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Attrition or drop-out is a common phenomenon in longitudinal studies in which

repeated observations are made on the same subject over time. Subjects al-

ways drop out prematurely, especially when the measurement process is lengthy.

The problem of drop-out results in incomplete and unbalanced data which in

turn results in loss of efficiency and bias in the analysed results. Regarding this

problem, many modelling approaches that deal with missing data have been pro-

posed. This variety of possible approaches differs for different types of drop-out

processes and also different kinds of longitudinal data. In this thesis, we aim to

develop new modelling strategies for longitudinal binary data with informative

drop-out. Three different conditional AR1 models are proposed for the response

and a logistic regression model for the drop-out process. In these models, both

the probabilities of a positive response and the drop-out of patient in that occa-

sion are assumed to be logit linear in some covariates and outcomes. To account

for the problem of over-dispersion and accommodate population heterogeneity,
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we incorporate random intercepts to one of the proposed models. We will im-

plement the models via likelihood and Bayesian frameworks. Since the inclusion

of random effects complicates the calculation considerably, we also attempt to

investigate the use of Gibbs output within the Bayesian framework to carry out

the Monte Carlo Approximation of the complicated likelihood function involving

random effects by a classical likelihood approach. We then demonstrate these

models on a methadone clinic data. Moreover, we also investigate the sensitivity

of the assumption of the dropout process on the parameter estimates for the three

proposed models through simulation experiments. Results show that the incor-

poration of the informative drop-out model helps us to understand and interpret

the drop-out process across patients better.
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CHAPTER 1

INTRODUCTION

1.1 Background

The collection of longitudinal binary data is common in clinical trials or lon-

gitudinal studies when repeated measurements, positive or negative to certain

tests, are made on the same subject over time. Since many longitudinal studies

are lengthy, subjects undergoing longitudinal studies may drop-out prematurely,

resulting in a large class of distinct missingness patterns.

One important issue arising from the problem of drop-out is whether the

drop-out process is related to the measurement process. Drop-out processes can

be classified into three types: completely random, random and informative drop-

out (Rubin, 1976; Little and Rubin, 1987). Completely random drop-out (CRD)

and random drop-out (RD) are often referred to be ignorable because it is not

necessary to specify a model for the drop-out process in a likelihood-based analysis

of the measurement process. Informative drop-out (ID), on the other hand, is

said to be non-ignorable as the drop-out mechanism cannot be ignored when

estimating the model parameters for the data. Special modeling strategies are

therefore required for inference when the drop-out process is informative.
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In this thesis, we aim to develop new modelling strategies for longitudinal bi-

nary data with informative drop-out. Three different conditional AR1 models are

proposed for the outcomes or responses, and a logistic regression model for the

drop-out process. In the model, both the probabilities of a positive response and

the drop-out indicator of a patient in that occasion are assumed to be logit linear

in some covariates and outcomes. To account for the problem of over-dispersion

and accommodate population heterogeneity, we incorporate random intercepts

to one of the proposed models. Since the inclusion of random effects compli-

cates the calculation considerably, we also make contributions in improving the

methodologies in GLMMs with informative drop-out using both likelihood and

Bayesian approaches. We then demonstrate these models on a methadone clinic

data. Moreover, we also investigate the sensitivity of the assumption of the drop-

out process on the parameter estimates for the three proposed models through

simulation experiments. Results show that the incorporation of the informative

drop-out model helps us to understand and interpret the drop-out process across

patients better.
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1.2 Structure of the Thesis

This thesis consists of eight chapters. Chapter 1 introduces the background of

this research. Chapter 2 briefly introduces the Generalized linear models (GLMs)

and their extensions, the Generalized linear mixed models (GLMMs). As the

computation of parameter estimates is complicated by the inclusion of random

effects into the GLMs, so in this chapter, we will also investigate the existing

methodologies, from classical to Bayesian aspects, for estimating the parame-

ters of the GLMMs. These methods include Maximum likelihood method (ML),

Simulated maximum likelihood method (SML), Newton Raphson method (NR),

Monte Carlo Newton Raphson method (MCNR) and a Bayesian method using

Gibbs sampler. Moreover, we will introduce our proposed method called ‘Monte

Carlo approximation through Gibbs output’ for calculating the ML estimates of

the random intercept model with an ID modelling. In chapter 3, we introduce

different types of drop-out mechanisms and describe their impact on parameter

estimation. We also discuss several types of models that allow for an informative

drop-out process. In chapter 4, we introduce a methadone clinic data reported by

Chan et al. (1998). In addition, we give a brief description of the three modeling

strategies proposed for this data set: the conditional AR1 model, the two-group

mixture model and the random intercepts model for modeling the drug-use of the
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patients under a methadone maintenance program. In chapter 5, we extend the

three proposed models to account for the informative drop-out process in the data

set. In chapter 6, we report parameter estimates of the three models with and

without an ID modeling and its interpretation in terms of the effectiveness of the

methadone maintenance treatment. Moreover we also describe the calculation of

AICs as measures of goodness-of-fit for the three types of models using ML or

Bayesian methods. In chapter 7, we investigate the sensitivity of the assump-

tion of drop-out process on the parameter estimates for the three models with

or without an ID modelling through simulation studies. Finally, we discuss the

main results of this research and propose future research direction in chapter 8.
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CHAPTER 2

MODELS FOR PRIMARY RESPONSES

2.1 Introduction

One important objective of data analysis is to derive statistical models that can

adequately describe the phenomenon of the data. When the data is incomplete,

we will have invalid likelihood inferences especially when the missing process is

non-ignorable. In fact, the validity of such inference depends on using the right

data model f(Y |X, β). Thus the choice of data model is important.

Several decades ago, the simple linear model has often been used to study the

relationship between response and explanatory variables. With Y being a vector

of responses and X being a n× p matrix of the explanatory variables, the simple

linear model is defined as below:

Y = Xβ + e where e ∼ N(0, σ2I)

where β is a p×1 vector of parameters and e is a n×1 vector of error terms which

follows a multivariate normal distribution with mean equals to 0 and variance

equals to σ2I where I is an identity matrix. Here the error term is assumed to

be independent and identically distributed with a constant variance. This simple
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linear model forms the base of analysis for the continuous data.

However, this model does not work well with time series data that are common

in clinical trials and stock markets when observations are serially correlated. It

also cannot deal with responses that are neither normally distributed nor linearly

related to the explanatory variables. It cannot deal with categorical responses

as well. So, Nelder and Wedderburn (1972) introduced the Generalized linear

models (GLMs) which allow an exponential family of distributions on the data

in order to describe the non-normal responses. Thereafter, the GLMs are further

extended to the Generalized linear mixed models (GLMMs) with the inclusion

of random effects in the GLMs to account for the serial correlation, to overcome

the overdispersion problem and to accommodate population heterogeneity. As a

result, these models become more applicable in many practical situations. On

the other hand, since the inclusion of random effects complicates the calculation

of likelihood function considerably, especially for models involving high dimen-

sional random effects, this invokes many diversified methodologies for parameter

estimation in the GLMMs.

This chapter will be presented as follows. Section 2 will first introduce the

Generalized Linear Models (GLMs). Section 3 will further introduce its extension,

the Generalized Linear Mixed Models (GLMMs). Then, section 4 will discuss
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some model implementation methodologies of the GLMMs using both Bayesian

and Classical Approaches. Finally section 5 will describe our proposed method-

ology of using the Monte Carlo approximation through Gibbs output.

2.2 Generalized linear models (GLMs)

Firstly introduced by Nelder and Wedderburn (1972), the Generalized linear mod-

els (GLMs) generalize the classical linear models to the exponential family of sam-

pling distributions and have an immense impact on both theoretical and practical

aspects in statistics. The model for the responses yi defined as follows:

f(yi) = exp

(
Ai[θiyi − b(θi)]

φ
+ c(yi,

φ

Ai

)

)

E(yi) = µi

g(µi) = ηi = xi
T β

where b(.) is a function of canonical parameter θi, c(.) is a function of yi and

φ/Ai, Ai is a known prior weight, φ is the dispersion parameter, xi is a vector of

explanatory variables and β is a vector of regression parameters. Note that f(.)

is the distribution we assign to the data, xi
T β is a linear function of predictors

defined in the model and finally, g(.) is the link function that link together the

mean µi for the distribution of yi and the linear function of explanatory variables

or predictors xi
T β.
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This exponential family of distributions has the following properties:

1. Mean of Y is µ = E(Y ) = b′(θ).

2. Variance of Y is V ar(Y ) = φ b′′(θ)/A = φv(µ)/A in which v(µ) = b′′[(b′)−1(µ)]

is called the variance function.

There are various kinds of exponential family of distributions including Binomial

distribution, Poisson distribution, Gamma distribution and Normal distribution

etc. Moreover there are also different kinds of link functions for non-normal

responses. For binary data, the common link functions are logit-link g(µ) =

log(µ/(1 − µ)) and probit-link g(µ) = Φ−1(µ) for 0 < µ < 1. The log-link

g(µ) = ln(µ) is usually used for Poisson count data. For continuous data, we can

use identity link g(µ) = µ.

2.3 Generalized linear mixed models(GLMMs)

Although the GLMs can be used to describe the non-normal behavior of data,

they cannot be used to account for the serial correlation and clustering effect in

the data from longitudinal studies. The GLMs, as a result, have been improved

and modified to a more general class of models, known as the Generalized linear

mixed models (GLMMs) by the inclusion of random effect terms. With the
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GLMMs, we can overcome the problem of overdispersion in the data and at

the same time, accommodate the population heterogeneity. The main difference

between the structure of GLMMs and that of GLMs is the incorporation of the

random effects, u, into the function of linear predictors. Thus, the model on

yi, i = 1, . . . , n which follows an exponential family of distributions given the

random effects u becomes:

f(yi|u) = exp

(
Ai[θiyi − b(θi)]

φ
+ c(yi,

φ

Ai

)

)

E(yi|u) = µi

g(µi) = xi
T β + zi

T u

where xi is a vector of covariates, β is a vector of fixed effect parameters, zi is

the design matrix for the random effects and u is a vector of the random effects.

A distribution h(.) is assigned to the random effects such that u ∼ h(u). For sim-

plicity, researchers usually assign a multivariate normal distribution with mean 0

and variance σ2I to the random effects. For robustness consideration, a general

class of random effects distributions (heavy-tailed, asymmetric and nonparamet-

ric) should be adopted to widen the scope of applicability on the GLMMs. See for

examples Stiratelli et al. (1984) who analysed a longitudinal data using GLMMs

and assigned a multivariate normal distribution for the random effects to account

for the heterogeneity between subjects, and Choy et al. (2003) who assigned a
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Student-t distribution for the random effects in studying the famous Salamander

Mating data set.

2.4 Model implementation methodologies

2.4.1 Introduction

The inclusion of random effects into the GLMs opens up the class of Gener-

alized linear mixed models (GLMMs) which help to overcome the problem of

over-dispersion and accommodate population heterogeneity. These models be-

come more applicable in many practical situations. However, since the inclusion

of random effects complicates the model implementation and estimation con-

siderably, diversified methodologies in GLMMs have therefore been proposed to

improve the estimation of parameters in the model. These proposed approaches

are mainly classified into two types: Classical approach and Bayesian approach.

In this chapter, we will first study both classical and Bayesian approaches

for model estimation in GLMMs. In the classical approach, the intractability of

the likelihood function has thus led various authors to propose a host of alterna-

tive estimation methods rather than carrying out maximum likelihood estimation

directly. The methodologies discussed in this thesis include the maximum like-
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lihood method (ML) and its extensions such as simulated maximum likelihood

(SML) method(see Geyer and Thompson, 1992 and Gelfand and Carlin, 1993 for

reference), Newton-Raphson method, Monte Carlo Newton-Raphson (MCNR)

method (Pentitinen 1984) , Laplace importance sampling method (Kuk 1999)

and Monte Carlo relative likelihood method (Geyer and Thompson, 1992 and

Geyer, 1994) for handling complicate likelihood function which involves high di-

mensional integral of random effects. However, methodologies like the approxi-

mate maximum likelihood and the residual maximum likelihood method (REML)

(Stiratelli (1984); Schall, 1991; Drum & McCullagh 1993; McCulloch and Searle,

2001), penalized quasi-likelihood method (Green, 1990; Wolfinger, 1993; Breslow

& Clayton 1993), the Expectation-Maximization (EM) algorithm (Dempster et

al., 1977) and Monte Carlo EM algorithm (Wei and Tanner, 1990), the estimating

function approach (Waclawiw & Liang, 1993) and the iterative bias correction ap-

proach (Kuk, 1995) etc.. will not be pursed in this thesis. For Bayesian approach

on the GLMMs, we will investigate the use of Markov chain Monte Carlo method

and Gibbs sampler (Geman and Geman, 1984; Gelfand and Smith, 1990; Zeger

& Karim, 1991).

Thereafter we will propose a new model using the classical likelihood approach

but applying methodologies of both Monte Carlo approximation and Gibbs sam-

pler.
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2.4.2 Bayesian and Classical Approaches

Suppose we have a n-dimensional vector of responses y = (y1, y2, . . . , yn)T . We

are interested in the parameter estimate θ. We denote the density of yi as f(yi|θ).

Then the joint density function is expressed as:

f(y|θ) =
n∏

i=1

f(yi|θ).

In classical inference, we assign a model f(y|θ) to an observed data and

the likelihood function L(θ|y) represents the information on the data such that

L(θ|y) = f(y|θ). The parameter θ of the model is treated as fixed but unknown.

We differentiate the log of the likelihood function, `(θ|y) = ln L(θ|y) to obtain

the parameter estimate θ̂ which maximizes the likelihood function of the observed

data.

In Bayesian approach, the parameter θ of the data model f(y|θ) is treated as

random rather than fixed as in the classical approach. So, in order to obtain the

Bayesian estimates, we first need to specify a prior distribution for each parameter

and then evaluate its posterior distribution from which the Bayesian estimate is

given by its posterior mean. Suppose f(θ) is the prior distribution for the model

parameters, then the joint posterior density of θ is given by

f(θ|y) =
f(y|θ)f(θ)

f(y)
=

f(y|θ)f(θ)∫
Θ f(y|θ)f(θ) dθ

∝ f(y|θ)f(θ).
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The posterior distribution of θ is proportional to the product of likelihood func-

tion f(y|θ) and its prior density f(θ).

We have to collect prior information on the parameter θ and then assign a

suitable prior density f(θ) to the parameter θ in order to construct the posterior

density. More information on the Bayesian statistics can be found in Lee (1999)

and Bernardo and Smith (1994).

However, there exists an argument on the specification of prior density f(θ).

In some cases, conjugate prior is chosen just for convenience. In other occasions,

the choice of prior can be rather subjective. In the absence of sufficient prior

information, a non-informative prior with large variance is usually chosen for the

model parameter θ.

In the following sections, we will investigate the commonly used methodologies

in both Classical and Bayesian approaches.

2.4.3 Classical approach: Maximum Likelihood (ML) method

Maximum likelihood estimation is a prevalent classical approach for parameter

estimation. In the following, we will illustrate the algorithm of this approach

based on the GLMM. The ML estimation begins with the likelihood function of

a model.
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Let y = (y1, y2, . . . , yn)T be a n-dimensional vector of responses with a joint

density function f(y, u|θ) on <p, where z is a m-dimensional vector of random

effects with the density h(u|θ), and θT = (βT , γT )T is a vector of parameters

including the parameters for fixed effects β and the parameters for random effects

γ. The ‘marginal’ likelihood function L(θ) and the log-likelihood function `(θ)

are then obtained by integrating out the unobserved random effects:

L(θ) =
∫

f(y,u|θ) du =
∫

f(y|u,β) h(u|τ ) du,

`(θ) = ln L(θ) = ln
∫

f(y,u|β) h(u|τ ) du.

Then the ML estimate θ̂ of θ is obtained by maximizing L(θ) or equivalently

`(θ). That is, we obtain θ̂ by solving

∂`(θ)

∂θ
= 0 (2.1)

and the solution θ̂ is the ML estimate which maximizes the log likelihood function

`(θ|y).

Many researchers further improved this method to form various kinds of mod-

ified ML estimation method. Schall (1991) studied the use of ML approach in

GLMs with random effects. But, the numerical integration method that he used

is only appropriate for simple cases in which the likelihood function involves only

an integral of low dimensional random effects or an integral that can be factorized

into a product of low dimensional integrals.
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2.4.3.1 Simulated Maximum Likelihood method (SML)

Geyer and Thompson (1992) and Gelfand and Carlin (1993) suggested the use

of SML on the approximation of likelihood function. McCulloch (1997) further

studied the use of this method on the GLMMs. In SML method, the likelihood

function is estimated directly by simulation without considering the log-likelihood

function.

