
Extensions of Poisson Geometric Process
Model with Applications

WAI-YIN WAN

A thesis submitted in fulfillment of
the requirements for the degree of

Doctor of Philosophy

School of Mathematics and Statistics
The University of Sydney

August 2010



Abstract

The modelling of longitudinal and panel count data has a rich history.

Despite the well-established time series count models, we seek a new direc-

tion to study panel and multivariate longitudinal count data with different

characteristics.

We extend the Poisson geometric process (PGP) model introduced by

Wan (2006) in the modelling of non-monotone trend for time series of

counts. The PGP model is developed from the geometric process (GP)

model pioneered by Lam (1988a) and Lam (1988b) to study positive con-

tinuous data with monotone trend. Lam (1988a) and Lam (1988b) states

that a stochastic process (SP) {Xt, t = 1, 2, . . . } is a GP if there exists a

positive real number a > 0 such that {Yt = at−1Xt} generates a renewal

process (RP) with mean E(Yt) = µ and variance V ar(Yt) = σ2 where a is

the ratio of the GP.

Under the GP framework, the PGP model assumes that the countWt, t =

1, . . . , n follows a Poisson distribution with meanXt where {Xt, t = 1, . . . , n}
forms a latent GP and the corresponding SP {Yt} follows some lifetime dis-

tributions with E(Yt) = µt and V ar(Yt) = σ2
t . The PGP model focuses

on the modelling of the latent stationary SP instead of the latent GP and

separates the effects on trend movement from the effects on the underly-

ing system (SP) that generates the GP by individually modelling the ratio

and the mean of the SP. This merit of the model enhances its applicability
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in analyzing longitudinal and panel count data with non-monotone trends,

overdispersion and cluster effects.

In view of other prominent characteristics including presence of excess

zeros or outliers, diverse degrees of dispersion and serial correlation be-

tween observations, we extend the PGP model to take into account all these

problems in turn by adopting different distributions for {Yt}, replacing the

Poisson data distribution with generalized Poisson distribution with more

flexible dispersion structure and incorporating some past observations as

time-evolving covariates in the mean link function. Moreover, concern-

ing the lack of literature in the modelling of multivariate longitudinal count

data, we consider a multivariate version of the PGP model to cope with con-

temporaneous correlation and cross correlation between time series on top

of the other characteristics.

For statistical inference, these extended models are implemented using

Markov chain Monte Carlo (MCMC) algorithms to avoid the evaluation of

complicated likelihood functions and their derivatives which may involve

high-dimensional integration. To demonstrate the properties and applica-

bilities of these models, a series of simulation studies and real data analyses

are conducted. All in all, the extended PGP models taken into account all

the pronounced characteristics of time series of counts are shown to provide

satisfactory performance in both simulation studies and real data analyses.

They certainly can become competitive alternatives to the traditional time

series count models in the future.



Declaration

I declare that this thesis represents my own work, except where due

acknowledgement is made, and that it has not been previously included in

a thesis, dissertation or report submitted to this University or to any other

institution for a degree, diploma or other qualifications.

Signed

Wai Yin WAN

iii



Acknowledgements

First and foremost, I owe my deepest and sincere gratitude to my pri-

mary supervisor, Dr. Jennifer S. K. Chan, at the School of Mathematics and

Statistics, The University of Sydney. Her rich intellect, inspiration, enor-

mous guidance and intimate encouragement have provided a good basis for

the present thesis. She has been a role model in her diligence in research,

enthusiasm in teaching and ingenuity of ideas, to a mediocre student who

left her family to go abroad and sometimes loses the direction in midst of

difficulties. Secondly, I would also like to thank my associate supervisor,

Dr. Boris Choy who has perpetual energy and enthusiasm in research. His

insights and innovative ideas motivate me and broadens my perspective on

future career development. Moreover, it is a pleasure to thank Prof. Neville

Weber, my second associate supervisor, who offers me the opportunity to

start my research degree in this renowned University and all the friends and

staff in the School for their cares and support. Without any of them, I would

not have such wonderful experiences.

