVs can reach the next charging station
or destination; namely, the subpath distance [;™", (i, j) €
Z¢, of path k € K[’ is less than D,. Supposing that there
are Z; charging stations deployed along a path for BEVs,
only less than 2% charging decision should be made and
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c%, .» subpaths exist when going through this path. Therefore,
by comparing the driving distance limit D, with subpath
distancel;” U, the set of feasible subpaths generated from finite
paths between each O-D pair can be predetermined. The
generation of feasible subpaths is illustrated in Figure 1 which
is similar to the way of predetermining battery-swapping
action based feasible paths in Xu et al. [49]. First we prove
the equivalence between the solution of the proposed model
(see (13)) and SUE solution. The Lagrangian function can be
written as

L(V, — qurs rs Crs (V) Z q;s ;’S[ rs (V)]

+ quta (xa) - Z Joxu ta (w)dw (15)
SIS Ao,

is the Lagrangian multiplier corresponding to
path/subpath-distance constraint (14). ‘u;f;” v - (D, — l,rf’” )
can be perceived as the path out-of-range cost incurred when
the path/subpath distance exceeds the driving distance limit

of the BEV and it should fulfill the following conditions:

TS,1]
_lk J)’

where 4"

rS,ij

uel =0, if " <D,
y (16)
He >0, if 1> > D,.

If the flow of BEV drivers going through this path is positive,
the path/subpath distance is smaller than or equal to the
driving distance limit; otherwise, the trip flow is zero. 41, el
is the unit path/subpath out-of-range cost.

The first-order derivative of (13) must satisfy the SUE
conditions. Let

VL (v,u) = 0. (17)
The gradient with respect to link flow vector is
OL (v, u)
oV,
TS 'S QTS TS Qrs dtb
DRI AACHEDPIPI S AAEI Er )
TS keKp TS keKI Vb
SMPPNORIES
r s kEKS

Note that the extra path/subpath-distance constraints could
be infeasible if the distance of any selected subpath exceeds
the BEVs’ driving distance limit. If all the selected paths and
their subpaths are within driving distance limit, the subpath
out-of-range cost y> - (D, — ;) should be equal to zero.
The derivative of the SUE objective function becomes

oL (v, p)
aVb
p (19)
TS Qrs rs rs t
< ZZ z q Pkg(sbk Zz Z A e(sh,k+vb> d_vh
TS keK: TS keKy b
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The gradient equals zero if and only if

ROPIPI LD WIPIT A

TS keK's TS keKy (20)
Vb e A.

Equation (20) expresses the SUE link flows consisting of
BEV and GV flows and the feasible solution can be ensured
by properly selecting paths. Then we can prove the Hessian
matrix of the SUE objective function is positive definite,

because the second derivative of Y, ¥’ ¥ i - fis - (Dp—

l,:s’ij ) with respect to path flow equals zero. This proves that the
resulting SUE link flow pattern is unique.

4. Solution Method

The bilevel programming problem is NP-hard. Thus, we
propose an equilibrium-based heuristic to iteratively solve
the lower level SUE problem and the upper level problem.
The interaction between the upper and lower levels, shown
in Figure 2, captures the effect of charging facility location
on the routing behavior of BEV drivers, which further
determines the BEV and GV flow patterns. Initially, we
assume no charging facilities in the network. The lower level
problem is a stochastic traffic assignment of mixed GV and
BEV flows under path-distance constraints. After the first
run of the lower level problem, we can obtain the initial
BEV link flow pattern. The upper level problem then finds
the best p charging facility locations to maximize the total
covered BEV flow. The obtained charging facility locations
will be compared with the previous location solutions. If
there is no change in charging facility location, the procedure
ends with the current solution; otherwise, the lower level
SUE assignment is repeated with updated charging facility
locations.

The detailed procedure is as follows. Note that a Multino-
mial Logit choice model is used in the lower level SUE TAP.

Step 1. Set upper level iteration counter z = 1. Input initial
charging facility location, namely, no charging facility in
the network. Relax BEVs’ distance constraints and perform
conventional SUE assignment to identify the corresponding
SUE link flow pattern.

Step 2. Increase the upper level iteration counter by 1. Sort all
the links in ascending order of their BEV flows and find the
top p of them. Locate the charging facilities (uncapacitated)
in the middle of the p links.

Step 3. Perform SUE assignment with charging facilities in
the network from Step 2. The detailed steps are listed below.