L(θ|y) =
∫

f(y,u; θ) du

=
∫

f(y|u; θ) f(u; θ) du

=
∫ f(y|u; θ) f(u; θ)

h(u)
h(u) du

≈ 1

M

M∑

j=1

f(y|uj; θ) f(uj; θ)

h(uj)
where uj ∼ h(u) (2.2)

where M is the total number of simulated values for u, h(u) is the importance

sampling function independent of the model parameter θ and uj is the j-th vec-

tor of random effects simulated from this distribution by any sampling technique.

Theoretically, the estimates are independent of the choice of importance sampling

function, h(u). They are calculated numerically based on the likelihood function

approximated by values which are simulated from the importance sampling func-

tion.

One choice of the importance sampling function h(u) is the conditional dis-

tribution of f(u|y; θ(k)) given the current parameter estimates θ(k). However
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this requires simulating a new set of u whenever θ is updated. To overcome

this problem, one may set h(u) to be f(u|y; θ0) based on a fixed reference point

θ0. However, if such function is far away from the density of the random effects,

f(u; θ), specially when the reference point θ0 is not close to the true ML esti-

mates θML, the efficiency of estimates will be affected. One remedy will be to

update the reference point θ0 to the current ML estimates θ
(k)
ML a few times.

2.4.3.2 Laplace importance sampling method

Kuk (1999) proposed the Laplace importance sampling method which is actually

an application of SML combining the Laplace expansion with importance sam-

pling method. By carrying out a second order expansion of the log-likelihood

function `(θ; y, u) = ln f(y, u; θ) around u = û(θ0), where û(θ0) is the max-

imizer of the joint density f(y, u; θ0) = f(y|u; θ0)f(u; θ0) with y fixed at the

observed value and θ fixed at a pre-specified value θ0, the Laplace expansion is

given by

`(θ; y,u) ' `(θ0; y, û(θ0))− 1

2
(u− û(θ0))

T [−`
′′
u(û(θ0))](u− û(θ0)), (2.3)

where `
′′
u(û(θ0)) = `

′′
(û(θ0); y, θ0) is the Hessian matrix of the second or-

der derivatives of `(u; y,θ0) with respect to the components of u evaluated at

u = û(θ0), the maximizer of the joint density f(y,u; θ0) = f(y|u; θ0)f(u; θ0).
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Exponentiating the expansion (2.3) results in a normal density in u up to a

constant multiple that does not involve u. Specially,

f(y,u; θ0) ' c(y,θ0) φ(u; µ(θ0),Σ(θ0)), (2.4)

where φ(u; µ(θ0),Σ(θ0)) is the multivariate normal density function with mean

vector µ(θ0) = û(θ0) and covariance matrix Σ(θ0) = [−`
′′
u(û(θ0))]

−1 and c(y,θ0)

is a constant that does not depend on u. Hence, if φ(u; µ(θ0),Σ(θ0)) in expan-

sion (2.4) is used as an importance function for the sampling of u and the sampled

u is in turn used for carrying out the Monte Carlo approximation of the likelihood

function, we have

L(θ|y) =
∫ f(y,u; θ)

φ(u; µ(θ0),Σ(θ0))
φ(u; µ(θ0),Σ(θ0)) du

≈ 1

M

M∑

j=1

f(y,uj; θ)

φ(u; µ(θ0),Σ(θ0))
(2.5)

where

uj ∼ φ(u; µ(θ0),Σ(θ0))

and

f(y, uj; θ)

φ(u; µ(θ0),Σ(θ0))
∝ c(y, θ0)

does not depend on θ from (2.4). Hence the approximation as given by (2.5) is

very efficient with minimum variance. Moreover since the function φ(u; µ(θ0),Σ(θ0))

is only used as an importance sampling function, the Laplace expanision will only
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affect the efficiency but not the unbiasedness of the approximation (Kuk, 1999).

In fact, this is essentially a SML method with the importance sampling function

h(u) being replaced by φ(u; µ(θ0),Σ(θ0)). To solve for θ in (2.5), NR method or

its extension is often used. However, the Laplace importance sampling method

may only be good when θ0 is close to its ML estimates. So, Kuk (1999) recom-

mended updating θ0 to the current estimate of θ̂
(k)

, repeating the importance

sampling of u and the calculation of (2.5) a few times. However, in this way, the

estimation procedure requires iteration within iterations as well as maximization

to obtain û(θ(k)) and Σ̂(θ(k)) in each iteration k which is laborious.

2.4.3.3 Newton-Raphson (NR) method

As mentioned before, we can obtain the ML estimate θ̂ by solving (2.1). However,

in many situations, the solution of (2.1) cannot be solved explicitly. In these cases,

NR method provides a way to solve for θ̂ iteratively.

NR method is a popular iterative method for obtaining the ML estimates.

With `(θ; y) = ln f(y; θ) denoting the log-likelihood function on the data y

and the parameter vector θ and `′(θ; y) and `′′(θ; y), its first and second order

derivatives, current parameter estimates in the k-th iteration θ(k) of the NR
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procedures can be updated to the (k + 1)-th iteration θ(k+1) by

θ(k+1) = θ(k) − [`′′(θ(k); y]−1`′(θ(k); y) (2.6)

and the procedure continues until ‖ θ(k+1) − θ(k) ‖ is sufficiently small or the

maximum number of iterations has been attained.

2.4.3.4 Monte Carlo Newton Raphson method (MCNR)

The NR method is a popular iterative method used to find the ML estimates.

The method requires the calculation of the log-likelihood function `(θ; y) as well

as its first and second order derivatives `′(θ; y) and `′′(θ; y). However, with

random effects, it is often difficult to evaluate the marginal likelihood function

and hence its derivatives when the likelihood function involves high dimensional

integral of random effects. One approach is the use of Monte Carlo approximation

to the likelihood function using the random effects u which are simulated from

a conditional function of u given the observed y and the current estimate θ(k)

such as the Laplace importance sampling method. Pentitinen (1984), therefore,

extended the NR method to the MCNR method. The algorithm of using the

MCNR is as follows:

Algorithm:

1. Choose a starting value for θ(0).
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2. Simulate uj where j = 1, ..., M with M being the total number of simulations

from a conditional distribution of f(u|y; θ(k)) based on θ(k) which is the current

parameter estimates.

3. Use the simulated uj to approximate the first and second order derivatives of

a likelihood function by Monte Carlo approximation. We have

`′M(θ(k); y) =
1

M

M∑

j=1

`′(θ(k); y,uj) (2.7)

`′′M(θ(k); y) =
1

M

M∑

j=1

`′′(θ(k); y,uj) +
1

M

M∑

j=1

`′(θ(k); y,uj)`
′T (θ(k); y,ui)

−

 1

M

M∑

j=1

`′(θ(k); y, uj)





 1

M

M∑

j=1

`′T (θ(k); y, uj)


 (2.8)

= −(I1 − I2) (2.9)

where I1 in (2.9) in corresponds to the first term of (2.8). Replacing the terms

`′(θ(k); y) and `′′(θ(k); y) in the Newton Raphson iteration given in equation (2.6)

by `′M(θ(k); y) and `′′M(θ(k); y) respectively in equations (2.7) and (2.8), we ob-

tain an updated estimate of θ(k+1) in each MCNR iteration.

4. Repeat steps 2-3 until convergence is achieved.

Kuk and Cheng (1997) applied MCNR method in calculating the estimates in

the GLMMs and proposed some refinement and stopping criteria. Kuk and Cheng

(1999) gave more comment of the method. They showed that the convergent rate

for this MCNR was faster than that of Monte Carlo EM. So, it is computationally
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more efficient.

2.4.3.5 Monte Carlo relative likelihood method

The MCNR deals with pointwise approximation of the first and second order

derivatives `′(θ; y) and `′′(θ; y) at the current estimate θ(k). On the other hand,

Geyer and Thompson (1992) and Geyer (1994) approximated the whole likelihood

function based on a relative likelihood

Lq(θ; θ0) =
L(θ; y)

L(θ0; y)

at a reference point θ = θ0. This is called a functional approach because the entire

relative function Lq(θ; θ0) will be approximated by Monte Carlo method. For the

GLMMs, the marginal relative likelihood using Monte Carlo approximation with

j indexes the number of simulations used in the approximation is

Lq(θ; θ0) = E

[
f(y,µ; θ)

f(y,µ; θ0)
| y; θ0

]

=
∫ f(y,u; θ)

f(y,u; θ0)
f(u|y; θ0) du

L̂q(θ; θ0) =
1

M

M∑

j=1

f(y,uj; θ)

f(y, uj; θ0)
where uj ∼ f(u|y,θ0).

which is an unbias Monte Carlo approximation of the entire relative likelihood

function with the Monte Carlo variance

VarMC [Lq(θ; θ0)] =
1

M
Var

[
f(y, µ; θ)

f(y,µ; θ0)
| y; θ0

]
.
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Note that ˆ̀
q(θ; θ0) = ln Lq(θ; θ0) approximates the relative log-likelihood func-

tion `q(θ; θ0) = `(θ; y) − `(θ0; y). For θ near θ0, the conditional variance

VarMC [Lq(θ; θ0)] is small and so L̂q(θ; θ0) is a good approximation of Lq(θ; θ0).

If the initial θ0 is far away from θ̂ML, the maximiser of L̂q(θ; θ0) may be quite

different from θ̂ML. To solve the local nature of the approximation, Geyer and

Thompson (1992) suggested updating the maximiser of L̂q(θ; θ0) as the next θ0

to obtain an updated estimate θ̂
(k+1)

which is the maximiser of the Monte Carlo

relative log-likelihood function

ˆ̀
q(θ; θ̂

(k)
) = ln


 1

M

M∑

j=1

f(y, µj; θ)

f(y, µj; θ̂
(k)

)


 ; where uj ∼ f(u|y, θ̂

(k)
).

The maximization of ˆ̀
q(θ; θ̂

(k)
) requires numerical method such as Newton Raph-

son iterative procedure for each k. The derivatives of ˆ̀
q(θ; θ̂

(k)
) with respect to

θ are

ˆ̀′
qM(θ; θ̂

(k)
) =

M∑
j=1

`′(θ; y,uj)Lqj

M∑
j=1

Lqj

(2.10)

ˆ̀′′
qM(θ; θ̂

(k)
) =

M∑
j=1

`′′(θ; y,uj)Lqj

M∑
j=1

Lqj

+

M∑
j=1

`′(θ; y,uj)`
′T (θ; y,uj)Lqj

M∑
j=1

Lqj

−




M∑
j=1

`′(θ(k); y,uj)Lqj

M∑
j=1

Lqj







M∑
j=1

`′T (θ(k); y, uj)Lqj

M∑
j=1

Lqj




(2.11)

22



where Lqj =
f(y, uj; θ)

f(y,uj; θ̂
(k)

)
and (2.10) is a weighted average of `′(θ; y,uj) with

weights

w(uj,θ; θ̂
(k)

) = Lqj.

This is different from the MCNR method when `′M(θ(k); y) is given by a simple

average of `′(θ; y,uj) as in (2.7). See Kuk and Cheng (1997) & (1999) for a detail

discussion.

2.4.4 Bayesian approach: Gibbs sampler

In many cases, especially when random effects are present in models, it is dif-

ficult to obtain parameter estimates by using classical approach because high-

dimensional integration is involved in the computation. To avoid such tedious

computation, Bayesian approach is an alternative to the classical one.

In Bayesian approach, we need to specify a prior distribution to each param-

eter and then obtain their posterior means or medians from their conditional

distribution given the observed data. Numerical or analytic approaches to evalu-

ate the posterior means of the complicated conditional distribution are not useful

as high-dimensional integration is usually required. With regard to this point,

Markov chain Monte Carlo (MCMC) methods using Gibbs sampler (Geman and

Geman, 1984 and Gelfand and Smith, 1990), Metropolis Hasting algorithm (Hast-
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ings, 1970 and Metropolis et al., 1953) and Adaptive Rejection sampling (Ripley

1987) have been proposed. In this section, we will focus on the use of Gibbs

sampling approach on the GLMMs.

The Gibbs sampler was proposed by Geman and Geman (1984) and has al-

ready been successfully applied to many diverse problems such as linear variance

components models (Gelfand et al., 1990), random effects GLMs (Zegar and

Karim, 1991), and frailty models (Clayton, 1996).

Suppose X, Y and Z are three random variables with [X, Y, Z] as the joint

distribution which is complicate, and [X|Y, Z], [Y |X, Z], and [Z|X, Y ] are

the comparatively simpler conditional distributions of X, Y and Z respectively.

Then, given an arbitrary starting values X(0), Y (0) and Z(0), the algorithm of

Gibbs sampler proceeds as follows:

1. Draw X(1) from the conditional distribution of [X|Y (0), Z(0)].

2. Draw Y (1) from the conditional distribution of [Y |X(1), Z(0)] based on

Z(0) and the newly simulated X(1).

3. Complete the first iteration by drawing Z(1) from [Z|X(1), Y (1)] based on

the newly simulated X(1) and Y (1).

4. Repeat this algorithm until N iterations have completed and the simulated

24



values converged to the joint density function.

Suppose we have completed N iterations. We should then discard the first K iter-

ations in the burn-in period in which the simulated samples may not be stable and

use the remaining M = N−K iterations to form posterior samples. The posterior

sample means are thus our parameter estimates. After computing the posterior

sample means, we need to check the convergence and the auto-correlation by plot-

ting the series of simulated values and examining their auto-correlation function

respectively for each parameter.

After reviewing the general idea of Gibbs sampler, we can move on to describe

the procedure of applying Gibbs sampler on the GLMMs. To do so, we have to

specify the joint distribution and the corresponding full conditional distribution

for each variable first. Let y be the observed data having joint density function

f(y| β,u), β be a vector of fixed effect parameters following a b-dimensional

multivariate normal distribution with mean µ� and a variance-covariance matrix

Σ�, and u be a vector of random effect parameters following a p-dimensional

multivariate normal distribution with mean 0 and a variance-covariance matrix

D. We then have the following hierarchical model:

y ∼ f(y|β,u)

u ∼ MV Np(0,D)
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β ∼ MV Nb(µ�,Σ�)

D ∼ Wishart(Rp, p)

Σ� ∼ Wishart(Rb, b)

where µ� is a fixed vector and Rp and Rb are p and b dimensional fixed matrices

for D and Σ� respectively. The joint density is [y,u,β,D,Σ�]. The Bayesian

estimates are drawn from its conditional distribution by Gibbs sampler. For

example, we sample

β from [β|u,Σ�,D,y]

u from [u|β,Σ�,D,y]

D from [D|β,u,Σ�,D]

Σ� from [Σ�|β,u,D,y]

Sometimes, the conditional distributions are not in standard form. So, we need to

use some non-standard random variates sampling approaches such as Metropolis

Hastings (see Hastings, 1970 and Metropolis et al., 1953 for reference) or adaptive

rejection sampling (Ripley, 1987).
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2.5 Our proposed method: Monte Carlo approx-

imation through Gibbs output

As mentioned in the previous sections, the computation of parameter estimates

may be laborious when likelihood functions involve high dimensional integrals.

Regarding this problem, researchers have suggested various Monte Carlo methods

to approximate the likelihood functions.

McCulloch (1997) has suggested a simulated maximum likelihood (SML) method.

This method requires an optimal importance sampling function h(u) to draw the

random effects in order to carry out the Monte Carlo approximation. However,

the SML method performs poorly if the choice of importance sampling function

is far away from the true distribution for the random effects. Laplace importance

sampling method, an application of SML, was proposed to use a second order

Laplace expansion of the log-likelihood function `(θ; y,u) = ln f(y,u; θ) around

û(θ0), the maximizer of the joint density f(y,u; θ0) based on a reference point θ0

as the importance sampling function. The resulting importance sampling func-

tion is actually a normal density with mean û(θ0) and covariance matrix Σ̂(θ0).

The approximation will only be good when the reference point θ0 is close to the

true parameter θ. (See sections 2.4.3.3 and 2.4.3.4)
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Alternatively, Monte Carlo relative likelihood method proposed by Geyer and

Thompson (1992) approximates a relative likelihood function based on a reference

point θ0. However, Kuk and Cheng (1999) demonstrated that the resulting max-

imizer may again differ substantially from the true ML estimates if the reference

point is chosen improperly. Although it would then be better if we update the

reference point θ0 to the current θ̂
(k)

each time and then simulate a new set of u

based on the new reference point, this again requires iterations within iteration

that makes the procedures tedious. (See section 2.4.3.5)

With regard to this problem, Kuk et al. (2003) extended the Monte Carlo

relative likelihood method and suggested the use of the Gibbs output in the

Monte Carlo approximation. Instead of relying on a single specified reference

point θ0, they assigned a conveniently chosen prior density h(θ) to θ. Suppose

the marginal likelihood based on the observed data y over the random effects u

is

L(θ; y) =
∫

f(y,u; θ) du.