Above all, I am indebted to my family and boyfriend for always sup-

porting me unceasingly and encouraging me to move on and I would also

like to thank God to equip me with the mathematical ability to study sta-

tistics. Their endless love and support have been invaluable in helping me

to focus on my academic pursuits. Without them, I would not have had the

courage to complete this thesis.

iv



CONTENTS

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Declaration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Chapter 1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Overview of longitudinal count models . . . . . . . . . . . . . . . . . . . . 4

1.3. Overview of geometric process models . . . . . . . . . . . . . . . . . . . . . 11

1.4. Statistical inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.5. Objective and structure of thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

Chapter 2. Mixture Poisson geometric process model . . . . . . . . . . . 34

2.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.2. Bladder cancer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.3. MPGP model and its extension . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.4. Bayesian Inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5. Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

2.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Chapter 3. Robust Poisson geometric process model . . . . . . . . . . . . 68

3.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

v



CONTENTS vi

3.2. Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.3. Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

3.4. Simulation study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

3.5. Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

3.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Chapter 4. Generalized Poisson geometric process model . . . . . . . 115

4.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.2. Model specification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

4.3. Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

4.4. Simulation studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

4.5. Real data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

Chapter 5. Multivariate generalized Poisson log-t geometric

process model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.1. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

5.2. A review of multivariate Poisson models . . . . . . . . . . . . . . . . . . . 166

5.3. Multivariate generalized Poisson log-t geometric process

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172

5.4. Bayesian inference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

5.5. Real data Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

5.6. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199

Chapter 6. Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.1. Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211

6.2. Further research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 219



List of Figures

2.1 Trends of new tumour counts using ZMPGP model (Model 3) . . . . 65

2.2 Trends of new tumour counts using MPGP-Ga model (Model 4) . . . 66

2.3 Proportions of zeros and variances of new tumour counts for Model

1 to 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.1 The pmfs of RPGP-t model with varying parameters . . . . . . . . . . . . . 108

3.2 The pmfs of RPGP-EP model with varying parameters . . . . . . . . . . . 109

3.3 pmf of 2-group RMPGP-EP model at t = 1 . . . . . . . . . . . . . . . . . . . . . 110

3.4 Dotplots of seizure counts across treatment group and time . . . . . . . 111

3.5 The pmfs of low-level group for RMPGP models at different times 112

3.6 Comparison of densities of yitl’s with normal and EP distributions . 113

3.7 Outlier diagnosis using uitl in the RMPGP-EP model . . . . . . . . . . . . 114

4.1 The pmfs of GPGP model with varying parameters . . . . . . . . . . . . . . 156

4.2 Observed and predicted trends of GMPGP and RMPGP-EP models157

4.3 The pmfs of high-level group for GMPGP and RMPGP-EP models

at different t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.4 The pmfs of low-level group for GMPGP and RMPGP-EP models

at different t . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 158

4.5 Predicted individual and group trends of GMPGP-AR(1) model . . . 159

5.1 The pmfs of BGPLTGP model with varying parameters . . . . . . . . . . 206

vii



LIST OF FIGURES viii

5.1 The pmfs of BGPLTGP model with varying parameters (continued)207

5.2 Monthly number of arrests for amphetamine (AMP) and narcotics

(NAR) use/possession in Sydney during January 1995 - December

2008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

5.3 Trends of the expected monthly number of arrests for use or

possession of two illicit drugs for all fitted models . . . . . . . . . . . . . . . 209

5.4 Trends of the SE of monthly number of arrests for use or

possession of two illicit drugs for all fitted models . . . . . . . . . . . . . . . 210



List of Tables

2.1 Parameter estimates, SE (in italics) and DIC in different PGP

models for the bladder cancer data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.1 Moments of marginal pmfs for RPGP-t model under a set of

floating parameters with fixed values of ν = 10, σ = 0.5, βµ0 =

3, βµ1 = −0.2, βa0 = 0.5, βa1 = −0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.2 Moments of marginal pmfs for RPGP-EP model under a set of

floating parameters with fixed values of ν = 1, σ = 0.5, βµ0 =

3, βµ1 = −0.5, βa0 = 0.5, βa1 = −0.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.3 Parameter estimates, SD, MSE, DIC and ASE in different