Step 3.1 (subpath feasibility check). Set x,(0) = 0 and ¢, =
t,[x,(0)]. For each O-D pair, find K shortest paths for both
GVs and BEVs in terms of free-flow travel time and record
them as initial path set. For each path of BEVs, identify
the path distance, the number of charging facilities on this
path, the location of charging facilities, and pure subpath

distances. If any pure subpath distance is greater than the
BEVS driving distance limit, set its corresponding path travel
time to infinity and this path becomes infeasible. If all the K
paths are infeasible, record this O-D pair to Set A. If Set A
is empty which means there exists at least one feasible path
between each O-D pair, go to the next step; otherwise, stop.

Step 3.2 (initialization). Calculate the generalized BEV path
travel cost ¢, and the probability of choosing each path to get
the auxiliary link flow pattern. Perform stochastic network
loading to assign the entire demand of each class of vehicles
between each O-D pair to the corresponding K shortest
paths. This yields v, ,(1) and v, (1). Set iteration counter
n=1.

Step 3.3 (update). Calculate a new link cost in terms of ¢, =
t,[v,(1)], Va.

Step 3.4 (direction finding). Follow the same procedure
described in Step 3.1 to find K shortest path for each class of
vehicles based on the current set of link travel times, {¢/}. If all
the pure subpaths of the generated K paths between an O-D
pair exceed the range limit, use initial path set in Step 3.1 and
perform stochastic network loading. This yields an auxiliary
link flow pattern {y, ;}, {y,.}-

Step 3.5 (step size). A predetermined step size sequence {e,,}
isused: @, = 1/n, n=1,2,...,00.

Step 3.6 (move). Find the new flow pattern by setting

1
Vit v (2 ) 0=V

n

1 1
Vag = Vag * (—) (Yag = Vo) (21)

Step 3.7 (convergence test). Let

1 — -
T/Z=;(v;‘+v;’1+-~-+vzm+l). (22)

If the convergence criterion

%, (7 -7) (23)
- <k

2aVa -

is met, stop and {v"*'}, {V:;l} are the sets of equilibrium link
flows and BEV link flows, respectively; otherwise, setn = n+1

and go to Step 3.3.

Step 4. Repeat Step 2 and update the current charging
facility location. Compare the current location with previous
location status at Step 2. If the locations do not change, stop
and record the current charging facility location; otherwise,
go to Step 3.
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Network attributes input

Initial charging facility location in the network
(i) Assume that no charging facilities are deployed in the network ~ |—
(ii) Relax the BEVS’ driving distance constraints

Upper level maximum flow-covering problem
Maximize

(i) total covered BEV link flow
Subject to
(i) number of BEV charging facilities to locate

BEV facility location pattern of Ith
iteration, X

Identify the top p BEV link flows

Lower level mixed flow SUE assignment
with driving distance constraints
Subject to

No
Relocate BEV charging
facilities with X, 1 =1+ 1

Stop the iteration  Yes
N
Final location pattern of BEV charging

facility

1

(i) limited driving distance
(ii) limited BEV charging facilities
(iii) generalized path travel cost

FIGURE 2: Framework of the bilevel proposed method for the equilibrium-optimization-based BEV charging facility location problem.

TaBLE 1: O-D demand of Nguyen-Dupuis network.

O-D BEV GV
(1,2) 200 200
(1,3) 400 400
(4,2) 300 300
(4,3) 100 100
5. Numerical Analysis

This section presents the numerical results of the model and
solution algorithm applied to two network case studies. The
analysis aims at assessing the impacts of charging facility
utility, charging speed, and driving distance limit on the
optimal placement of charging facility locations.

The first numerical example is the Nguyen-Dupuis net-
work; see, for example, [49]. The network consists of 13 nodes,
19 links, and 4 O-D pairs: (1,2), (1, 3), (4,2), and (4, 3), as
shown in Figure 3. The network supply and O-D demands
information are from Nguyen and Dupuis [50]. The O-D
demand is assumed to be the same for both GVs and BEVs;
that is, BEV market penetration rate is 50% (given in Table 1)
to facilitate the equilibrium flow comparison between BEV
and GV. The free-flow travel time is used as a proxy for the
link length for each link. Due to the small size of the Nguyen-
Dupuis network, the enumerated path sets information is
obtained from Jiang and Xie [43] in Table 2.