The likelihood function is calculated as follows:

L(θ) =
∫ ∫ f(y,u; θ)

f(y,u; θ∗)
f(y,u; θ∗)du h(θ∗)dθ∗

∝
∫ ∫ f(y,u; θ)

f(y,u; θ∗)
f(u,θ∗; y)du dθ∗

L̂(θ) ∝ 1

M

M∑

i=1

f(y,ui; θ)

f(y,ui; θi)
where (ui, θi) ∼ f(u,θ|y) (2.12)
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and the proportionality constant is the marginal density f(y). Then they sam-

pled the random effects uj and the parameters θj from a joint posterior density

f(u,θ|y) and substituted them into (2.12) to approximate a relative likelihood

function

L(θ)

f(y)
≈ 1

M

M∑

j=1

f(y,uj|θ)

f(y,uj|θj)

using a Monte Carlo approximation. Note that unlike the usual classical likeli-

hood method, the likelihood L(θ) or log-likelihood `(θ) function for the model

cannot be obtained easily because we approximate a relative likelihood function

instead of the likelihood function directly. This method solves the problem of

choosing a proper reference point and it does not require the simulation of a new

set of random effects in each iteration. Besides, if the sample size M is large, the

posterior density f(u,θ|y) will concentrate around the ML estimates θ̂ and so

they automatically get a good approximation of L(θ) around θ̂.

To simulate (ui,θi) from f(u, θ|y), Kuk et al. (2003) suggested making use of

the Gibbs output from the WinBUGs program (Bayesian inference Using Gibbs

Sampler1). This provides a new perspective of using both classical and Bayesian

1WinBUGS is a piece of computer software for the Bayesian analysis of complex statistical

models using MCMC method and Gibbs sampler. It could be downloaded in the website of

the BUGS project by the Biostatistics Unit of the Medical Research Council, in the University

of Cambridge, with URL:http://www.mrc-bsu.cam.ac/bugs.
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approaches in estimation.

In this thesis, we extend the methodology in Kuk et al. (2003) to models

incorporating a drop-out modelling so as to account for the informative drop-out

process in the data.
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CHAPTER 3

MODELS FOR DROP-OUT PROCESS

3.1 Introduction

In this chapter, we will discuss the models for describing the drop-out process.

The chapter will be presented as follows. Section 2 introduces the common miss-

ing patterns in drop-out models. In section 3, we further introduce three types

of drop-out processes when the missing pattern is monotone and explain their

impacts on parameter estimation in GLMMs. Then finally in section 4, we will

discuss some modelling strategies for the informative drop-out process.

3.2 Missing patterns

Missing patterns can be divided into two forms: intermittent missing and mono-

tone missing or drop-out. While intermittent missing refers to a sequence of mea-

surements that has one or more gaps in it, monotone missing refers to a sequence

of measurements that terminates once an individual drops out. Missing pattern

that consists of both types of missing is called non-monotone missing. While

Laird (1988) and Troxel et al. (1998) considered the general non-monotone miss-
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ing, many methods of analysis specifically look at data with monotone missing

or drop-outs (Little, 1995 and Fitzmaurice et al., 1995). In this thesis, we focus

on monotone missing for long time-series data although the models we propose

can also cope with non-monotone missing, because we model the probability of

drop-out in each occasion instead of the total number of observable outcomes for

each subject (see Alfo and Aitkin, 2000).

3.3 Drop-out process

Based on the literature of Rubin (1976) and the discussion in Little and Rubin

(1987) and Laird (1988), drop-out process can be classified into three types.

1. If the probability of drop-out does not depend upon the outcomes y, the

data are said to be missing completely at random (MCAR) or we have a

completely random drop-out (CRD).

2. If the probability of drop-out depends upon the observed outcomes yo and

possibly some covariates z, but not the unobserved outcomes ym, the data

are said to be missing at random (MAR) or we have a random drop-out

(RD).

3. If the probability of drop-out depends upon the unobserved outcomes ym,
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we have an informative drop-out (ID).

In some instances, it is difficult to distinguish between MCAR and MAR. Techni-

cally, if the probability of unobserved outcomes or non-response depends only on

covariates z and possibly some covariates x of the outcome model, then the data

are said to be MCAR. For example, the attrition relating to subject characteris-

tics, such as prognosis or treatment group, is considered as MCAR. MCAR and

MAR are said to be ignorable because it is not necessary to specify a drop-out

model f(r|z, α) in order to obtain valid likelihood based inferences about the

parameters β in the outcome or data model f(yo|x,β). For data with ignorable

drop-out, ‘complete case’ analyses which discard any units with missing data yield

valid inferences although they may mean a loss of efficiency. Likelihood based

methods using standard algorithms such as scoring (Fitzmaurice et al., 1995) or

missing-data tools such as EM and its extension (Dempster et al., 1997; Meng

and Rubin, 1991, 1993) can give consistent parameter estimates β because the

joint density of the observed data can be separated into two densities, that is

f(yo, r; x,z,β,α) = f(yo; x,β)f(r|yo; z,α)

and hence the estimation of β can be done independently of the drop-out model

f(r|yo; z,α).
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In fact, some non-likelihood based methods of analysis such as the generalized

estimating equations (GEE) approach proposed by Wei and Stram (1987) and

Fitzmaurice et al. (1995), are also possible for data that are MCAR.

When the probability of drop-out is related to the subject’s unobserved out-

comes, the data are said to have an ID process (Wu and Carroll, 1988). In

this case, the drop-out process is non-ignorable (NI) which indicates that valid

likelihood based inferences can only be made by specifying a drop-out model

f(r|yo, ym; z,α). The joint density of the observed data with in ID process is

f(yo, r|x,z,β, α) = f(yo|x,β)
∫

f(r|yo,ym,z,α) dym.

Some researchers have investigated different modelling approaches for longitudi-

nal continuous response with an ID process. Wu and Carroll (1988) proposed

a pseudo-maximum likelihood approach for a probit drop-out model. Schluchter

(1992) adopted a likelihood approach via the EM algorithm based on a log-normal

survival model. Mori et al. (1994) used an empirical Bayes approach based on a

conditional linear model.

With regard to longitudinal categorical data, Fitzmaurice et al. (1995) consid-

ered an ID model for binary responses using logit link and Plackett distribution.

However, the likelihood approach that he considered requires solving a compli-

cated score function. Molenberghs et al. (1995) proposed maximum likelihood
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(ML) methods based on marginal multinomial models for repeated ordinal re-

sponses. Similarly, Zhao and Prentice (1990) have also used ML methods, but

based on a quadratic exponential model for repeated binary responses.

The recent proposed likelihood-based methods that account for an ID process

include Brown (1990), Molenberghs et al. (1995), Mori et al. (1994), Schluchter

(1992) and Wu and Carroll (1998). These methods depend strongly on the correct

specification of the underlying distribution of the longitudinal measurements and

the model assumptions about the missingness probabilities.

All likelihood-based methods are sensitive to the assumed distribution of the

data, but these assumptions cannot be tested if the data are non-ignorably miss-

ing. Alternative methods like non-likelihood-based methods are therefore pro-

posed. Some examples include the Bayesian approach via Markov chain Monte

Carlo methods and Gibbs’ sampler (Gelfand & Smith, 1990; Gelman & Rubin,

1992), generalized estimating equations (GEE) and weighted GEE approaches

(Fitzmaurice et al., 1995), and the augmented inverse probability of censoring

weighted (IPCW) for non-ignorable nonresponses (Rotnizky et al., 1998). These

methods yield consistent estimates when the drop-out process is NI and the prob-

ability of drop-out is correctly specified.
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In case when the drop-out mechanism is not well understood, sensitivity an-

alyzes are suggested to assess the effect of inferences on target parameters from

alternative assumptions about the drop-out process. See Laird (1988), Little

(1995) and the sensitivity analysis to model assumptions of Glynn et al. (1986)

and Baker & Laird (1988) for references. In Chapter 7, we conduct simulation

studies in which simulated data sets with ID processes are fitted into three types

of outcome models with and without an ID modelling. More details of the sensi-

tivity analysis are given in that chapter.

3.4 Models for drop-out process

Correct specification of the drop-out model is crucial particularly when the drop-

out process is non-ignorable. Otherwise it may lead to bias result. While GLMs

or GLMMs are commonly used models for the outcomes, models for the drop-out

process are more diversified. In this section, we will review some of these models.

3.4.1 Modelling the total number of occasions before drop-

out

Suppose drop-out occurs in an experiment so that measurements are not observed

at all T occasions for some subjects. When modelling the drop-out process, some
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researchers choose to model the total number of observed outcomes for each sub-

ject in the experiment. Adopting the standard notation of Little and Rubin

(1987), we introduce T random variables ri1, . . . , riT , where rit is the drop-out

indicator for subject i at time t and it equals 1 if the corresponding measure-

ment yit is observed and 0 if yit is missing. For a special case of attrition when

the missing data pattern is monotone, the information of such missing pattern

denoted by a sequence of rit can be summarized by a single random variable:

si =
T∑

t=1

rit; i = 1, . . . , n,

indicating the total number of observed outcomes before drop-out for subject

i, i = 1, . . . , n such that si ≤ T .

Researchers have modelled the probability of si with covariates using some

link functions. Diggle and Kenward (1994) and Roy and Lin (2002) regressed the

conditional probability of si on the history of the measurement process, unob-

served observations and some covariates, using a logit link function. Mori et al.

(1994) proposed a method to estimate the rate of change of blood pressure from

incomplete longitudinal data. This method involved modeling si by a geometric

distribution with mean, a linear function of subject’s rate of change.

Alfo and Altkin (2000) linked the conditional expectation of si to a linear

function of covariates for a methadone clinic data (see Chapter 4 for detail). Let
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pit be the conditional probability of success (yit = 1) at time t, xit a p-dimensional

vector of explanatory variables, β a vector of p parameters, ui, a vector of random

coefficients and zit, a design vector for ui. Then, their proposed outcome model

is

θit = log

[
pit

1− pit

]
= xit

T β + zit
T ui + α yi,t−1,

and the model for the informative drop-out process is

g[E(Si|ui)] = vit
T αs + ui

T γs

where αs and γs are vectors of parameters, vT
it is a vector of covariates and g is

some link functions.

Such model is defined as the full shared parameter model because the outcome

model and the informative drop-out model are sharing random coefficient vectors

ui. The parameters were estimated by means of an EM algorithm, without

assuming any specific parametric distribution for the random coefficients in the

outcome as well as the drop-out models. While this modelling strategy provides a

simple alternate drop-out model based only on si, it is not suitable for modelling

data with non-monotone missing pattern.
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3.4.2 Modelling the probability of drop-out in each occa-

sion

Other than modelling si, the total number of observations for subject i, some

researchers prefer modelling directly the probability of rit, a drop-out indica-

tor at time t. This alternate type of drop-out modelling is more applicable to

non-monotone missing. Fitzmaurice et al. (1995) and Rotnitzky et al. (1997)

modelled the probability of rit linearly on both observed and unobserved out-

comes. Greenlees et al. (1982) and Little (1982) adopted the same modelling

approach as Fitzmaurice et al. (1995), Molenberghs et al. (1994) and Rotnitzky

et al. (1997), but used a probit link function instead. Fitzmaurice et al. (2001)

adopted a logit link function to relate the conditional probability of rit to the

history of measurement process and some covariates. Wei et al. (1987) modelled

the marginal probability of rit with a quasi-likelihood function.

3.4.3 Modelling the censoring time

Instead of modelling the total number of observed outcomes si or the probability

of drop-out indicator rit in each occasion, some investigators focus on the censor-

ing time, Ti, which is the time until a drop-out occurs for subject i. Generally

speaking, Ti can be thought of as a continuous sense of si. One example of mod-
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eling the censoring time can be found in Wu and Carroll (1988), who modelled

Ti with some covariates using a probit link. Another example is that proposed

by Schluchter (1992) who modelled the censoring time as trivariate-normally dis-

tributed with a subject specific random intercept and slope.

3.4.4 Modelling the drop-out mechanism implicitly

All models discussed above have incorporated a separate model for the primary

responses and the drop-out process. However, some researchers do not assign

a separate model for the drop-out process. They model the drop-out process

implicitly in the outcome model instead. For instance, Wu and Bailey (1989)

have developed a conditional linear model for the outcomes with a subject specific

random intercept and slope. They further assumed that the subject specific

random slope was a polynomial function of censoring time. Based only on these

models, they developed estimation and testing procedures for the models without

any explicit drop-out model.

40



CHAPTER 4

METHADONE CLINIC DATA

4.1 Introduction

In recent years, there has been a resurgence for the support of a methadone main-

tenance treatment (MMT) program in many countries as studies have revealed its

contribution in reducing the risk of HIV infection among injecting heroin users in

treatment. Associated with this expansion of methadone maintenance treatment,

there is a growing research interest in trying to identify the factors that contribute

to effective methadone treatment. To identify the factors that contribute to ef-

fective methadone maintenance treatment, we analyze a data set consisting of

results of urine drug screens for patients who took part in a MMT at a clinic

in Sydney in 1986. This research is actually motivated by this methadone clinic

data set.

The chapter will be presented as follows. Section 2 introduces the data set

reported by Chan et al. (1998) in details. Section 3 gives an overview of various

modelling strategies that have been applied to this data set and describes the

objective of this thesis in details.
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4.2 Data set

This research is based on records of heroin users who were under methadone

maintenance treatment (MMT) at a clinic in Western Sydney in 1986. Outcome

measure is heroin use measured by urine testing performed once a week, on a

day determined at random. Screens were recorded as positive (y = 1) or negative

(y = 0) for morphine, the biological marker for heroin use. Records also contain

other informations including patients’ dosage of methadone d in milligram (mg) at

the time (in week t) of urine test. The clinic required attendance for dosing seven

days per week, with take-home doses of medication only provided in exceptional

circumstances.

The analysis was performed using a restricted data set in which patients who

completed less than 4 weeks of treatment were excluded. Patients with missing

dose records were also excluded from our analysis. Finally, past experience showed

that the treatment was most effective in the first half year of maintenance and

beyond that, non-random drop-out began to occur, with patients who continued

to use heroin being more likely to leave the treatment. Consequently, our study

only looked at results of urine screens collected in the first 26 weeks of treatment

so as to avoid the distorting effect of patients being on a withdrawal regimen,

something that usually began after the first half year of maintenance.
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There were 136 patients, submitting a total of 2872 urine screens with 16% of

them being positive for heroin. The dosage averaged over the 2872 incidents is

64mg. Each patient submitted 4 to 26 weekly outcomes and the average number

of treatment weeks per patient is 21.1 weeks. Fifty one patients dropped out

before the end of 26 weeks and the rest having 26 outcomes were regarded as

having completed the program. For all analyses, each urine screen result rather

than each patient served as the unit of analysis. Some descriptive statistics of

this data set is presented in Table 1 of Appendix A.

Since the aim of the analysis is to investigate the relationship between heroin

use as detected by urine testing and various treatment factors, the response vari-

able is the results of urine test. Regarding factors that associate with heroin

use, there is a substantial body of evidence that methadone dose is important

in influencing continued heroin use. Hence it is necessary to take into account

the fluctuating methadone dose in assessing the influence of other treatment fac-

tors. Another factor included is the duration of treatment (called time effect) in

weeks. As there is a strong belief that the time effect on heroin use levels off as

time increases, such effect was transformed to ln t in all analyses where t is the

duration of treatment in weeks. We have included an interaction term between

the dose and time effects initially, but it was insignificant and was dropped from

the model subsequently.
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4.3 Modelling strategies

Many researchers have studied the methadone clinic data set. Chan et al. (1998)

have adopted several modelling strategies within the GLM and GLMM frame-

works to analyze this data set. First of all, it is clear that longitudinal binary

data are not independent but serially correlated. To account for such depen-

dency between observations, a marginal or conditional model may be used. In

adopting a marginal model for binary data with a logit link function, parameters

can be estimated using the Generalised Estimating Equation (GEE) approach

(Liang & Zeger 1986) with a specified working correlation matrix of different

auto-correlation structures. On the other hand, researchers may also consider

the conditional logistic model proposed by Bonney (1987). While the marginal

model is easy to interpret and the dependency structure can be explicitly mod-

elled by a working correlation matrix incorporating different choices of correlation

structures, the conditional logistic model has a more tractable likelihood func-

tion and can be extended easily to accommodate random effects. See Chan et al.

(1998) for more details of the two approaches.

In this thesis, the conditional approach is adopted and we model the serial

correlation using a first order auto-regressive (AR1) model such that the logit

of the conditional probabilities Pr(yt = 1|yt−1) depend linearly on the covariates
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d and ln t, as well as the previous outcomes yt−1. The parameter estimation is

carried out using the ML method.