RPGP models under 4 simulated data sets based on 4 sets of true

parameters from different models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

3.4 Mean and variance for the observed epilepsy data and of two

simple fitted and RMPGP-EP models . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Parameter estimates with SE and DIC in different RMPGP

models for the epilepsy data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.1 Moments of marginal pmfs for GPGP model under a set of floating

parameters with fixed values of λ2 = 0.2, r = 30, βµ0 = 3, βµ1 =

−0.5, βa0 = −0.5, βa1 = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.2 Parameter estimates, SD,MSE andDIC for GPGP and RPGP-EP

models in cross simulation (Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

ix



LIST OF TABLES x

4.3 Mean and variance of the true, GPGP and RPGP-EP models in

cross simulation (Study 1) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.4 Mean and variance of four simulated data sets under different

situations (Study 2) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.5 Parameter estimates, SE and DIC in GPGP and RPGP-EP models

under different degrees of dispersion (Study 2) . . . . . . . . . . . . . . . . . . 154

4.6 Parameter estimates, SE and DIC in 2-group GMPGP and

RMPGP-EP models for the cannabis data . . . . . . . . . . . . . . . . . . . . . . . 154

4.7 Observed and predicted means and variances of GMPGP and

RMPGP-EP models for the cannabis data . . . . . . . . . . . . . . . . . . . . . . . 155

5.1 Moments of the joint pmfs for the BGPLTGP model under a set

of floating parameters with fixed values of σ2
1 = 0.07, σ12 =

0.06, σ2
2 = 0.1, ν = 20, βµ01 = 2, βµ02 = 2.5, βa01 = −0.1, βa02 =

0.1, λ21 = −0.8, λ22 = 0.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203

5.2 Parameter estimates, SE and DIC in four fitted models for the

amphetamine and narcotics data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 204

5.3 Parameter estimates, SE and DIC in BGPLTGP model after

accounting for serial correlation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205



CHAPTER 1

Introduction

1.1. Background

Analysis of event count data which prevails in all walks of lives has a

long and rich history. In epidemiology, we observe the daily number of

deaths in an epidemic outbreak; in engineering, we record the number of

failures of an operating system until it breaks down; in business, we count

the number of mobile phones sold every week for different phone models

or brands; in insurance, we report the claim frequencies for a compulsory

third party insurance policy. The list of areas in which time series of counts

are observed and analyzed is endless.

Event count can be classified into three main categories including cross-

sectional, longitudinal and panel. Different from cross-sectional data which

is collected from a number of individuals at the same time point, longi-

tudinal data, also known as time series data, are observations repeatedly

measured from one subject over a series of time. If there are multiple out-

comes observed at the same time, the outcomes that are potentially corre-

lated is called multivariate longitudinal data. Regarded as a more general

case, panel data is a set of longitudinal data collected from a number of

1
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subjects. In this thesis, we will focus on the analysis of multivariate longi-

tudinal count data and panel count data.

Longitudinal or panel count data are frequently obtained in follow-up

or prospective studies such as randomized clinical trials in which the re-

current number of events is usually recorded successively at uniform time

intervals. Inevitably, the non-stationarity and serial correlation structure in

the time series make the modelling of panel data distinct and more compli-

cated than cross-sectional data. In non-stationary time series, an increas-

ing (or decreasing) trend often coincides with an increasing (or decreasing)

variability in the data over time. When the mean is larger (smaller) than

the variance, we refer such situation as underdispersion (or overdispersion).

Ignoring the dispersion problems may lead to poor model fit, unreliable es-

timates and hence misleading interpretations.

Besides, exogenous covariates which can be time-invariant, time-variant

or period-variant, are commonly measured along with the outcomes. For

instance, in a tobacco use study, the weekly number of cigarettes taken by

smokers may be affected by sex and age to start smoking which are time-

invariant, number of doctor visits and alcohol consumption which are time-

variant, and lastly income and education level which are period-variant. In-

cluding these covariates into the mean of the data distribution helps to in-

vestigate their effects on the outcome or allow for their effects in the studies

of other variables of interest. For example, in a randomized clinical trial
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on the efficacy of a medication for hypertension, undoubtedly the differ-

ence between the control group and treatment group is of primary interest.