We use this case study to evaluate the performance of the
proposed algorithm for solving the bilevel model where lower
level problem is logit-based SUE assignment with driving

13

SN
) Origin

@ Destination

FIGURE 3: The Nguyen-Dupuis network with 2 origins, 2 destina-
tions, 13 nodes, 19 links, and 25 paths between the 4 O-D pairs.

distance constraints. The following parameter values are con-
sidered. We do not claim the suitability of the defined param-
eters for accurate quantification of network performance. To
avoid the dominant role of ) in the path cost, a relatively
small proportion of charging facility is deployed in this 19-
link network: p = 3. The BEV driving distance limit is set to
20, the scale parameters of the logit model for route choice of
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TABLE 2: Path compositions and lengths in the Nguyen-Dupuis
network example.

O-D Path number Path composition Length
1 1-5-6-7-8-2 29
2 1-5-6-7-11-2 33
3 1-5-6-10-11-2 38
(1,2) 4 1-5-9-10-11-2 41
5 1-12-6-7-8-2 35
6 1-12-6-7-11-2 39
7 1-12-6-10-11-2 44
8 1-12-8-2 32
9 1-5-6-7-11-3 32
10 1-5-6-10-11-3 37
(1,3) 1 1-5-9-10-11-3 40
12 1-5-9-13-3 36
13 1-12-6-7-11-3 38
14 1-12-6-10-11-3 43
15 4-5-6-7-8-2 31
16 4-5-6-7-11-2 35
(4,2) 17 4-5-6-10-11-2 40
18 4-5-9-10-11-2 43
19 4-9-10-11-2 37
20 4-5-6-7-11-3 34
21 4-5-6-10-11-3 39
(4,3) 22 4-5-9-10-11-3 42
23 4-5-9-13-3 38
24 4-9-10-11-3 36
25 4-9-13-3 32

GV and BEV are Vg =Ye =0.1, the charging speedise = 1, the
utility of a charging facility on path is 2 = —2, and K in the K
shortest paths is set to be 5. In addition, the link capacity and
free-flow travel time (link length) are given in Table 3 with
the equilibrium BEV link flow at each upper level iteration.

The relationship between charging facility location pat-
tern in the upper level and BEV link flows in the lower
level is first examined. Table 3 lists the charging facility
locations and the corresponding BEV link flows in each
iteration. At the first iteration, we assume no charging facility
is available in the network and relax the driving distance
constraints. The results clearly show the overall BEV link flow
pattern in the first iteration is quite different from those in
the others, especially after the first iteration when charging
facilities are located in the network. In the first iteration, every
enumerated path is feasible for BEV drivers since the driving
distance constraint is relaxed. As for the other iterations,
some paths become infeasible due to the lack of charging
facilities. For example, only path 18 between O-D pair (4, 2) is
feasible in the last iteration because two charging stations are
deployed on links 6 and 14 so that each pure subpath distance
is smaller than the range limit.

The total covered flows by locating 3 charging facilities
in this example are “0, 1054.3, 1048.5, and 1048.5” during
the four iterations. The amount of total covered BEV flows

in the third iteration may decrease comparing to the second
iteration because the BEV flow covered in the second iteration
is actually generated by using the charging facility locations
in the first iteration. Therefore, when new locations are
generated, the BEV link flow changes accordingly until the
last two iterations that produce the same facility locations.
The potential drawback of this modified definition of max-
imum covering flow is that if a route contains multiple
links with charging stations (e.g., paths 4 and 11), a trip
by a driver is counted multiple times even though BEV
drivers may not charge or only charge once during the trip.
As a result, this method could locate charging facilities on
several adjacent links of some high-volume freeways, while
in practice fast charging facilities are usually deployed with
long intradistances along the freeways.

A sensitivity analysis is conducted with respect to the
charging facility utility, charging speed, and BEV driving
distance limit. The results are illustrated in Figure 4, where
only one parameter is changed in each scenario. In scenario
(a), we set the charging speed as ¢ = 0.1 which can be
regarded as relatively fast charging and we conduct tests on
different level of charging facility utility. The utility value
can be perceived as the risk-taking level of BEV drivers. A
smaller utility value indicates that BEV drivers are willing
to take more risks. As the equivalent travel time reduction
value (i.e., utility) goes up, the total covered BEVs flows
increases, because BEVs drivers are more likely to choose
feasible lengthy paths with fast charging facilities instead of
paths with less travel time. If we consider multiple classes of
BEV drivers with different driving distance limits, the BEV's
with shorter driving distance and risk-neutral attitude would
probably have a larger value of charging facilities utility,
because charging facilities help to ease their range anxiety,
while, for those with larger batteries, they would behave
more like GV users. In general, large travel time reduction
value should apply to fast charging method, small battery
capacities, and risk-taking BEV drivers.