Since results of separate fitting to each patient and score tests suggested that

there was substantial between-patient variation (see Chan et al., 1998 for the

separate fitting and score tests). To account for the population heterogeneity

and to facilitate subject-specific inference, Chan et al. (1998) further extended

the conditional logistic model by introducing group effects. The mixture mod-

els revealed valuable information regarding the drug-taking habit of patients in

different groups. By assuming that there are several groups of patients who re-

act differently to methadone treatment, the data were fitted into two-, three-

and four-group mixture models and the three-group mixture model was chosen

based on Akaike information criterion (AIC). For instance, one group of pa-

tients have ceased taking heroin as a result of treatment (light-user group) while

the other group of patients continued to use heroin regardless of the methadone

dose received (heavy-user group). The remaining group of patients responded

to the treatment in a dose-dependent fashion with reduced heroin use at a high

methadone dose (medium-user group). Results confirmed that patients reacted

differently to MMT.

Finally, a more direct way to account for the population heterogeneity was
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to incorporate a random intercept term into the conditional logistic model. The

random intercepts are assumed to follow a normal distribution with mean zero

and variance σ2. Results of fitting the conditional AR1 model, the mixture model

and the random intercept model to data are similar. Both the dose and time effect

of these models are significant suggesting that reduced drug use is associated with

an increase in methadone dose and duration of treatment. Also, there is a strong

and positive association between the present and previous outcomes yit & yi,t−1

suggesting that some patients in treatment tend to use heroin continously while

others do not.

Recently, Chan and Leung (2003) have incorporated the conditional AR1

model and the mixture model with an ID modelling so as to account for the

ID process of the data set. They ignored the initial stage problem (see Chan,

2000 for reference) in models by simply assuming that yi0 = 0 and focused on

developing models that accommodate the ID process. They believed the biases

in the regression coefficients caused by such assumption will be small because the

time series in this data set are mostly long (see Chan, 2000).

Up tp now, few of the models on methadone clinic data did allow for the drop-

out process of the data. Alfo and Aitkin (2000) have described the ID process by

modeling the total number of observations before drop-out i.e. si of each patient
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with some covariates in some link function (see section 3.4.1). They entered

the initial observations yi1 as a covariate in the conditional outcome model for

observations from t = 2 to t = ni and proposed two models: the first model

(called AA1) has an interaction term ‘yi1× dose’ so that the dose effect becomes

initial-use specific and the second model (called AA2) is a mixture model with

group probabilities πk0 and πk1, k = 1, 2, 3 depending on initial-use. The authors

remarked that the dose effect is only significant among those non-initial users

in the heavy user group (group 1) (as reported in Table 2 of Alfo and Aitkin,

2000) and the rest of group 1 together with group 2 (light users) and 3 (medium

users) do not respond to the methadone treatment. They also found that after

modeling the drop-out process, the parameter estimate of the dose effect changed

by -0.00053 (s.e. = 0.00019). This result confirms the necessarity of incorporating

an informative drop-out model in the analysis of the methadone clinic data.

The results of Chan & Leung (2003) and Alfo & Aitkin (2000) clearly support

the incorporation of an ID model to the analysis of the methadone clinic data as

the ID model allow for the selective attitude towards drop-out for heavy drug user

which can otherwise lead to a false impression of reduced drug use over time and

hence a false conclusion of significant time effect. On the other hand, there are

still rooms for improvement in the modelling strategies for the drop-out process.

The objective of this thesis is to extend the existing conditional AR1 model and
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mixture model with an ID modelling to a random intercept model with ID that

will account for the population heterogeneity in the data and compare the results

between these three types of models.
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CHAPTER 5

METHODOLOGY

In this chapter, we extend the three modelling strategies, namely the conditional

AR1 model, the mixture model and the random intercept model by incorporating

an ID model for the methadone clinic data. Tthe first two models were proposed

in Chan and Leung (2003).

5.1 Conditional AR1 model with ID

Let yit denote the binary outcome for patient i in week t. The vector of all

possible outcomes for patient i can be separated into

yi = (yit)
T = ( yi1, ..., yi,ni︸ ︷︷ ︸

Observed yoi
T

, yi,ni+1, ..., yi,n︸ ︷︷ ︸
Unobserved ymi

T

)T

where ni denotes the number of observed yit and the vector of all outcomes is

denoted by yT = (y1
T ,y2

T , ..., yI
T ).

Similarly, let rit denote the drop-out indicator for patient i in week t such

that rit = I(t > ni) where rit = 1 if yit is unobserved (t > ni) and zero

otherwise. Then the vector of all drop-out indicators for patient i is ri = (rit)
T

which is a series of ni ‘0’ followed by 26 − ni ‘1’. For the outcome model, the
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conditional probabilities of heroin use are logit linear in some covariates as well

as the ‘previous outcomes’ yi,t−1:

logit[Pr(yit = 1|yi,t−1,β)] = ηit = βo + βddit + βt ln t + βpv yi,t−1. (5.1)

For the ID model, the conditional probabilities of drop-out are logit linear in

some covariates as well as the ‘present outcomes’ yi,t which signify ID:

logit[Pr(rit = 1|yit, α)] = ζit = αo + αt ln t + αpsyi,t (5.2)

for t ≤ ni such that the present outcomes yit are observed. At the time of drop-

out when t = ni + 1 and ni < 26, the ‘present outcome’ yi,ni+1 is unobserved.

Then there are two possible conditional probabilities of drop-out:

logit[Pr(ri,ni+1 = 1|yi,ni+1 = h, α)] = ζi,ni+1,h = αo + αt ln t + αpsh, h = 0, 1.

(5.3)

We model the probability of drop-out in each occasion instead of total number

of occasions in the drop-out model because the latter approach can neither be

extended to cases with non-monotone missing nor revealed factors that will affect

the missingness pattern, although it can simplify the computation considerably.

A vector of parameters for the whole model is θ = (βT , αT )T where the p-

dimensional vector of parameters in the outcome model is β = (βo, βd, βt, βpv)
T

and the q-dimensional vector of parameters in the drop-out model is α = (αo, αt, αps)
T .
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Here we adopt a selection model factorization such that

f(yi, ri; θ) = f(yi; θ)f(ri|yi; θ). (5.4)

See Rubin (1976) for the description of selection models and pattern mixture

models.

Since yi,ni+1 is unobserved for ni < 26, the marginal probabilities Pr(ri,ni+1 =

1|θ) are estimated by

P̂r(ri,ni+1 = 1|θ) =
1∑

h=0

Pr(ri,ni+1 = 1|yi,ni+1 = h, α) Pr(yi,ni+1 = h|yi,ni
,β). (5.5)

5.1.1 Maximum Likelihood Approach

Let py,it = Pr(yit) = Pr(yit = 1|yi,t−1, β), pr,ir = Pr(rit) = Pr(rit = 1|yit, α) and

pyr,i,h = Pr(ri,ni+1,h) = Pr(ri,ni+1 = 1|yi,ni+1 = h, α) , h = 0, 1. The ‘observed

data’ likelihood f(yo, r|X,θ) is given by

I∏

i=1

{
ni∏

t=1

Pr(yit)
yit [1− Pr(yit)]

(1−yit) ·
ni∏

t=2

[1− Pr(rit)]·
[

1∑

h=0

Pr(ri,ni+1,h) Pr(yi,ni+1)
h[1− Pr(yi,ni+1)]

1−h

]I(ni<26)




where

Ly =
I∏

i=1

ni∏

t=1

Pr(yit)
yit [1− Pr(yit)]

(1−yit)

Lr0 =
I∏

i=1

ni∏

t=2

[1− Pr(rit)]
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Lr1 =
I∏

i=1

[
1∑

h=0

Pr(ri,ni+1,h) Pr(yi,ni+1
)h[1− Pr(yi,ni+1

)]1−h

]I(ni<26)

are respectively the likelihood for all yit, rit = 0 and rit = 1. Then, we maximize

the log-likelihood function ` = `y + `r0 + `r1 for the observed data where `k =

ln Lk, k = y, r0, r1 are given by

`y =
I∑

i=1

ni∑

t=1

ln
(

eyitηit

1 + eηit

)

`r0 =
I∑

i=1

ni∑

t=2

ln
(

1

1 + eζit

)

`r1 =
I∑

i=1

I(ni < 26) ln

[(
eζi,ni+1,1

1 + eζi,ni+1,1

) (
eηi,ni+1

1 + eηi,ni+1

)
+

(
eζi,ni+1,0

1 + eζi,ni+1,0

) (
1

1 + eηi,ni+1

)]
.

Newton Raphson (NR) method is used to solve for the maximum likelihood (ML)

estimates of θ from the log-likelihood function ` and the procedures are iterated

until convergence. The first and second order derivatives of the log-likelihood

function, `′ and `′′ as required in the NR procedures are given in Appendix B.

The variance-covariance matrix of θ can be obtained by inverting −`′′.

5.1.2 Bayesian Approach

Let y be the observed data having joint density function f(.), β be a vector of

fixed effect parameters following a p-dimensional multivariate normal distribu-

tion with a mean µ� and a variance covariance matrix Σβ which is a diagonal

matrix with diagonal entities τβk
, and ui be a vector of random effect parameters
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following a m-dimensional multivariate normal distribution with mean 0 and a

variance-covariance matrix D. Very often, we set D = σ2I. Then the general

framework of Bayesian hierarchy for a GLMM is

yi ∼ f(y| µi)

g(µi) = xi
T β + zi

T ui

ui ∼ N(0,D), i = 1, · · · ,m

βk ∼ N(µβk
, τβk

), k = 1, · · · , p

σ2 ∼ Gamma(aσ, bσ)

where g(·) is a link function, µβk
, τβk

, aσ and bσ are fixed, and xi and zi are the

design matrices for the fixed effects β and the random effects ui respectively.

Now, θ = (β1, . . . , βp, σ
2)T which is a vector of parameters and [y,µ, β,D,Σ�]

denotes the joint density. The Bayesian estimates are drawn from its conditional

distribution by Gibbs sampler. For example, we sample

β from [β|u,Σ�, D,y]

u from [u|β,Σ�, D,y]

D from [D|β, u,Σ�,D]

Σ� from [Σ�|β,u, D,y]

In our case with binary data y, the density function is f(yi) = pi
yi(1 − pi)

(1−yi)
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where pi is the parameter of a bernoulli distribution. Usually a logit link func-

tion is used to link the linear function of covariates to the mean pi so that

g(pi) = ln
pi

1− pi

=
p∑

k=1

βkxik. Hence the Bayesian hierarchy for the binary drug

uses yit as well as the drop-out indicators rit with vague priors for β and α is

yit ∼ Bernoulli(py,it)

logit(py,it) = βo + βd dit + βt ln t + βpvyi,t−1

rit ∼ Bernoulli(pit)

For t ≤ ni, logit(pr,it) = αo + αt ln t + αpsyit

For ni < 26, logit(pr,i,ni+1) = Ii(αo + αt ln t + αps) + (1− Ii)(αo + αt ln t)

Ii ∼ Bernoulli(pi,ni+1)

logit(pi,ni+1) = βo + βd di,ni
+ βt ln(ni + 1) + βpvyi,ni

βo, βd, βt, βpv, αo, αt, αps ∼ N(0, 1000000).

where Ii = I(yi,ni+1 = 1), the drug use indicator during the drop-out occa-

sion. From the Gibbs output obtained from the Bayesian software WinBUGS, we

discard the first 1000 observations in the burn-in period and take every 20 obser-

vations resulting in a sample of 500 observations. The auto-correlation functions

and history plots of all posterior samples of parameters in Appendix C show that

the samples have converged and are independent.
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5.2 Mixture model with ID

Chan et al. (1998) showed that there are substantial group effects in the methadone

clinic data and extended the outcome model to accommodate the group ef-

fects. They assigned a multinominal distribution for β such that β = βm =

(βmo, βmd, βmt, βmpv)
T at a probability πm. Although Chan et al. (1998) have

fitted 2-, 3- and 4-group mixture models to the methadone clinic data and se-

lected a 3-group mixture model by AIC, Chan and Leung (2003) considered a

2-group mixture model (m = 2) with an ID modelling for simplicity. The model

can easily be extended to 3 or more groups and AIC can be used in the model

selection. Moreover, Chan et al. (1998) proposed a group specific intercept and

dose coefficients while the time in treatment and previous outcome effects are

fixed across groups in the outcome model as

logit[Pr(yit = 1|yi,t−1,βm)] = ηitm = βmo + βmd dit + βt ln t + βpvyi,t−1

and it occurs at probability πm (m = 1, 2 and π1 + π2 = 1). For the drop-out

model, equations (5.2) and (5.3) follow. A vector of parameters for the whole

model is θ = (β1
T ,β′T ,β2

T ,αT , π1)
T where βm = (βmo, βmd)

T , m = 1, 2 and

β′ = (βt, βpv)
T .

Since yi,ni+1 as well as the latent group membership for patient i are unob-
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served, the marginal probabilities Pr(ri,ni+1 = 1|θ) are estimated by

P̂r(ri,ni+1 = 1|θ) =

2∑

m=1

1∑

h=0

Pr(ri,ni+1 = 1|yi,ni+1 = h, β = βm, α) Pr(yi,ni+1 = h|yi,ni
, β = βm) πm.

5.2.1 Maximum Likelihood Approach

The ‘observed’ data likelihood f(yo, r|θ) is given by

I∏

i=1

{
2∑

m=1

πm

[
ni∏

t=1

Pr(yitm)yit [1− Pr(yitm)](1−yit)

]
·

ni∏

t=2

[1− Pr(rit)]·
[

2∑

m=1

1∑

h=0

Pr(ri,ni+1,hm) Pr(yi,ni+1,m)h[1− Pr(yi,ni+1,m)]1−h πm

]I(ni<26)




where

Ly =
I∏

i=1

{
2∑

m=1

πm

[
ni∏

t=1

Pr(yitm)yit [1− Pr(yitm)](1−yit)

]}
,

Lr0 =
I∏

i=1

ni∏

t=2

[1− Pr(rit)],

Lr1 =
I∏

i=1

[
1∑

h=0

2∑

m=1

Pr(ri,ni+1,hm) Pr(yi,ni+1,m)h[1− Pr(yi,ni+1,m)]1−h πm

]I(ni<26)

.

Then we maximize the log-likelihood function ` = `y + `r0 + `r1 for the observed

data where `v = ln Lv, v = y, r0, r1 are given by

`y =
I∑

i=1

ln

[
2∑

m=1

πm

(
ni∏

t=1

eyitηitm

1 + eηitm

)]

`r0 =
I∑

i=1

ni∑

t=2

ln
(

1

1 + eζit

)
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`r1 =
I∑

i=1

I(ni < 26)

ln

{
2∑

m=1

[(
eζi,ni+1,1

1 + eζi,ni+1,1

) (
eηi,ni+1,m

1 + eηi,ni+1,m

)
πm +

(
eζi,ni+1,0

1 + eζi,ni+1,0

) (
1

1 + eηi,ni+1,m

)
πm

]}
.

Again, NR method is used to solve for θ from the log-likelihood function ` and the

procedures are iterated until convergence. The first and second order derivatives,

`′ and `′′ as required in the NR procedures are given in Appendix B. However,

Chan and Leung (2003) remarked that the computation required in the NR pro-

cedures is complicate as this model involves many parameters and there is also

a problem of convergence for the ML estimates. To solve this problem, one may

resort to adjusting the Hessian matrix −`′′ according to (5.8) as given in the

coming section of (5.3.1).

5.2.2 Bayesian Approach

Bayesian hierarchy with vague priors for β1, β′, β2, α and π1 are

yit ∼ Bernoulli(py,it)

logit(py,it) = Iy,i(β1o + β1d dit + βt ln t + βpvyi,t−1) +

(1− Iy,i)(β2o + β2d dit + βt ln t + βpvyi,t−1)

Iy,i ∼ Bernoulli(π1)

For t ≤ ni, logit(pr,it) = αo + αt ln t + αpsyit
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For ni < 26, logit(pr,i,ni+1) = Ir,i[αo + αt ln(ni + 1) + αps] +

(1− Ir,i)[αo + αt ln(n1 + 1)]

Ir,i ∼ Bernoulli(py,i,ni+1)

logit(py,i,ni+1) = Iy,i[β1o + β1d di,ni
+ βt ln(ni + 1) + βpvyi,ni

] +

(1− Iy,i)[β2o + β2d di,ni
+ βt ln(ni + 1) + βpvyi,ni

]

β1o, β1d, βt, βpv, β2o, β2d, α0, αt, αps ∼ N(0, 1000000)

π1 ∼ U(0, 1)

where Iy,i = I(β = β1
T ,β

′T ), the group-1 indicator for patient i and Ir,i =

I(yi,ni+1 = 1), the drug use indicator during the drop-out occasion. From the

Gibbs output, we discard the first 1000 observations in the burn-in period and

take every 38 observations resulting in a sample of 500 observations. Again, the

auto-correlation functions and history plots of all posterior samples in Appendix

C show that the samples have converged and are independent.