Moreever, sex, age or other measures of health condition which may affect

the treatment result are regarded as nuisance variables and should also be

allowed for in the study of treatment effect.

Particularly for panel count data which involves multiple subjects with

different characteristics, population heterogeneity will arise inevitably. Tak-

ing the previous example of the hypertension medication study, between-

subject variation may exist across each group of patients as the treatment

may work better on some patients or due to measurement errors. In the

past decades, extensive literature can be found in analyzing longitudinal and

panel data. In these researches, extensions have been made continuously to

some existing traditional count models to address all the aforementioned

properties in the data.

This thesis focuses on the development of models for longitudinal or

panel count data that can handle various characteristics of the count data

arisen in different situations. The following section will first summarize

briefly a few benchmarking models for modelling longitudinal count data

and how they are developed and modified to study multivariate longitudinal

and panel count data. The next two Sections will describe the development

and method of inference of geometric process (GP) model from which the

Poisson geometric process (PGP) model is developed and is adopted as the
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start-up model in this research due to its indispensable ability to allow trend

movement.

1.2. Overview of longitudinal count models

Based on the theory of state-space models, Cox (1981) classified the

longitudinal count models into two streams, namely the observation-driven

(OD) and parameter-driven (PD) models. A good monograph on the clas-

sification can be found in Cameron & Trivedi (1998). Denote Wt be the

outcome at time t = 1, . . . , n where n is the total number of observations.

The state-space model consists of an observation equation which specifies

the distribution of the outcome Wt given the state variable and a state equa-

tion which specifies the transition distribution of the state variable. For both

OD and PD models, while the observation equations are tantamount as they

assume Wt follows some discrete distributions f(wt) such as Poisson and

negative binomial distributions given the mean E(Wt) as the state variable,

their difference lies in the specification of the state equation for E(Wt).

The OD models express the mean of the outcome explicitly as a function

of past observations in order to construct an autocorrelation structure which

can account for serial correlation between observations. On the other hand,

the PD models introduce serial dependence through a latent variable which

evolves independently of the past observations in the state equation. In the

following Sections, a few benchmarking OD and PD models with model

structures and extensions to multivariate longitudinal or panel count data

will be discussed.
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1.2.1. Observation-driven models. The OD models are so called be-

cause they introduce past observations into the mean of the current observa-

tion. An important class of the OD models is the integer-valued autoregres-

sive moving average (INARMA) model developed under the framework of

Gaussian autoregressive moving average (ARMA) model. This model pio-

neered by Al-Osh & Alzaid (1987) has developed extensively and a recent

survey can be found in McKenzie (2003).

Under the INARMA model the outcome Wt is expressed as

Wt =

p∑

i=1

αi ◦Wt−i +

q∑

j=1

γj ◦ Ut−j + Ut

where Ut, t = 1, . . . , n are non-negative latent integer-valued variables that

are independently and identically distributed and ◦ is a binomial thinning

operator such that

αi◦Wt−i =





Bin(Wt−i, αi), Wt−i > 0

0, Wt−i = 0
and γj◦Ut−j =





Bin(Ut−j, γj), Ut−j > 0

0, Ut−j = 0

In other words, αi, γj ∈ [0, 1] denote the probability of success for the bi-

nomial distribution for Wt−i and Ut−j respectively. Let xt and β be vectors

of time-evolving covariates and regression coefficients respectively, then

the mean of Ut can be log-linked to a function of covariates xt so that

E(Ut) = exp(xT
t β). The resultant model is denoted as INARMA(p, q)

model where p represents the autoregressive (AR) order for the observa-

tions and q specifies the moving average (MA) order for the errors.
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Taking INARMA(1,0) model as an example, the conditional mean and

variance for Wt are given by

E(Wt|Wt−1, . . . ) = α1Wt−1 + exp(xT
t β)

V ar(Wt|Wt−1, . . . ) = α1(1 − α1)Wt−1 + V ar(Ut)

and the autocorrelation function Corr(Wt,Wt−k) = αk
1 is always positive.