We then examine the impacts of charging speed, that is,
&, in scenario (b), where a smaller value represents a faster
charging speed, with charging time estimated as t;; = -
(" - D,). This parameter translates to different charg-
ing methods (i.e., slow charging, fast charging, or battery-
swapping technology) that lead to different charging facility
location patterns. Given a charging facility location pattern
(e.g., {1,5,7}), charging speed affects the total travel cost on
a feasible path. As a result, the probability of choosing each
path changes if there exist at least two feasible paths between
each O-D pair. With ¢ = 0.01, the charging facilities are
deployed on link {1, 5,7} and the feasible paths are paths 9
and 13 between O-D pair (1, 3), whereas, with ¢ = 10, the
charging facilities are located on {6, 12, 14}. Only path 11 is
feasible between O-D pair (1,3), and all the BEV drivers
will be assigned to this path if no other paths are feasible.
In this case, charging speed does not affect the path choice
probability. Fast charging attracts more BEV flows compared
to slow charging when at least one another path with no
charging need is available to BEV users, because the charging
speed would have the influence on the total travel cost and
path choice probability only if BEV drivers take charging
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TaBLE 3: The charging facility locations and BEV flows over iterations.

Upper level iteration

Link number Linklength Link capacity 1 2 3 4
Location BEV flow Location BEV flow Location BEV flow Location BEV flow
(1,5) 1 500 / 349.8 N 316.2 v 335.5 N 335.5
(1,12) 2 500 / 250.2 / 283.8 / 264.5 / 264.5
(4,5) 3 9 500 / 2571 / 188.0 / 194.5 / 194.5
(4,9) 4 12 400 / 142.9 / 212.0 / 205.5 / 205.5
(5,6) 5 3 500 / 395.4 v 202.5 / 228.1 / 228.1
(5,9) 6 9 500 / 211.5 / 301.6 v 301.8 v 301.8
6,7) 7 5 500 / 404.4 v 172.5 / 196.5 / 196.5
(6,10) 8 13 500 / 159.0 / 175.7 / 158.1 / 158.1
(7,8) 9 5 500 / 161.4 / 754 / 87.8 / 87.8
(7,11) 10 9 500 / 243.0 / 97.2 / 108.7 / 108.7
(8,2) 11 9 500 / 243.5 / 213.5 / 225.9 / 225.9
(9,10) 12 10 500 / 164.7 / 260.8 / 253.0 / 253.0
(9,13) 13 9 400 / 189.7 / 252.9 / 254.3 / 254.3
(10,11) 14 6 500 / 323.8 / 436.5 N 411.2 v 411.2
(11,2) 15 9 500 / 256.5 / 286.5 / 274.1 / 274.1
(11,3) 16 8 500 / 310.3 / 2471 / 245.7 / 2457
(12,6) 17 7 500 / 168.1 / 145.7 / 126.5 / 126.5
(12,8) 18 14 400 / 82.1 / 138.1 / 138.0 / 138.0
(13,3) 19 1 500 / 189.7 / 252.9 / 254.3 / 254.3
s Charging facility utility analysis . Charging speed analysis
S 1600F T & 1600 f T
> 1400 | - - - - - - - B T = = 1400
0 o1200F . ST I o4 mo1200) _ ——
Z1000f T B 000 T e m i :
S 800} - - - . . - . . . . . . {1 & 800
L 600} . . . . . . . . . R £ 600
S 400} - e - T
s 200} 1 8 200}
] 0 I o 0 1 1 -
a 1 2 3 F 1 2 3 4
Iteration Iteration
—— Utility = —0.1 - - Utility = -5 —— Charging speed =0.01 - - Charging speed = 1
-¢- Utility = -1 —— Utility = -10 -+ - Charging speed = 0.1 —— Charging speed = 10
(a) Utility (b) Charging speed
. Driving distance limit analysis
& 1600 B
= 1400 +
= 1200
21000 F
S 800} -4
g 600f -
S 400} - .4
s 200,
o 0 4 L
a 1 2 3 4 5 6
Iteration
—— Distance limit = 15 « - Distance limit = 35
--4-- Distance limit = 20 Distance limit = 40
- - Distance limit = 25 Distance limit = 45

—=— Distance limit = 30

(c) Driving distance limit

FIGURE 4: Sensitivity analysis for various input parameters (a) charging facility utility; (b) charging speed; and (c) driving distance limit on
the total covered BEV flows.