The results of the analysis for the conditional AR1 and 2-group mixture mod-

els with an ID modelling using both ML and Bayesian approaches are reported

in Chan and Leung (2003) and are included in Tables 2 and 3 respectively in

Appendix A for reference.
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5.3 Random intercept model with ID

Believing the regression coefficients are patient-specific, Chan et al. (1998) incor-

porated a random intercept into the conditional AR1 model and assign a normal

distribution to the random intercept ui, i = 1, · · · , I such that ui
i.i.d.∼ N(0, σ2). To

allow for an ID process in the data, we further extend the model by incorporating

an ID model. Hence the outcome model is

logit[Pr(yit = 1|yi,t−1,β)] = ηit = ui + βo + βddit + βt ln t + βpvyi,t−1

and the drop-out model follows equations (5.2) and (5.3). A vector of parameters

for the whole model is θ = (βT ,αT , σ2)T .

Since yi,ni+1 and the random intercept ui is unobserved, the marginal proba-

bilities Pr(ri,ni+1 = 1|θ) are estimated by

P̂r(ri,ni+1 = 1|θ) =

1∑

h=0

Pr(ri,ni+1 = 1|yi,ni+1 = h, α)
∫ ∞

−∞
Pr(yi,ni+1 = h|yi,ni

, β, ui) φ(ui|0, σ2) dui

where φ(ui| 0, σ2) is the density function of the normal distribution N(0, σ2).

5.3.1 Maximum Likelihood Approach

The ‘observed data’ likelihood function L(θ) = f(y, r|x, θ) is

I∏

i=1

{
ni∏

t=2

[1− Pr(rit)]
∫ ∞

−∞

ni∏

t=1

Pr(yit)
yit [1− Pr(yit)]

(1−yit)·
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[
1∑

h=0

Pr(ri,ni+1,h) Pr(yi,ni+1)
h[1− Pr(yi,ni+1)]

1−h

]I(ni<26)

φ(ui| 0, σ2) dui





(5.6)

Using the Laplace Importance sampling method with the importance function

φ(u|µ∗,Σ∗) where µ∗ = (u∗1, . . . , u
∗
I) is the ML estimate of u with respect to

the log of the ‘complete data’ likelihood `(u) = ln f(y, r,u|θ0) when θ is set

to a fixed value θ0 in (5.6) and Σ∗ =

[
∂2`(u)

∂u2

]−1

is the information matrix (see

section 2.4.3.4 and McCulloch (1997)), the ‘observed data’ likelihood function

L(θ; y, r, θ0) = f(y, r; θ, θ0) becomes

∫ ∞

−∞
· · ·

∫ ∞

−∞

{
I∏

i=1

[
ni∏

t=2

(
1

1 + eζit

)] [
ni∏

t=1

(
eyitηit

1 + eηit

)] [(
eζi,ni+1,1

1 + eζi,ni+1,1

) (
eηi,ni+1

1 + eηi,ni+1

)

+

(
eζi,ni+1,0

1 + eζi,ni+1,0

) (
1

1 + eηi,ni+1

)]I(ni<26)




∏I
i=1 φ(ui|0, σ2)

φI(u|µ∗,Σ∗)
φI(u|µ∗,Σ∗) du

and the log of its Monte Carlo approximation, `M(θ; y, r,u) is

ln





1

M

M∑

j=1

{
I∏

i=1

[
ni∏

t=2

(
1

1 + eζit

)] [
ni∏

t=1

(
eyitηitj

1 + eηitj

)] [(
eζi,ni+1,1

1 + eζi,ni+1,1

)

(
eηi,ni+1,j

1 + eηi,ni+1,j

)
+

(
eζi,ni+1,0

1 + eζi,ni+1,0

) (
1

1 + eηi,ni+1,j

)]I(ni<26)
φ(uij|0, σ2)

φI(uj|µ∗,Σ∗)







 ,

(5.7)

where the random effects uj = (u1j, . . . , uIj) are drawn from NI(u|µ∗,Σ∗) and

M is the number of simulations. Then we obtain its first and second order

derivatives, namely `′M(θ; y, r, u) and `′′M(θ; y, r, u) and use the Monte Carlo
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Newton Raphson method to find the ML estimate of θ. To solve the local nature

of the approximation based on the reference point θ0, the ML estimate θ̂
(k)

at

iteration k, say is set as the next θ0 to obtain an updated ML estimate θ̂
(k+1)

using an updated set of random effects u(k) (based on the updated reference

point θ̂
(k)

) in (5.7) and the procedures are iterated until convergence. However

the estimation becomes laborious as it requires iterations within iterations.

Moreover, we have encountered convergence problem possibly because the im-

portance sampling function NI(u|µ∗,Σ∗) for u deviates a lot from the true pos-

terior and hence the Monte Carlo approximationtain in (5.7) is not good enough.

Furthermore, the MCNR procedure is quite erratic due to the use of Monte Carlo

gradient vector `′M(θ(v); y, r,u(k)) and Hessian matrix −`′′M(θ(v); y, r,u(k)) at it-

eration v within iteration k which is sometimes not a positive definite. Kuk and

Cheng (1997) thus suggested halving I2 s times until

I1 − 1

2s
I2 (5.8)

is positive definite and use it for −`′′M(θ(v); y, r,θ(k)). Note that I1 and I2

are given by (2.9) with `′M(θ(v); y, r,θ(k)) and `′′M(θ(v); y, r, θ(k)) corresponds to

`′M(θ(k); y) and `′′M(θ(k); y) in (2.8).

Instead of adopting this method, we adopt another method, the Monte Carlo

approximation through Gibbs output as discussed in section 2.5 to approximate
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a relative likelihood function
L(θ)

f(y)
in our analysis. We sample both the random

effects ui as well as the parameters θi from a joint posterior density as in the

Bayesian analysis and use them to evaluate a relative likelihood function by Monte

Carlo approximation. Since this methodology applies the Bayesian results in the

evaluation of a classical likelihood function, it integrates both the Bayesian and

classical approaches together.

Referring to (2.12), the approximated likelihood function for the observed

data is

L(θ) ∝ 1

M

M∑

j=1

f(y,uj|θ)

f(y,uj|θj)
=

1

M

M∑

j=1

Lqj, (uj,θj) ∼ f(u,θ|y)

where

f(y, uj|θ) =
I∏

i=1

{[
ni∏

t=2

(
1

1 + eζit

)] [
ni∏

t=1

(
eyitηitj

1 + eηitj

)] [(
eζi,ni+1,1

1 + eζi,ni+1,1

) (
eηi,ni+1,j

1 + eηi,ni+1,j

)

+

(
eζi,ni+1,0

1 + eζi,ni+1,0

) (
1

1 + eηi,ni+1,j

)]I(ni<26)

φ(uij|0, σ2)





f(y, uj|θj) =
I∏

i=1





[
ni∏

t=2

(
1

1 + eζ∗itj

)] [
ni∏

t=1

(
eyitη

∗
itj

1 + eη∗itj

)] 



 eζ∗i,ni+1,1,j

1 + e
ζ∗i,ni+1,1,j





 eη∗i,ni+1,j

1 + e
η∗i,ni+1,j




+


 eζ∗i,ni+1,0,j

1 + e
ζ∗i,ni+1,0,j




(
1

1 + e
η∗i,ni+1,j

)


I(ni<26)

φ(u∗ij|0, σ∗2j )





,

φ(·|µ, σ2) is a Normal density with mean µ and variance σ2, the random effects

as well as parameters (uj,θj) =
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(u∗1j, u
∗
2j, . . . , u

∗
Ij, β

∗
oj, β

∗
dj, β

∗
tj, β

∗
pvj, α

∗
oj, α

∗
tj, α

∗
ps,j, σ

∗2
j )′ are drawn from f(u, θ|y),

ηitj = u∗ij + βo + βddit + βt ln t + βpv yi,t−1, t = 1, . . . , ni + 1, is a linear

function of parameters β & sample value u∗ij;

ζit = αo + αt ln t + αps yit, t = 2, . . . , ni, is a linear function of parameters α;

η∗itj = u∗ij + β∗oj + β∗djdit + β∗tj ln t + β∗pv,j yi,t−1, t = 1, . . . , ni + 1, is a linear

function of sample values;

ζ∗itj = α∗oj + α∗tj ln t + α∗ps,j yit, t = 2, . . . , ni, is a linear function of sample values;

ζ∗i,ni+1,h,j = α∗oj + α∗tj ln t + α∗ps,j h, h = 0, 1 is a linear function of sample values.

To approximate the relative likelihood function
L(θ)

f(y)
closely using the Monte

Carlo approximation, the number of simulation M should be large. Here we use

M = 20, 000 sets of simulation for (uj,θj).

The full conditional density f(u,θ|y) is not in a standard form for u and

hence non-standard sampling methods such as Metropolis Hastings or Adaptive

Rejection sampling can be used. Our Gibbs output are again obtained from

WinBUGS, adopting vague prior for θ. To obtain the ML estimates using the

Monte Carlo Newton Raphson method (see section 2.4.3.4), we calculate the first

and second order derivatives of the log-likelihood function denoted by `
′
(θ; y)

and `
′′
(θ; y) respectively. See Appendix B for details. Then ML estimates are

63



updated iteratively until converge by

θ(k+1) = θ(k) − [`
′′
(θ(k); y)]−1 `

′
(θ(k); y)

where k is the number of iterations in the Newton Raphson method. Bayesian

estimates are set to be the initial values. However the standard error of σ2, is

found to be negative. One possible reason may be due to the constant variability

of the random intercepts ui across patients denoted by σ2, leading to a low stan-

dard error for σ2 and hence resulting in a very low or even a negative standard

error of σ2. The other reason may be due to the non-positive-definite for the

Hessian matrix −`′′M(θ(v); y, r,u(k)).

5.3.2 Bayesian Approach

The Bayesian hierarchy with vague priors for β, α, σ2 and u is

yit ∼ Bernoulli(py,it)

logit(py,it) = ui + βo + βd dit + βt ln t + βpvyi,t−1

rit ∼ Bernoulli(pr,it)

For t ≤ ni, logit(pr,it) = αo + αt ln t + αpsyit

For ni < 26, logit(pi,ni+1) = Ii ∗ (αo + αt ln t + αps) + (1− Ii) ∗ (α0 + αt ln t)

Ii ∼ Bernoulli(py,i,ni+1)
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logit(py,i,ni+1) = ui + βo + βd di,ni
+ βt ln(ni + 1) + βpvyi,ni

ui ∼ N(0, σ2)

βo, βd, βt, βpv, αo, αt, αps ∼ N(0, 1000000)

σ2 ∼ IG(0, 1000000)

where rit = 0 for t ≤ ni, ri,ni+1 = 1 for ni < 26 and Ii = I(yi,ni+1 = 1), the drug

use indicator during drop-out. From the Gibbs output, we discard the first 1000

observations in the burn-in period and take every 35 observations resulting in a

sample of 525 observations. The auto-correlation and history plots in appendix

C show that the sample is satisfactory.
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CHAPTER 6

RESULT

6.1 Goodness of fit

6.1.1 Introduction

In order to gain an insight of the goodness of fit of each model, we have computed

the Akaike Information Criterion (AIC) defined as

AIC = −2` + 2p (6.1)

where ` is the log-likelihood of the model and p is the number of parameters in the

model. We compute the AIC rather than the second order Akaike Information

Criterion (AICc), a second order variant of AIC (see Sakamoto et al.,1986 for

reference), defined as

AIC = −2` + 2p

(
n

n− p− 1

)
,

because our sample size n is large with respect to the number of parameters

p. Since we have adopted both the likelihood and Bayesian methods to obtain

the parameter estimates of models, we thus have to use different methods to

approximate ` so as to obtain AIC. For Bayesian inference, the computation of
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AIC requires ` which cannot be obtained from the estimation procedures as in

the classical likelihood base inference, we thus ‘approximate’ ` using some special

procedures that will be described in the following section.

On the other hand, it should be noted that we cannot directly compare the

AICs between models of different types, with and without an ID modelling, or

under ML and Bayesian approaches because these models are not in the same

hierarchy and parameter estimations are not done using the same method. In

addition, as we adopt different methods to approximate ` in order to obtain

AIC, the AICs reported serve only a reference for the goodness-of-fit of each

model therefore.

6.1.2 Procedures

6.1.2.1 Bayesian approach

Since we use the WinBUGS package to implement the models when adopting a

Bayesian approach, we have already obtained the Gibbs outputs of each models.

As the Gibbs output of each model consists of posterior sample of all iterations

after the burn-in period, we first calculate the log-likelihood function of the pos-

terior sample for each iteration. For the random intercept model with an ID
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modelling, suppose

(u1j, . . . , uIj, βoj, βdj, βtj, βpv,j, αoj, αtj, αps,j, σ
2
j )
′

are the posterior sample in the j − th iteration obtained from WinBUGS. Then,

we calculate the ‘observed data’ log-likelihood function of this sample condition

on the random effects as

`oj = ln

{
I∏

i=1

[
ni∏

t=2

(
1

1 + eζitj

)] [
ni∏

t=1

(
eyitηitj

1 + eηitj

)] [(
eζi,ni+1,1,j

1 + eζi,ni+1,1,j

)

(
eηi,ni+1,j

1 + eηi,ni+1,j

)
+

(
eζi,ni+1,0,j

1 + eζi,ni+1,0,j

) (
1

1 + eηi,ni+1,j

)]I(ni<26)


 (6.2)

where

ηitj = uij + βoj + βdj dit + βtj ln t + βpv,j yi,t−1, (6.3)

ζitj = αoj + αtj ln t + αps,j yi,t−1, , (6.4)

ζi,ni+1,h,j = αoj + αtj ln t + αps,j h, h = 0, 1. (6.5)

and repeat the calculation for each iteration j, j = 1, . . . ,M (M = 525). After

getting the ‘observed data’ conditional log-likelihood functions `oj for all itera-

tions, we approximate ` as required in the calculation of AIC in (6.1) by the

minimum of these `oj, i.e. ` ≈ minj{`oj} (see Wood, 2001 for the procedures in

the calculation of BIC for reference). The computation of AIC for the condi-

tional AR1 model and 2-group mixture model is similar to that for the random

intercept model.
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For the conditional AR1 model, the ‘observed data’ log-likelihood is the same

as (6.2) with (6.4) and (6.5) remain unchanged except

ηitj = βoj + βdj dit + βtj ln t + βpv,j yi,t−1

and the posterior sample in the j−th iteration is (βoj, βdj, βtj, βpv,j, αoj, αtj, αps,j)
′.

Regarding the 2-group mixture model, the ‘observed data’ log-likelihood is defined

as

`oj =
I∏

i=1

{
2∑

m=1

πm

[
ni∏

t=1

eyitηitkj

1 + eηitkj

]
·

ni∏

t=2

[
1

1 + eζitj

]
·
[

2∑

m=1

[
(

eζi,ni+1,1,j

1 + eζi,ni+1,1,j

)

(
eηi,ni+1,k,j

1 + eηi,ni+1,m,j

)
πkj +

(
eζi,ni+1,0,j

1 + eζi,ni+1,0,j

) (
1

1 + eηi,ni+1,m,j

)
πmj]

]I(ni<26)




where

ηitmj = βomj + βdmj dit + βtj ln t + βpv,j yi,t−1, m = 1, 2,

with (6.4) and (6.5) remain unchanged, the posterior sample in the j−th iteration

is

(βo1j, βd1j, βo2j, βd2j, βtj, βpv,j, αoj, αtj, αps,j, π1j)
′

and π2j = 1− π1j.

6.1.2.2 Likelihood approach

For the likelihood base inference, the calculation of AICs for the conditional AR1

and 2-group mixture models with ID modelling are easy because ` can be obtained
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from the estimation procedures. However, for the random intercept model with

an ID modelling, such ` cannot be easily obtained from the estimation procedures

because we only approximate the relative likelihood function
L(θ)

f(y)
instead of L(θ)

directly using the Monte Carlo approximation (see sections 2.5 and 5.4.1). As a

result, we resort to another method to approximate the log-likelihood function `.

Again, the ‘observed data’ log-likelihood function is given by (5.6) and its Monte

Carlo approximation using the idea of SML method is

`o = ln





1

M

M∑

j=1





I∏

i=1

[
ni∏

t=2

(
1

1 + eζ̂it

)] 


ni∏

t=1


 eyitη̂itj

1 + eη̂itj











 eζ̂i,ni+1,1

1 + eζ̂i,ni+1,1





 eη̂i,ni+1,j

1 + eη̂i,ni+1,j


 +


 eζ̂i,ni+1,0

1 + eζ̂i,ni+1,0




(
1

1 + eη̂i,ni+1,j

)


I(ni<26)








where

η̂itj = uj + β̂o + β̂ddit + β̂t ln t + β̂pv yi,t−1,

ζ̂it = α̂o + α̂t ln t + α̂ps yi,t−1,

ζ̂i,ni+1,h = α̂o + α̂t ln t + α̂ps h, h = 0, 1,

(β̂o, β̂d, β̂t, β̂pv, α̂o, α̂t, α̂ps, σ̂
2)′ are the maximum likelihood (ML) estimates and

uj = (u1j, . . . , uIj) are drawn from N(0, σ̂2). Then we use `o to approximate ` as

required in the calculation of AIC in (6.1).