So, this model is restricted to positively serially correlated data.

A multivariate extension of the INARMA model can be found in Quore-

shi (2008). Denote the data vector W t = {Wit, ...,Wmt}T with dimension

m, the extended model called the vector integer-valued moving average

(VINMA) model has the following form:

W t =

q∑

j=1

γj ◦ U t−j + U t




W1t

W2t

...

Wmt




=

q∑

j=1




γ11q γ12q . . . γ1mq

γ21q γ22q . . . γ2mq

... . . .
. . .

...

γm1q γm2q . . . γmmq




◦




U1,t−q

U2,t−q

...

Um,t−q




+




U1t

U2t

...

Umt




where U t = {U1t, ..., Umt}T is an integer-valued innovation sequence which

is independently and identically distributed with its mean log-linked to some

time-variant covariates xit such that E(Uit) = exp(xT
itβi), i = 1, . . . ,m

where βi is vector of regression coefficients for Wit. Besides accommodat-

ing covariate effects, the VINMA model is capable of fitting multivariate

longitudinal count data with both negative or positive correlation between
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pairs of time series. See Quoreshi (2008) for more details. However, Heinen

(2003) criticized that the INARMA model is not practically applicable due

to its cumbersome estimation of the model parameters. Hence emphases

were only put on the studies of their stochastic properties.

To tackle the estimation problem, Davis et al. (1999) and Davis et al.

(2003) proposed the generalized linear autoregressive moving average (GLARMA)

model where Wt given the past history Ft−1 follows Poisson distribution

with mean µt and is denoted by

Wt|Ft−1 ∼ Poi(µt)

and µt = exp(xT
t β + Ut). Furthermore,

Ut = φ1Ut−1 + · · · + φp Ut−p +

q∑

i=1

θiet−i

where Ut is an ARMA(p, q) process with noise

{
et =

Wt − µt

µλ
t

}
, λ ∈

(0, 1] and past errors et−i which describe the correlation structure of Wt.

The GLARMA model can allow for serial correlation in the count data by

specifying the log of the conditional mean process as a linear function of

previous counts. The main advantage of the GLARMA model is the effi-

cient model estimation using maximum likelihood (ML) method in contrast

to the INARMA model. This greatly widens the applications of the model

to time series of counts.

Another benchmarking OD model is the autoregressive conditional Pois-

son (ACP) model emerged in Heinen (2003). Given the past observations
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Ft−1, the outcome Wt follows a Poisson distribution with mean µt which is

written as

E(Wt|Ft−1) = µt = (ω +

p∑

i=1

αiWt−i +

q∑

j=1

γjµt−j) exp(xT
t β)

where ω, αi’s and γj’s > 0 and again xt and β are vectors of time-variant

covariates and regression coefficients. Hence, the resultant model, which

is denoted by ACP(p, q) model, has an autoregressive structure introduced

by a recursion on lagged observations. In the same paper, he further ex-

tended the ACP model by replacing the Poisson distribution with Dou-

ble Poisson distribution which can fit underdispersed or overdispersed data

and by adding a generalized autoregressive conditional heteroskedasticity

(GARCH) component to allow a time-varying variance structure. The re-

sulting generalized conditional autoregressive Double Poisson (GDACP)

model can deal with data with underdispersion or overdispersion and posi-

tive serial correlation.

A multivariate extension of the GDACP (MDACP) model has recently

been investigated by Heinen & Rengifo (2007) using copulas to introduce

dependence among several time series. This MDACP model, having similar

properties as the GDACP model, can also accommodate positive or nega-

tive correlation among time series. See Heinen & Rengifo (2007) for more

details.

In summary, the appeals of the OD models include the straightforward

derivation of likelihood function and prediction. On the other hand, being

a conditional rather than marginal model over past observations, they have
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a shortcoming in the interpretation of covariate effects as the mean depends

on past observations. In the light of this, another class of count models, the

PD models were proposed to alleviate these problems.