Journal of Advanced Transportation

action with these facilities. The generalized travel cost on
paths with charging actions would be too high when charging
speed is extremely slow (e.g., ¢ = 10) and charging time takes
over path travel time. BEVs would probably choose saturated
paths with high travel time. However, as can be seen from the
results, the total covered BEV flow is not strictly increasing
with the increase of charging speed and it is also influenced
by the feasible path set between O-D pairs.

In scenario (c), the lower bound of distance limit is set
to 15 to make sure there exists at least one feasible path
between each O-D pair. In addition, given that all paths are
enumerated in Table 2, the distance limit 45 is the path length
upper bound in the network without imposing the distance
limit. The charging facility locations for distance limits 15,
20, and 25 are {5,7, 14}, {1, 6, 14}, and {1, 5, 14}, respectively,
and the total covered BEV flows are 1131.6, 1040.9, and 995.5.
Additionally, the charging facilities are all located on {1, 5, 7}
for distance limits 30, 35, 40, and 45, covering, respectively,
1164.7, 1265.4, 12675, and 1267.6 BEV flows. It is observed
that as the distance limit increases, the total covered BEV
flow decreases at first, while after the distance limit reaches
a certain value, the total covered BEV flows increase till it
reaches a stable value. The driving distance limit affects the
number of feasible subpaths and charging time. As the driving
distance limit increases, more paths are eligible to carry flows
and a larger K value should be used to generate more feasible
paths during the assignment process. However, as indicated
in [38], the change in the number of feasible paths does not
always increase with the distance limit, since each subpath of
the generated K shortest paths would be feasible when the
distance limit is large enough.

From the three sensitivity analysis scenarios, it is
observed that the proposed model can satisfy the stopping
criteria after 3 or 4 iterations for this small network. Although
there is no significant difference in the total covered BEV
flows, the charging facility locations vary for each scenario.
It is noteworthy that the deployment of charging facilities
changes BEV path flow patterns while the aggregated covered
BEV link flows do not change significantly. Therefore, the
strategy of locating charging facilities is still focusing on those
BEV saturated links to increase the exposure of charging
facilities to BEV flows. Taking realistic situation into con-
sideration, when budget is limited, the number of charging
facilities can be flexible by adjusting its size and configuration.
It would be better to scatter more small size charging facilities
than large ones to increase the exposure to BEV drivers.
The charging speed affects the BEVs perceived travel cost
only when they need charging. Thus fast charging station or
chargers should be deployed along freeways or highways to
reduce the charging time of long-distance trips while slow
chargers can be deployed along urban roads to eliminate
range anxiety and to increase exposure. Under some cir-
cumstances, charging station equipped both slow and fast
chargers may enable more flexible charging operation. We
also found that the BEVs are restricted to some relatively
short paths especially when distance limit is low; however,
the equilibrium mechanism will assign more GV's to relatively
long paths since the GV drivers still try to minimize their
perceived travel time.

1

The second numerical experiment is done on the Sioux
Falls network shown in Figure 5, which has been chosen
as a benchmark network in numerous traffic assignment
studies. We adopt a variation of this network presented in
Suwansirikul et al. [51]. The exact network attributes and
travel demands are also used in our study. For simplicity, the
free-flow travel time is used as proxy for link length and BEV
penetration rate is assumed to be 50%. Sioux Falls network
consists of 24 nodes, 76 links, and 576 O-D pairs. The number
of charging facilities is p = 8. This example is to evaluate
the computational performance of the proposed solution
algorithm. For computational experiments, the number of
iterations (ITR) and the total computational cost (TCC) were
compared under different parameter settings.

Table 4 lists the computational cost under different
parameter settings. Assuming the logit scaling parameter be
0.1, it can be seen from Scenario 1 that the computational
cost generally increases as the driving distance limit increases.
The underlying reason might be that many paths become
feasible in the K paths generated, thus requiring the related
path/subpath choice probability calculation and assignment.
From the first two scenarios, clearly K value has an impact
on the computational cost, because bigger K value would
increase the computational time in the K shortest path
algorithm as well as the stochastic network loading procedure
in the lower level problem. Comparing Scenario 2 with
Scenarios 3 and 4, respectively, the results demonstrate that
charging speed and charging facilities’ utility affect computa-
tional time marginally. Finally, we can observe that K value
has the most impact on increasing computational time and
the number of iterations needed for the upper level prob-
lem.