70



6.2 Interpretation

We report results of parameter estimates and AIC values for the three types

of models using ML or Bayesian approaches with and without ID modelling, in

Tables 2-4 in Appendix A. The maximum likelihood (ML) estimates and Bayesian

estimates for the outcome and drop-out models across the three types of models

with or without an ID modelling are qualitatively the same. The results of ML

and Bayesian estimates are also comparable. Since the strength and direction of

effects for covariates in both outcome and drop-out models are consistent across

models, we will only describe the general results in the following sections.

6.2.1 On drug use

The significant dose and time effect indicate that a decrease in drug use is as-

sociated with an increase in methadone dosage and an increase in duration of

treatment. The strong and positive association between the previous and present

outcomes suggests that patients who use drug in their previous occasion are more

likely to take drugs in the following occasion. This implies some patients tend to

use drug continuously (called heavy drug-users) while others (called light drug-

users) do not. This again justifies why we propose a mixture model to account

for the group effects among patients.
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6.2.2 Comparison between models with ID and models

without ID

Comparing the results of the three types of models with and without an ID

modeling, it is found that the parameter estimates in the outcome models are

quantitatively similar. In spite of these consistent results, the incorporation of

an ID model do give us a better understanding of the effect of drop-out process

on the treatment outcome. In the drop-out models, the positive and significant

time effect tells us that drug users staying longer in the methadone maintenance

treatment (MMT) program are more likely to drop out from the program. The

significant present outcome effect indicates that patients currently using heroin

are more likely to drop out from the program. This also signifies the presence

of informative drop-out in the data set and in turn suggests the suitability of

modelling the data with an ID model. The low values of intercept in the drop-

out models, moreover, indicate that the probability of drop-out for patients is low

in general. This finding can be evidenced by the fact that only 51 (38%) patients

drop out of the MMT program before 26 weeks.

On the other hand, while most of the parameter estimates in the outcome

models with or without an ID modeling are quantitatively similar, the time effect

in models with an ID modeling is smaller than those without an ID modelling

72



by 17% in magnitude or 7% in odds on the average. This finding eliminates our

worry that the time effect of the treatment may be primarily due to the drop-out

of heavy drug users which in turn leads to a false impression that if patients

stay longer in the treatment, they will reduce drug use. Now, we still find an

significiant time effect although it is weaker after accounting for the drop-out

process of the data. This suggests patients staying longer in the program are

more likely to reduce drug use and hence serves as a support to the policy of

encouraging patients to stay longer in the MMT program.

6.2.3 Identification of patients

The significance of the variance of the random intercepts σ2 suggests the presence

of patient heterogeneity although its values differ in magnitude between the ML

and Bayesian estimates in model with an ID modelling. To gain more knowledge

on this, we classify the patients into 2 groups based on the Gibbs output of the

2-group mixture model with an ID modelling. In this classification, if the mean

of the posterior group indicators of a patient is greater than 0.5, he or she will be

classified into group 1, otherwise, group 2. There are 92 (68%) patients in group

1 returning only 89 positive heroin screens out of a total of 1951screens. Since the

dose effect is significant in this group, patients are thus mainly light to medium

(here called light) heroin users who respond to treatment in a dose-dependent

73



fashion with reduced heroin use at high methadone dose. Patients in group 2

are heavy users returning 380 positive heroin screens out of 921 screens. This

group has insignificant dose effect indicating that patients respond poor to the

treatment, with continuous heroin use regardless of the methadone dose received.

This classification can indeed help doctors know more about the patients’ habits

of drug taking, so that they can modify the MMT program to suit individual

needs.

On the other hand, if we classify patients into light heroin user group when

the mean of his/her posterior random intecepts in the Gibbs output for the ran-

dom intercept model with an ID modelling is less than or equal to 0.523, we will

obtain the same classification except patient 28. Adopting the former classifica-

tion using the 2-group mixture model, the average of the random intercepts for

those patients in the heavy user group is 0.4445 whereas it is -0.4488 for the light

user group. Results of the classification are summarised in Table 5 and group

indicators and random intercepts of all patients are listed in Table 6 in Appendix

A .
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CHAPTER 7

SIMULATION STUDY

A simulation study is carried out to study the sensitivity or robustness of the

parameters in the outcome model when data actually contains an ID process

are fitted to the conditional AR1 model, 2-group mixture model and random

intercept model with or without an ID modelling .

7.1 Procedure of simulation

We simulate a total of 60 data sets, each consisting of I= 300 heroin users from

each of the three types of models with an ID modelling and set the maximum

number ni of outcomes per patient to be 10 or 20. The total number of outcomes

without drop-out should be N = 300×10 = 3, 000 and 6000 for the maximum ni =

10 and 20 respectively. That means, we simulate 30 data sets when the maximum

ni = 10 and another 30 data sets when ni = 20. We adjust the values of the true

parameters for each type of models in order to achieve a desirable percentage of

missing outcomes as well as convergent parameter estimates. Besides, we also set

a higher percentage of missing outcomes and drop-out in order to obtain a more

detectable result.
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True parameter estimates of the conditional AR1 model with an ID mod-

elling are set to be β = (−1.5,−0.5,−0.5, 3.5) for the outcome model and

α = (−2.0, 0.1, 0.5) for the drop-out model when the maximum ni = 10. About

45% of outcomes out of totally N = 3000 possible outcomes are missing and 77%

of patients drop out when the maximum ni = 10. When the maximum ni = 20,

about 60% of outcomes out of totally N = 6000 possible outcomes are missing

and 95% of patients drop out when the maximum ni = 20.

For the 2-group mixture model with an ID modelling, the true parameter esti-

mates are set to be (βko, βkd) = (−2.5,−0.5) and (-.5,0.008) respectively for group

1 and 2 and (βt, βp) = (−0.37, 2.5) for the outcome model and α = (−5.2, 0.7, 2.2)

for the drop-out model. About 60% of outcomes are missing and 32% of patients

drop out when the maximum ni = 10. When the maximum ni = 20, about 33%

of outcomes are missing and 62% of patients drop out.

For the random intercept model with ID, the true parameter estimates are

β = (−2.3,−0.83,−0.16, 3.6) for the outcome model, α = (−4.4, 0.6687, 1.987)

for the drop-out model and σ2 = 0.05. There are about 20% of missing outcomes

and 50% of drop-out patients when the maximum ni is 10 while about 46% of

missing outcomes and 87% of drop-out patients when the maximum ni is 20. It

is obvious that the percentages of missing outcomes and drop-outs of all models
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when ni is 20 are more than those when ni is 10 because patients are more likely

to drop-out as they stay longer in treatment.

The stimulated data with an ID process are then fitted into models with or

without incorporating the drop-out model using WinBUGS package. The first

1000 observations of the Gibbs output of all models are treated as the burn-in

period. The resulting sample size of the conditional AR1 model is about 1000

while the sample sizes of the 2-group mixture and random intercept models are

both around 500. The sample sizes for the latter two models are smaller because

we set a larger sampling intervals between iterations from their Gibbs output in

order to reduce their higher autocorrelations between iterations.

7.2 Results of simulation

Results of simulation study for the three models are summarised in Tables 7-9

in Appendix A. For each type of model with and without an ID modelling, the

mean of 30 Bayesian estimates, the average of 30 standard errors (ASE) and the

mean squared error (MSE) are reported for each parameter.
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7.3 Interpretation

Regarding the conditional AR1 model, all the parameter estimates in the outcome

model, β are significant for model with or without an ID modelling. When ni is

10, three parameters namely βo, βd and βt show an improvement in MSE (smaller

MSE) in model with an ID modelling when compared with model without an

ID modelling. When ni = 20, two parameters namely βo and βt show similar

improvement in MSE. Such improvement implies that when data with an ID

process are fitted to a model without an ID modelling, the bias will be more

serious. Moreover, the improvement in MSE for βo and βt in model with an ID

modelling is greater for ni = 20 than ni = 10. This indicates that for data with

a higher percentage of missing, it is more necessary to fit it into a model with an

ID modelling.

From the mixture and random intercept models, there are more significant

parameters (βo1, βd1, βt & βpv in the mixture models and βo, βd, βt & βpv in

the random intercept models) when ni = 20 than when ni = 10. Although some

parameters of β show improvement in MSE for models with an ID modelling, we

cannot observe a general trend of effect. Moreover there is also no general trend

of greater improvement for data with a higher percentage of missing.

The lack of general trend of effects for the mixture and random intercept
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models may be due to the complexity of modelling and the small number of

simulated data set. But, due to the time constraint, the number of simulated

data set cannot be further increased. On the other hand, this simulation study

considers data with an ID process only and fits these data into models with or

without an ID modelling. Alternatively, one may repeat the study, but using data

with no ID process to evaluate the sensitivity or robustness of the parameters in

the outcome model.
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CHAPTER 8

DISCUSSION

After comparing the parameter estimates for the three types of models with or

without informative drop-out (ID) modeling, we found that they all reveal similar

information regarding the significant treatment factors that will reduce the drug

use of patients in the methadone clinic data. However since there are substantial

evidence that ID is presence, the incorporation of an ID model with the outcome

model is necessary. Models with ID modelling allow for the selective attitude

towards drop-out for the heavy drug users and avoid the illusion of ‘reduced

drug use over time’ as they gradually drop out. Moreover, it also helps us to

identify the relationship between the drop-out process and the drug taking habit

of patients.

If we compare the three types of ID models namely the conditional AR1 model,

the mixture model and the random intercept model according to the extent of

information they carried, it seems that the mixture model as well as the random

intercept model are more preferable because they allow for the population clus-

tering and heterogeneity even though they convert similar informations on drug

taking habits and drop out behaviors of patients. Both the mixture model and the
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random intercept model help us to classify patients into heavy and light drup-

user groups, members of which respond differently to methadone maintenance

treatment (MMT). Only patients in the light drug-user group respond to MMT

in a dose dependent way. Such identification of patients reveals valuable infor-

mations to doctors and help them to explore more effective and patient specific

procedures in reducing the drug use of patients under MMT.

For the simulation study, we found that generally the bias in parameter esti-

mates is more serious for models without ID modeling when the data sets actually

contain an ID process. This suggests the necessarity of incorporating an ID model

when the data contains an ID process. However, there is no significant reduction

of bias for the other two types of ID models, namely the mixture and random

intercept models. This may be because the studied models are complicate in

nature with large number of parameters. Besides, although it is easy to execute

WinBUGS for fitting models, it is also time-consuming to run it. As a result,

we cannot simulate a large number of data sets for model fitting due to time

constraint. This may also be a possible reason for obtaining the unfavourable

results in simulation. For future improvement, we recommend writing a fortran

program to execute the model fitting rather than relying on WinBUGS entirely.

For future research direction, we suggest fitting the models to data with non-
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monotone missing so as to demonstrate their power of allowing for different types

of missing pattern. On the other hand, further extension of the random intercept

model with ID can be done by adopting a more general distribution for the ran-

dom effects such as those heavy-tail distributions including Student-t and other

leptokurtic and platykurtic alternatives. This will greatly increase the applica-

bility of the models to data with different types of random effects.

Moreover, the methadone clinic data, in fact, contains two other drug uses

namely the benzodiazepine and amphetamines. Chan et al. (1997) modelled

simultaneously the logit of each type of drug use and their log odds ratio linearly in

some covariates without ID as a bivariate conditional AR1 model. The conclusion

is that while methadone maintenance is effective in reducing heroin use, it does

not suppress non-opioid drug use. A challenging extension will be to incorporate

an ID modelling to this multiple responses model to facilitate the study of multiple

drug use while controlling their possible interaction as well as an ID process in

the data.
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APPENDIX A

TABLES AND PLOTS

Table 1. Basic information for the methadone clinic data set.

Number of observation (N) 2872

Number of patient (I) 136

Number of drop-out patient (ni < 26) (ND) 51

Average number of treatment week per patient 21.1 (4 to 26)

Average dosage of methadone 64mg.

Percentage of positive heroin test 16.3%
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Table 2. Parameter estimates and s.e. (in italic) for conditional AR1 models

Model Method Intercept Dose Time Previous Present AIC

with ID β MLE -0.865 -0.00908 -0.367 2.388 3016.30
0.220 0.00282 0.067 0.120

α -11.329 2.936 0.895
0.957 0.311 0.412

with ID β Bayes -0.848 -0.00913 -0.369 2.397 2594.06
0.212 0.002818 0.062 0.122

α -6.49 0.692 2.087
0.978 0.243 0.864

without ID β MLE -0.842 -0.00884 -0.405 2.396 2090.02
0.219 0.00282 0.063 0.120

without ID β Bayes -0.834 -0.00894 -0.409 2.398 2090.22
0.227 0.00293 0.062 0.115
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Table 3. Parameter estimates and s.e. (in italic) for Mixture models

Model Method Intercept Dose Time Previous Present π AIC

with ID β1 Bayes -1.315 -0.0147 -0.373 1.556 0.647 2717.85
0.614 0.0082 0.0729 0.1367

β2 -0.233 0.0013 -0.373∗ 1.556∗

0.3109 0.0043 0.0729∗ 0.1367∗

α -6.539 0.704 2.148
0.927 0.267 0.705

without ID β1 MLE -1.173 -0.0153 -0.432 1.561 0.669 1965.53
0.517 0.0069 0.0686 0.1371

β2 -0.132 0.0010 -0.432∗ 1.561∗

0.310 0.0042 0.0686∗ 0.1371∗

without ID β1 Bayes -1.323 -0.0139 -0.424 1.565 0.659 2671.20
0.577 0.0077 0.0687 0.1401

β2 -0.1679 0.0011 -0.424∗ 1.565∗

0.2964 0.0041 0.0687∗ 0.1401∗

*Set to be the same across groups.

95



Table 4. Parameter estimates and s.e. (in italic) for Random intercepts models

Model Method Intercept Dose Time Previous Present Sigma AIC

with ID β MLE -0.671 -0.0144 -0.265 1.297 0.500 2769.99
0.033 0.000001 0.001 0.003 N.A.

α -8.768 1.341 4.235
0.655 0.204 0.315

with ID β Bayes -0.640 -0.0164 -0.351 1.410 1.839 2711.20
0.386 0.006 0.077 0.143 0.439

α -6.459 0.695 2.039
0.986 0.265 0.763

without ID β MLE -0.507 -0.0169 -0.386 1.357 1.837 2242.72
0.177 0.000072 0.053 0.503 N.A.

without ID β Bayes -0.643 -0.0156 -0.421 1.43 1.837 2189.88
0.404 0.006 0.072 0.140 0.414
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Table 5. Classification of patients in MMT

Heroin use Heavy Light Total

Gp. 2 Gp. 1

Dropout Number of patients 28 23 51

(ni < 26) Average dose 63.5 67.6 65.3

Weeks in treatment 13.4 12.5 13.0

% of positive test 42.4 4.2 25.8

average random intercepts 0.255 -0.09 0.161

Not dropout Number of patients 21 64 85

(ni = 26) Average dose 57.9 66.1 64.1

Weeks in treatment 26 26 26

% of positive test 38.6 4.6 13.0

average random intercepts 0.190 -0.356 -0.166

Total Number of patients 49 87 136

Average dose 60.2 66.3 64.4

Weeks in treatment 18.8 22.4 21.1

% of positive test 40.2 4.6 16.0

% of drop-out 57.1 26.4 37.5

average random intercepts 0.445 -0.449 -0.04
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Table 6. Information of each patient

Patient Average dose No. of obs. No. of +ve test Group indicator Random intercept

1 76.5 26 7 0.036 1.053

2 50 26 1 0.996 -0.8836

3 48 10 3 0.306 0.5778

4 48.5 10 0 0.97 -0.991

5 80 26 2 0.982 -0.07834

6 40 15 8 0.004 1.245

7 51.7 6 1 0.486 0.3312

8 60 4 4 0.002 2.118

9 43.7 26 5 0.624 0.2582

10 53.8 26 18 0 2.072

11 66.2 26 3 0.96 0.02427

12 51.9 26 0 1 -1.493

13 40 26 0 0.994 -1.576

14 82.5 14 10 0 2.299

15 79.2 26 0 1 -1.32

16 80 4 0 0.81 -0.3786

17 105.7 21 1 0.976 -0.1123

18 40 5 0 0.838 -0.5215

19 64.1 11 0 0.97 -0.9212

20 61.3 26 2 0.982 -0.3101

21 58.1 15 7 0.002 1.416

22 40 9 4 0.118 0.9635

23 65 22 10 0 1.486

24 55.9 11 4 0.164 0.8974

25 61.3 8 2 0.394 0.5104
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Patient Average dose No. of obs. No. of +ve test Group indicator Random intercept

26 79.2 26 0 1 -1.28

27 56.9 26 0 1 -1.492

28 30.6 26 6 0.206 0.369

29 62.4 26 0 1 -1.432

30 48.3 6 3 0.166 1.073

31 46.6 26 1 0.996 -0.905

32 29.4 9 4 0.156 0.799

33 45 12 1 0.904 -0.386

34 59 26 1 0.996 -0.765

35 40 26 0 0.998 -1.597

36 27 6 2 0.534 0.343

37 77.7 26 9 0 1.334

38 57.8 21 1 0.98 -0.594

39 40 26 4 0.832 -0.069

40 41.2 26 10 0.018 0.95

41 79.9 25 0 0.998 -1.131

42 69.8 12 1 0.842 -0.009

43 69.2 26 2 0.99 -0.221

44 64.8 26 0 1 -1.378

45 59.3 15 8 0 1.517

46 62.2 26 5 0.45 0.521

47 63.5 26 14 0 1.748

48 60.8 26 15 0 1.865

49 59.9 14 7 0.006 1.444

50 96.5 24 8 0 1.64
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Patient Average dose No. of obs. No. of +ve test Group indicator Random intercept

51 79.2 25 5 0.18 0.854

52 23.5 13 0 0.962 -1.291

53 62.8 26 0 1 -1.391

54 69.6 26 0 0.998 -1.294

55 44 26 0 1 -1.532

56 54.4 26 1 0.992 -0.767

57 81.5 26 2 0.984 -0.026

58 37.7 26 8 0.104 0.701

59 72.5 26 0 1 -1.317

60 51 26 0 0.998 -1.585

61 56.5 10 3 0.174 0.83

62 43.1 26 11 0.004 1.101

63 120 12 1 0.874 0.32

64 100 18 0 0.996 -0.858

65 53.1 26 2 0.988 -0.383

66 93.5 26 11 0 1.82

67 60 10 0 0.958 -0.874

68 45.5 26 0 1 -1.548

69 100 26 1 1 -0.314

70 69.6 26 0 1 -1.342

71 70.4 12 6 0.004 1.475

72 77.7 26 5 0.388 0.742

73 80 26 1 0.998 -0.531

74 67.3 26 0 1 -1.361

75 55.8 26 7 0.16 0.68
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Patient Average dose No. of obs. No. of +ve test Group indicator Random intercept

76 83.1 26 3 0.91 0.244

77 78.5 26 1 0.998 -0.611

78 100 26 1 0.996 -0.313

79 50 26 3 0.94 -0.116

80 120 7 3 0.014 1.8

81 53.1 13 5 0.066 1.052

82 30 26 5 0.72 -0.003

83 51.9 26 5 0.596 0.358

84 70 5 0 0.846 -0.574

85 96.9 26 1 1 -0.402

86 40 6 0 0.88 -0.735

87 36.2 17 4 0.462 0.391

88 73.7 26 2 0.984 -0.128

89 43 15 8 0.016 1.308

90 75 26 1 1 -0.531

91 65 26 0 1 -1.402

92 100 17 11 0 2.431

93 61.3 26 0 1 -1.428

94 38.3 26 12 0.006 1.162

95 40 26 0 1 -1.569

96 58.5 26 1 0.996 -0.803

97 59.8 26 0 1 -1.454

98 81.3 26 1 0.988 -0.504

99 70 26 0 1 -1.364

100 80.2 26 1 0.994 -0.649
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Patient Average dose No. of obs. No. of +ve test Group indicator Random intercept

101 50.8 26 2 0.968 -0.396

102 90 8 0 0.938 -0.554

103 66.5 26 1 0.998 -0.77

104 30.8 26 9 0.12 0.626

105 50.4 10 5 0.024 1.252

106 77.7 26 2 0.976 -0.087

107 76.7 26 0 0.998 -1.24

108 120 4 0 0.782 -0.183

109 74.4 26 5 0.398 0.676

110 75.8 26 1 0.998 -0.605

111 40 10 3 0.384 0.523

112 99 26 0 1 -1.135

113 25.1 18 3 0.706 -0.095

114 50.4 26 6 0.334 0.518

115 53.5 13 2 0.714 0.081

116 81 26 3 0.9 0.321

117 65.6 18 0 0.998 -1.096

118 60 26 3 0.948 -0.002

119 90 26 0 1 -1.174

120 83.7 26 2 0.974 -0.007

121 61.2 26 13 0 1.649

122 38.3 26 3 0.93 -0.293

123 42.3 26 17 0 1.872

124 89.6 26 21 0 3.005

125 70.6 16 10 0 2.002
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Patient Average dose No. of obs. No. of +ve test Group indicator Random intercept

126 48.1 26 0 1 -1.539

127 66.9 26 1 0.998 -0.667

128 68.8 26 0 1 -1.309

129 90 24 0 0.998 -1.02

130 90 26 2 0.966 0.024

131 80 17 9 0 1.847

132 28.2 11 0 0.964 -1.105

133 60 26 4 0.796 0.213

134 58.3 24 4 0.404 0.534

135 99.6 26 0 0.998 -1.096

136 54.6 26 12 0 1.378
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APPENDIX B

FIRST AND SECOND ORDER

DERIVATIVES

1. For the conditional AR1 model with ID, the first order derivatives are:

`′βk
=

I∑

i=1

(p′βk,y,i + p−1
yr,i Ii p′βk,yr,i)

`′αk
=

I∑

i=1

(p′αk,r,i + p−1
yr,i Ii p′αk,yr,i)

and the second order derivatives are:

`
′′
βk1

βk2
=

I∑

i=1

[p′′βk1
,βk2

,y,i + pyr,i
−2 Ii(p

′′
βk1

,βk2
,yr,i pyr,i − p′βk1

,yr,i p′βk2
,yr,i)]

`
′′
αk1

αk2
=

I∑

i=1

[p′′αk1
,αk2

,r,i + pyr,i
−2 Ii(p

′′
αk1

,αk2
,yr,i pyr,i − p′αk1

,yr,i p′αk2
,yr,i)]

`
′′
βk1

αk2
=

I∑

i=1

pyr,i
−2 Ii(p

′′
βk1

,αk2
,yr,i pyr,i − p′βk1

,r,i p′αk2
,yr,i)

where for i = 1, . . . I (I = 136); t = 1, . . . , ni and k, k1, k2 = 1, . . . , p (p = 4 for

the outcome model) or k, k1, k2 = 1, . . . , q (q = 3 for the drop-out model);

the design matrix for the outcome model is (x′11,x
′
12, . . . , x

′
I,nI

)′, xit = (1, dit, ln t, yi,t−1);

the design matrix for the dropout model is (z′11,z
′
12, . . . , z

′
I,nI

)′, zit = (1, ln t, yit);

Ii = I(ni < 26),

zi,ni+1,k1 = 1, zi,ni+1,k0 = 0 for k = 3 and zi,ni+1,j1 = zi,ni+1,j0 = zi,ni,j otherwise,
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µit =
eηit

1 + eηit
, µ′it = µit(1− µit) =

eηit

(1 + eηit)2 , µ′′it = µit(1− µit)(1− 2µit) =
eηit(1− eηit)

(1 + eηit)3 ;

νit =
eζit

1 + eζit
, ν ′it = νit(1− νit) =

eζit

(1 + eζit)2 , ν ′′it = νit(1− νit)(1− 2νit) =
eζit(1− eζit)

(1 + eζit)3 ;

νi,ni+1,h, ν ′i,ni+1,h & ν ′′i,ni+1,h are similarly defined based on ζi,ni+1,1 & ζi,ni+1,0, h = 0, 1;

p′βk,y,i =
ni∑

t=1

xitk(yit − µit); p′′βk1
,βk2

,y,i = −
ni∑

t=1

xitk1 xitk2 µ′it;

p′αk,r,i = −
ni∑

t=2

zitk νit; p′′αk1
,αk2

,r,i = −
ni∑

t=2

zitk1 zitk2 ν ′it;

pyr,i = µi,ni+1νi,ni+1,1 + (1− µi,ni+1)νi,ni+1,0;

p′βk,yr,i = xi,ni+1,k µ′i,ni+1(νi,ni+1,1 − νi,ni+1,0);

p′αk,yr,i = µi,ni+1 zi,ni+1,k1 ν ′i,ni+1,1 + (1− µi,ni+1) zi,ni+1,k0 ν ′i,ni+1,0;

p′′βk1
,βk2

,yr,i = xi,ni+1,k1 xi,ni+1,k2 µ′′i,ni+1 (νi,ni+1,1 − νi,ni+1,0);

p′′αk1
,αk2

,yr,i = µi,ni+1 zi,ni+1,k1,1 zi,ni+1,k2,1 ν ′′i,ni+1,1 +

(1− µi,ni+1) zi,ni+1,k1,0 zi,ni+1,k2,0 ν ′′i,ni+1,0;

p′′βk1
,αk2

,yr,i = xi,ni+1,k1µ
′
i,ni+1 (zi,ni+1,k2,1 ν ′i,ni+1,1 − zi,ni+1,k2,0 ν ′i,ni+1,0).

2. For the mixture model with ID, we adopt a m = 2 group mixture with a group

specific intercept and dose coefficients while the time in treatment and previous

outcome effects are fixed across groups. The first order derivatives are:

`′βm1,k
=

I∑

i=1

py,i
−1

(
2∑

m=1

fm1,k,m πm py,im p′βk,y,im

)
+

I∑

i=1

Ii pyr,i
−1

(
2∑

m=1

fm1,k,m πm p′βk,yr,im

)

`′αk
=

I∑

i=1

p′αk,r,i +
I∑

i=1

Ii pyr,i
−1

(
2∑

m=1

πm p′αk,yr,im

)
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`′π1
=

I∑

i=1

py,i
−1

(
2∑

m=1

hm py,im

)
+

I∑

i=1

Ii pyr,i
−1

(
2∑

m=1

hm pyr,i

)

and the second order derivatives are:

`
′′
βm1,k1

βm2,k2
=

I∑

i=1

{
py,i

−2

[
py,i

(
2∑

m=1

fm1,k1,mfm2,k2,mπmpy,im(p′′βk1
,βk2

,y,im + p′βk1
,y,im p′βk2

,y,im)

)

−
(

2∑

m=1

fm1,k1,m πm py,im p′βk1
,y,im

) (
2∑

m=1

fm2,k2,m πm py,im p′βk2
,y,im

)]}

+
I∑

i=1

{
Ii pyr,i

−2

[
pyr,i

(
2∑

m=1

fm1,k1,m fm2,k2,m πm p′′βk1
,βk2

,yr,im

)
−

(
2∑

m=1

fm1,k1,m πm p′βk1
,yr,im

) (
2∑

m=1

fm2,k2,m πm p′βk2
,yr,im

)] }

`
′′
αk1

αk2
=

I∑

i=1

p′′αk1
,αk2

,r,i +
I∑

i=1

{
Ii pyr,i

−2

[
pyr,i

(
2∑

m=1

πm p′′αk1
,αk2

,yr,im

)
−

(
2∑

m=1

πm p′αk1
,yr,im

) (
2∑

m=1

πm p′αk2
,yr,im

)]}

`
′′
βm1,k1

αk2
=

I∑

i=1

{
Ii pyr,i

−2

[
pyr,i

(
2∑

m=1

fm1,k1,m πm p′′βk1
αk2

,yr,im

)
−

(
2∑

m=1

fm1,k1,m πm p′βk1
,yr,im

) (
2∑

m=1

πm p′αk2
,yr,im

)]}

`
′′
βm1,kπ1

=
I∑

i=1

{
py,i

−2

[
py,i

(
2∑

m=1

fm1,k,m hm py,im p′βk,y,im

)
−

(
2∑

m=1

fm1,k1,m πm py,im p′βk,y,im

)

(
2∑

m=1

hm py,im

)]}
+

I∑

i=1

{
Ii pyr,i

−2

[
pyr,i

(
2∑

m=1

fm1,k,m hm µ′i,ni+1,m

)
−

(
2∑

m=1

fm1,k,m hm µ′i,ni+1,m

) (
2∑

m=1

hm pyr,im

)]}

`
′′
αk,π1

=
I∑

i=1

{
Ii pyr,im

−2

[
pyr,i

(
2∑

m=1

hm p′αk,yr,im

)
−

(
2∑

m=1

πm p′αk,yr,im

) (
2∑

m=1

hm pyr,im

)]}

`
′′
π1π1

= −
I∑

i=1

py,i
−2

(
2∑

m=1

hm py,im

)2

−
I∑

i=1

Ii pyr,i
−2

(
2∑

m=1

hm pyr,im

)2

109



where i = 1, . . . I; t = 1, . . . , ni; m,m1,m2 = 1, 2;

fm1,k,m = I(m = m1 or k = 3, 4); h1 = 1, h2 = −1;

µitm, µ′itm, µ′′itm are similarly defined as in conditional AR1 model for group m;

νit, ν ′it, ν ′′it and zi,ni+1,kh, νi,ni+1,h, ν ′i,ni+1,h, ν ′′i,ni+1,h, h = 0, 1 are also similarly defined;

py,i =
2∑

m=1

πm

[
ni∏

t=1

µitm
yit(1− µitm)1−yit

]
=

2∑

m=1

πm py,im;

p′βk,y,im =
ni∑

t=1

xitk (yit − µitm);

p′′βk1
,βk2

,y,im = −
ni∑

t=1

xitk1 xitk2 µitm(1− µitm).

p′αk,r,i = −
ni∑

t=2

zitk νit; p′′αk1
,αk2

,r,i = −
ni∑

t=2

zitk1 zitk2 ν ′it;

pyr,i =
2∑

m=1

πm [µi,ni+1,m νi,ni+1,1 + (1− µi,ni+1,m) νi,ni+1,0] =
2∑

m=1

πm pyr,im,

p′βk,yr,im = xi,ni+1,k µ′i,ni+1,m(νi,ni+1,1 − νi,ni+1,0);

p′αk,yr,im = µi,ni+1,m zi,ni+1,k1 ν ′i,ni+1,1 + (1− µi,ni+1,m) zi,ni+1,k0 ν ′i,ni+1,0;

p′′βk1
,βk2

,yr,im = xi,ni+1,k1 xi,ni+1,k2 µ′′i,ni+1,m (νi,ni+1,1 − νi,ni+1,0);

p′′αk1
,αk2

,yr,im = µi,ni+1,m zi,ni+1,k1,1 zi,ni+1,k2,1 ν ′′i,ni+1,1 +

(1− µi,ni+1,m) zi,ni+1,k1,0 zi,ni+1,k2,0 ν ′′i,ni+1,0;

p′′βk1
,αk2

,yr,im = xi,ni+1,k1 µ′i,ni+1,m (zi,ni+1,k2,1 ν ′i,ni+1,1 − zi,ni+1,k2,0 ν ′i,ni+1,0).
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3. For the random intercept model, we assign a normal distribution to the random

intercept term of each patient. The first order derivatives are:

`′βk
= (L−1

q )
1

M

M∑

j=1

Lq,j

[
I∑

i=1

(p′βk,y,i,j + pyr,i,j
−1 Ii p′βk,yr,i,j)

]

`′αk
= (L−1

q )
1

M

M∑

j=1

Lq,j

[
I∑

i=1

(p′αk,r,i,j + pyr,i,j
−1 Ii p′αk,yr,i,j)

]

`′ln σ2 = (L−1
q )

1

M

M∑

j=1

Lq,j

[
I∑

i=1

φ′ln σ2,ij

]

and the second derivatives are:

`
′′
βk1

βk2
= L−2

q



Lq





1

M

M∑

j=1

{
Lq,j

[
[

I∑

i=1

[p′′βk1
,βk2

,y,i,j+

pyr,i,j
−2 Ii(p

′′
βk1

,βk2
,yr,i,j pyr,i,j − p′βk1

,yr,i,j p′βk2
,yr,i,j)]] +

[
I∑

i=1

(p′βk1
,y,i,j + pyr,i,j

−1 Ii p′βk1
,yr,i,j)][

I∑

i=1

(p′βk2
,y,i,j + pyr,i,j

−1 Ii p′βk2
,yr,i,j)]

}
−





1

M

M∑

j=1

Lq,j

[
I∑

i=1

(p′βk1
,y,i,j + pyr,i,j

−1 Ii p′βk1
,yr,i,j)

]







1

M

M∑

j=1

Lq,j

[
I∑

i=1

(p′βk2
,y,i,j + pyr,i,j

−1 Ii p′βk2
,yr,i,j)

]