6. Conclusions and Future Work

This paper formulates, solves, and evaluates the problem of
potential location of public charging facilities for BEV in a
network with mixed GVs and BEVs. The path travel cost of
BEVs is modeled by considering path travel time, charging
time, driving distance limit, and charging facilities™ utility,
where driving distance limit restricts the path choice. A
bilevel model has been proposed to address the issue of coex-
isting equilibrium GV-BEV flows. A mix-integer nonlinear
program is constructed based on MSA to maximize the total
BEV flow coverage on high-BEV-traffic paths. The key part of
this formulation is the lower level path-distance constrained
stochastic traffic assignment. The solution equivalency is
proved to satisfy SUE condition as well as the uniqueness of
link flow pattern. Moreover, a modified MSA method with K
shortest path algorithm and generalized BEV path travel cost
are applied to solve the charging facility location problem.
In the numerical analysis, we also demonstrated how the
driving distance limits, charging speed, and utility of charging
facilities affect the equilibrium network flow and charging
facility location.

We expect that the strategy of locating charging facilities
and the modeling technique presented in this work would
potentially trigger the interest of incorporating other types
of BEV-specific constraints in the lower level problem, such
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TAaBLE 4: Computational cost with different parameter settings for MNL.
Scenario 1: K = 3, e = 1, £ = 0.001 Scenario 2: K =5, e = 1, £ = 0.01
D, 0.25 0.4 0.6 0.8 0.25 0.4 0.6 0.8
ITR 5 3 3 3 4 4 3 3
TCC(s) 117.5 168.74 166.56 173.15 197.33 474.45 328.17 329.46
Scenario 3: K = 5, ¢ = 0.1, £ = 0.01 Scenario 4: K = 5, e = 1, t2 = 0.001
D, 0.25 0.4 0.6 0.8 0.25 0.4 0.6 0.8
ITR 4 4 3 3 4 4 3 4
TCC(s) 199.18 47728 328.06 326.61 198.15 475.62 327.09 474.98
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FIGURE 5: Sioux Falls network with 24 nodes and 76 links.

as flow-dependent battery capacity constraints and time-
dependent battery-charging price. As for the upper level
problem, some other approaches, such as FILM and FRLM,
locating charging facilities to maximize passing BEV flows
without double counting, can be explored to better serve the
BEV travel demand. The model uses a number of assumptions
to simplify the problem and make it tractable, which will be

relaxed in the future work to deal with more complicating and
realistic issues.

Notations

K7, K;*: Set of paths connecting O-D pair (r, s) of
GV and BEV, respectively
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7S,
7z

t,(v,):
rs

ak"

s,
I

D,:
s s,
fkg’ ke*

s (f):
trs .

el
t,:

—rs —=rs,
Chg> Cre*

E:
rs .
tc,k'

tg:
H,:
p:

s rs,
qg 4 qe :

rs rs,
Pkg’ Pke'

Yo Vel

rs  Qrs,
S, S

Ers TS,
kg> Ske*

Set of pseudonodes of charging stations on
path k € K* connecting O-D pair (r, s)
Length of subpath k” in path

k, (i, ) € Z}

Length of linka, a € A

Traffic flow on link a € A, which is the
summation of GV link flow v, ; and BEV
link flow v, thatis, v, = v, 5 + v,

A column vector of all the link flows;

V= (va)T, aeA

Binary variable, equaling 1 if there is a
charging facility at location z € Z on link
a 0 otherwise

A column vector of all the location
variables; x = (xa)T, acA

Link travel time on link a

Link path incidence: &, = 1 if path

ke K;S, K’ between O-D pair (7, s)
traverses link aand 0 otherwise

= 2ala0, > length of path k between
O-D pair (r, s)

Driving distance limit of BEV

Traffic flow of GV and BEV on path
keKJ K

Path k travel time between O-D pair
(r,s), k € Ke”,K;s; a (F) = Y, t,(v)0 %
Total travel time reduction on path k € K[*
The utility of one charging facility on the
path, equivalent to a constant nonpositive
travel time reduction value

Generalized travel cost of GV or BEV on a
given path k € K', K;°

Battery-charging speed, min/km
Charging time needed on a given path

k € K]’ between O-D pair (r, s)
Free-flow travel time on link a

Capacity of link a

The number of charging facilities to be
located

GV and BEV travel demand between O-D
pair (7, s)

The probability that GV or BEV choose
path k between O-D pair (r, s)

Scale parameter of the logit model for
route choice of GV and BEV, respectively
The satisfaction function: the expected
value of the minimum perceived travel
time for GV and BEV travelers between
O-D pair (r, s) respectively

Random error term of perceiving
generalized GV and BEV path k cost
between O-D pair (r, s).
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