`
′′
αk1

αk2
= L−2

q



Lq





1

M

M∑

j=1

{
Lq,j

[
[

I∑

i=1

[p′′αk1
,αk2

,y,i,j+

pyr,i,j
−2 Ii(p

′′
αk1

,αk2
,yr,i,j pyr,i,j − p′αk1

,yr,i,j p′αk2
,yr,i,j)]] +

[
I∑

i=1

(p′αk1
,r,i,j + pyr,i,j

−1 Ii p′αk1
,yr,i,j)][

I∑

i=1

(p′αk2
,r,i,j + pyr,i,j

−1 Ii p′αk2
,yr,i,j)]

}
−





1

M

M∑

j=1

Lq,j

[
I∑

i=1

(p′αk1
,r,i,j + pyr,i,j

−1 Ii p′αk1
,yr,i,j)

]







1

M

M∑

j=1

Lq,j

[
I∑

i=1

(p′αk2
,r,i,j + pyr,i,j

−1 Ii p′αk2
,yr,i,j)

]
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`
′′
βk1

αk2
=

I∑

i=1

pyr,i
−2 Ii(p

′′
βk1

,αk2
,yr,i,j pyr,i,j − p′βk1

,r,i,j p′αk2
,yr,i,j)

`
′′
αk1

βk2
= L−2

q



Lq





1

M

M∑

j=1

{
Lq,j

[
[

I∑

i=1

pyr,i,j
−2 Ii

(p′′βk1
,αk2

,yr,i,j pyr,i,j − p′βk1
,r,i,j p′αk2

,yr,i,j)] +

[
I∑

i=1

(p′αk1
,r,i,j + pyr,i,j

−1 Ii p′αk1
,yr,i,j)][

I∑

i=1

(p′βk2
,y,i,j + pyr,i,j

−1 Ii p′βk2
,yr,i,j)]

]}}
−





1

M

M∑

j=1

Lq,j

[
I∑

i=1

(p′αk1
,r,i,j + pyr,i,j

−1 Ii p′αk1
,yr,i,j)

]







1

M

M∑

j=1

Lq,j

[
I∑

i=1

(p′βk2
,y,i,j + pyr,i,j

−1 Ii p′βk2
,yr,i,j)

]







`
′′
(ln σ2)2 = L−2

q



Lq





1

M

M∑

j=1

{
Lq,j

[
[

I∑

i=1

φ′′(ln σ2)2,ij] + [
I∑

i=1

φ′ln σ2,ij]
2
]}
−





1

M

M∑

j=1

Lq,j

[
I∑

i=1

φ′ln σ2,ij

]



2




`
′′
ln σ2βk

= L−2
q



Lq





1

M

M∑

j=1

{
Lq,j[

I∑

i=1

φ′ln σ2,ij][
I∑

i=1

(p′βk,y,i,j + pyr,i,j
−1 Ii p′βk,yr,i,j)]

}

 −





1

M

M∑

j=1

Lq,j

[
I∑

i=1

φ′ln σ2,ij

]







1

M

M∑

j=1

Lq,j

[
I∑

i=1

(p′βk,y,i,j + pyr,i,j
−1 Ii p′βk,yr,i,j)

]







`
′′
ln σ2αk

= L−2
q



Lq





1

M

M∑

j=1

{
Lq,j[

I∑

i=1

φ′ln σ2,ij][
I∑

i=1

(p′αk,r,i,j + pyr,i,j
−1 Ii p′αk,yr,i,j)]

}

 −





1

M

M∑

j=1

Lq,j

[
I∑

i=1

φ′ln σ2,ij

]







1

M

M∑

j=1

Lq,j

[
I∑

i=1

(p′αk,r,i,j + pyr,i,j
−1 Ii p′αk,yr,i,j)

]







where i = 1, . . . I, t = 1, . . . , ni, j = 1, . . .M and k, k1, k2 = 1, . . . , p (p = 4

for the outcome model) or k, k1, k2 = 1, . . . , q (q = 3 for the drop-out model)

respectively,

(u∗1j, u
∗
2j, . . . , u

∗
Ij, β

∗
oj, β

∗
dj, β

∗
tj, β

∗
pvj, α

∗
oj, α

∗
tj, α

∗
ps,j, σ

∗2
j )′ are drawn fromf(u,θ|y)
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for each simulation j;

µitj =
eηitj

1 + eηitj
; ηitj = u∗ij + βo + βddit + βt ln t + βpv yi,t−1;

µ∗itj =
eη∗itj

1 + eη∗itj
; η∗itj = u∗ij + β∗oj + β∗djdit + β∗tj ln t + β∗pv,j yi,t−1;

µ′itj, µ′′itj are similarly defined as in conditional AR1 model;

νit =
eζit

1 + eζit
; ζit = αo + αt ln t + αps yit;

ν∗itj =
eζ∗itj

1 + eζ∗itj
; ζ∗itj = α∗oj + α∗tj ln t + α∗ps,j yit;

ν ′it, ν ′′it and zi,ni+1,kh, ν
′
i,ni+1,h, ν ′′i,ni+1,h, h = 1, 0 are also similarly defined;

py,i,j =
ni∏

t=1

µitj
yit(1− µitj)

1−yit ;

pr,i =
ni∏

t=2

(1− νit);

pyr,i,j = µi,ni+1,j νi,ni+1,1,j + (1− µi,ni+1,j) νi,ni+1,0,j;

φij = (2πeln σ2

)−
1
2 exp

(
− u∗ij

2

2eln σ2

)
;

p′βk,y,i,j =
∂ ln py,i,j

∂βk

=
ni∑

t=1

xitk(yit − µitj);

p′′βk1
βk2

,y,i,j =
ni∑

t=1

(−xitk1xitk2µ
′
itj);

p′αk,r,i,j =
∂ ln pr,i,j

∂αk

=
ni∑

t=2

(−zitk νitj);

p′′αk1
αk2

,r,i,j =
ni∑

t=2

(−zitk1zitk2 ν ′itj);

p′βk,yr,i,j = xi,ni+1,k µ′i,ni+1,j(νi,ni+1,1,j − νi,ni+1,0,j);

p′αk,yr,i,j = µi,ni+1,j zi,ni+1,k,1 ν ′i,ni+1,1,j + (1− µi,ni+1,j) zi,ni+1,k,0 ν ′i,ni+1,0,j;

p′′βk1
,βk2

,yr,i,j = xi,ni+1,k1 xi,ni+1,k2 µ′′i,ni+1,j (νi,ni+1,1,j − νi,ni+1,0,j);
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p′′αk1
,αk2

,yr,i,j = µi,ni+1,j zi,ni+1,k1,1 zi,ni+1,k2,1 ν ′′i,ni+1,1,j +

(1− µi,ni+1,j) zi,ni+1,k1,0 zi,ni+1,k2,0 ν ′′i,ni+1,0,j;

p′′βj1
,αj2

,yr,ik = xi,ni+1,k1 µ′i,ni+1,j (zi,ni+1,k2,1 ν ′i,ni+1,1,j − zi,ni+1,k2,0 ν ′i,ni+1,0,j);

φ′ln σ2,ij =
∂ ln φln σ2,ij

∂ ln σ2
=

1

2

(
u∗ij

2

σ2
− 1

)
;

φ′′(ln σ2)2,ij = −1

2

u∗ij
2

σ2
;

Lq,j =
I∏

i=1

py,i,j pr,i pyr,i,j φij

py,i,j
∗ pr,i,j

∗ pyr,i,j
∗ φij

∗ ;

Lq =
1

M

M∑

j=1

[
I∏

i=1

py,i,j pr,i pyr,i,j φij

py,i,j
∗ pr,i,j

∗ pyr,i,j
∗ φij

∗

]
;

py,i,j
∗, pr,i,j

∗ are defined similarly as py,i,j, pr,i using µ∗itj and ν∗itj respectively;

pyr,i,j
∗ are defined similarly as pyr,i,j using µ∗i,ni+1,j and ν∗i,ni+1,j;

φij
∗ = (2πeln σ∗2)−

1
2 exp

(
− u∗ij

2

2eln σ∗2

)
;
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APPENDIX C

WINBUGS PROGRAMS

Conditional AR1 model with ID:
model

{ for (i in 1:N) {
y[i] ~ dbern(py[i])
logit(py[i]) <- beta0 + betad*dose[i] + betat*lnt[i] + betap*prev[i]
lnt[i] <- log(time[i])

}

beta0 ~ dnorm(0.0, 0.000001)
betad ~ dnorm(0.0, 0.000001)
betat ~ dnorm(0.0, 0.000001)
betap ~ dnorm(0.0, 0.000001)
alpha0 ~ dnorm(0.0, 0.000001)
alphat ~ dnorm(0.0, 0.000001)
alphap ~ dnorm(0.0, 0.000001)

for (i in 1:NR) {
d0[i] <- 0
d0[i] ~ dbern(pd0[i])
logit(pd0[i]) <- alpha0 + alphat*lntd[i] + alphap*yd[i]
lntd[i] <- log(timed[i])

}

for (i in 1:R) {
d1[i] <- 1
d1[i] ~ dbern(pd1[i])
logit(pd1[i]) <- indy1[i]*xalpha1[i] + (1-indy1[i])*xalpha0[i]
xalpha0[i] <- alpha0 + alphat*lnty1[i]
xalpha1[i] <- alpha0 + alphat*lnty1[i] + alphap
lnty1[i] <- log(timey1[i]+1)

indy1[i] ~ dbern(py1[i])
logit(py1[i]) <- beta0 + betad*dosey1[i] + betat*lnty1[i] + betap*y1[i]

}
}
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2-group mixture model with ID
model

{ for (i in 1:N) {
y[i] ~ dbern(py[i])
logit(py[i]) <- indg[pat[i]]*xbeta1[i] + (1-indg[pat[i]])*xbeta2[i]
xbeta1[i] <- beta01 + betad1*dose[i] + betat*lnt[i] + betap*prev[i]
xbeta2[i] <- beta02 + betad2*dose[i] + betat*lnt[i] + betap*prev[i]
lnt[i] <- log(time[i])

}

beta01 ~ dnorm(0.0, 0.000001)
beta02 ~ dnorm(0.0, 0.000001)
betad1 ~ dnorm(0.0, 0.000001)
betad2 ~ dnorm(0.0, 0.000001)
betat ~ dnorm(0.0, 0.000001)
betap ~ dnorm(0.0, 0.000001)
alpha0 ~ dnorm(0.0, 0.000001)
alphat ~ dnorm(0.0, 0.000001)
alphap ~ dnorm(0.0, 0.000001)

pg ~ dunif(0,1)

for (i in 1:T) {
indg[i] ~ dbern(pg)

}

for (i in 1:NR) {
d0[i] <- 0
d0[i] ~ dbern(pd0[i])
logit(pd0[i]) <- alpha0 + alphat*lntd[i] + alphap*yd[i]
lntd[i] <- log(timed[i])

}

for (i in 1:R) {
d1[i] <- 1
d1[i] ~ dbern(pd1[i])
logit(pd1[i]) <- indy1[i]*xalpha1[i] + (1-indy1[i])*xalpha0[i]
xalpha0[i] <- alpha0 + alphat*lnty1[i]
xalpha1[i] <- alpha0 + alphat*lnty1[i] + alphap
lnty1[i] <- log(timey1[i]+1)

indy1[i] ~ dbern(py1[i])
logit(py1[i]) <- indg[paty1[i]]*xbetay11[i] + (1-indg[paty1[i]])*xbetay12[i]
xbetay11[i] <- beta01 + betad1*dosey1[i] + betat*lnty1[i] + betap*y1[i]
xbetay12[i] <- beta02 + betad2*dosey1[i] + betat*lnty1[i] + betap*y1[i]

}
}
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Random intercept model with ID
model

{ for (i in 1:N) {
y[i] ~ dbern(p[i])
logit(p[i]) <- beta0 + betad*dose[i] + betat*lnt[i] + betap*prev[i] + beta0r[pat[i]]
lnt[i] <- log(time[i])

}

beta0 ~ dnorm(0.0,0.000001)
betad ~ dnorm(0.0, 0.000001)
betat ~ dnorm(0.0,0.000001)
betap ~ dnorm(0.0, 0.000001)

alpha0 ~ dnorm(0.0, 0.000001)
alphat ~ dnorm(0.0, 0.000001)
alphap ~ dnorm(0.0, 0.000001)

tau0r ~ dgamma(0.001,0.001)
sig0r <- 1/tau0r

for (i in 1:T) {
beta0r[i] ~ dnorm(0.0,tau0r)

}

for (i in 1:NR) {
d0[i] <- 0
d0[i] ~ dbern(pd0[i])
logit(pd0[i]) <- alpha0 + alphat*lntd[i] + alphap*yd[i]
lntd[i] <- log(timed[i])

}

for (i in 1:R) {
d1[i] <- 1
d1[i] ~ dbern(pd1[i])
logit(pd1[i]) <- (1-indy1[i])*xalpha0[i] + indy1[i]*xalpha1[i]
xalpha0[i] <- alpha0 + alphat*lnty1[i]
xalpha1[i] <- alpha0 + alphat*lnty1[i] + alphap
lnty1[i] <- log(timey1[i]+1)

indy1[i] ~ dbern(py1[i])
logit(py1[i]) <- beta0 + betad*dosey1[i] + betat*lnty1[i] + betap*y1[i] + beta0r[paty1[i]]

}
}
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APPENDIX D

AUTO-CORRELATION FUNCTIONS AND

HISTORY PLOTS

Conditional AR1 model with ID

Autocorrelation function

alpha0

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

alphat

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

alphap

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta0

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

betad

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

betat

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

betap

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0
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History plots

beta0

iteration
1001 2500 5000 7500 10000

   -1.5

   -1.0

   -0.5

    0.0

betad

iteration
1001 2500 5000 7500 10000

  -0.02

 -0.015

  -0.01

 -0.005

1.73472E-18

betat

iteration
1001 2500 5000 7500 10000

   -0.6

   -0.5

   -0.4

   -0.3

   -0.2

   -0.1

betap

iteration
1001 2500 5000 7500 10000

    1.8

    2.0

    2.2

    2.4

    2.6

    2.8
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alpha0

iteration
1001 2500 5000 7500 10000

  -10.0

   -8.0

   -6.0

   -4.0

alphat

iteration
1001 2500 5000 7500 10000

    0.0

    0.5

    1.0

    1.5

alphap

iteration
1001 2500 5000 7500 10000

   -2.0

    0.0

    2.0

    4.0

    6.0
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2-group mixture model with ID

Autocorrelation function

alpha0

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

alphap

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

alphat

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta01

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta02

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

betad1

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

betad2

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

betat

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

betap

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0
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History plots

beta01

iteration
1001 5000 10000 15000 20000

   -6.0

   -4.0

   -2.0

    0.0

    2.0

beta02

iteration
1001 5000 10000 15000 20000

   -1.5

   -1.0

   -0.5

    0.0

    0.5

    1.0

betad1

iteration
1001 5000 10000 15000 20000

  -0.04

  -0.02

    0.0

   0.02

betad2

iteration
1001 5000 10000 15000 20000

  -0.02

  -0.01

    0.0

   0.01

   0.02
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betat

iteration
1001 5000 10000 15000 20000

   -0.8

   -0.6

   -0.4

   -0.2

-5.55112E-17

betap

iteration
1001 5000 10000 15000 20000

    1.2

    1.4

    1.6

    1.8

    2.0

alpha0

iteration
1001 5000 10000 15000 20000

  -10.0

   -8.0

   -6.0

   -4.0

alphat

iteration
1001 5000 10000 15000 20000

    0.0

    0.5

    1.0

    1.5

    2.0

alphap

iteration
1001 5000 10000 15000 20000

   -2.0

    0.0

    2.0

    4.0

    6.0
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Random intercept model with ID

Autocorrelation function

alpha0

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

alphap

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

alphat

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

beta0

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

betad

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

betat

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

betap

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0

sig0r

lag
0 20 40

   -1.0
   -0.5
    0.0
    0.5
    1.0
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History plots

beta0

iteration
1001 10000 20000

   -2.0

   -1.0

    0.0

    1.0

betad

iteration
1001 10000 20000

  -0.04

  -0.03

  -0.02

  -0.01

3.46945E-18

   0.01

betat

iteration
1001 10000 20000

   -0.8

   -0.6

   -0.4

   -0.2

-5.55112E-17

betap

iteration
1001 10000 20000

   0.75

    1.0

   1.25

    1.5

   1.75

    2.0
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alpha0

iteration
1001 10000 20000

  -12.0

  -10.0

   -8.0

   -6.0

   -4.0

   -2.0

alphap

iteration
1001 10000 20000

   -2.0

    0.0

    2.0

    4.0

    6.0

alphat

iteration
1001 10000 20000

    0.0

    0.5

    1.0

    1.5

    2.0

sig0r

iteration
1001 10000 20000

    0.0

    1.0

    2.0

    3.0

    4.0
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