1.2.2. Parameter-driven models. The most prominent PD model in

the literature is the Poisson regression model with stochastic autoregres-

sive mean developed by Zeger (1988). This model is essentially a log lin-

ear model in the family of generalized linear model (GLM) formulated by

Nelder & Wedderburn (1972). Conditional on a latent non-negative stochas-

tic process {Ut} and a vector of time-variant covariates xt, assume that the

outcome Wt is independent and follows a Poisson distribution with mean

µt, then the conditional mean and variance are specified as

E(Wt|Ut) = V ar(Wt|Ut) = µtUt = exp(xT
t β)Ut

where β is a vector of regression coefficients. To introduce both serial

correlation and extra variation to the model, suppose that the latent process

Ut is stationary and serially correlated with mean E(Ut) = 1, variance

V ar(Ut) = σ2
u and covariance Cov(Ut, Ut−k) = σ2

uρk where ρk represents

the correlation between Ut and Ut−k. The unconditional moments are then

given by

E(Wt) = exp(xT
t β)

V ar(Wt) = µt + σ2
uµ

2
t

Cov(Wt,Wt−k) = µt µt−k σ
2
u ρk.
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Clearly the model is suitable for longitudinal count data with overdispersion

since the variance is larger than the mean and allows both positive or nega-

tive serial correlation as −1 ≤ ρk ≤ 1. More importantly, the time-varying

variance and covariance increase the flexibility of the model structure in

fitting data with non-constant variance and serial correlation. Some appli-

cations of this model can be found in Chan & Ledolter (1995) and Jung &

Liesenfeld (2001) by adopting a Gaussian first order autoregressive struc-

ture for Ut.

Noticing the increasing need of modelling panel count data in a variety

of areas, Zeger et al. (1988) extended the aforementioned GLM to a gen-

eralized linear mixed model (GLMM) by adding random effects to account

for subject-specific effects in the panel data. Assume Wit be the outcome

of subject i, i = 1, . . . ,m at time t, t = 1, . . . , n, xit and zit be vectors

of subject-specific time-variant covariates and U = {U T
1 , . . . ,U

T
m}T be

a qm × 1 vector of random effects. Under the GLMM, the outcome Wit

follows a Poisson distribution with mean µit which can be expressed as

µit = exp(xT
itβ + zT

itU i)

where U i is assumed to be a multivariate normal variable. Later Brännäs &

Johansson (1996) relaxed the independent assumption such thatCov(U i,U j) 6=

0 in order to allow for correlation between different pairs of time series.

Nevertheless, enormous literature emerged afterwards to modify the model

structure such as allowing correlation between covariates and random ef-

fects (Windmeijer, 2000) and replacing the underlying Poisson distribution
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with other discrete distributions. See Winkelmann (2008) for a up-to-date

survey of statistical techniques for the analysis of count data.

In contrast to the OD models, the specification of a latent stochastic

process in the PD models enables a straightforward interpretation of the co-

variate effects on the outcome because they are formulated independent of

the past observations. Yet in general, there exists difficulties in forecasting

since the model is built on a latent process and the estimation of parameters

requires considerable computational effort as the likelihood function con-

taining multiple integrals is difficult to evaluate (Jung & Liesenfeld, 2001).

1.3. Overview of geometric process models

Overall, the OD and PD models focus on modelling overdispersion

and serial correlation in longitudinal and panel count data while leaving

the trend of the time series unattended. Evaluating the trend movement

is important since it provides invaluable information for ‘long-term’ pol-

icy assessment, evaluation, planning and development in many studies of

longitudinal count data, for example, in public health where clinical trials

are conducted to study the efficacy of a treatment with respect to the long-

term improvements of certain health variables, or in socioeconomics where

policies are made based on the consistent and prolonged change of certain

economic indicators.

This research extends the Poisson geometric process (PGP) model in

Wan (2006) to allow for various characteristics of longitudinal and panel

count data especially the trend movements. The PGP model is developed
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from the GP model proposed by Lam (1988a) and Lam (1988b) for mono-

tone positive continuous data. This GP model offers a straightforward ap-

proach to extend the PGP model for analyzing longitudinal and panel count

data with monotone as well as non-monotone trend. The next Section will

give a detailed discussion of the development and applications of the GP

models on different types of data.

1.3.1. Geometric process model. In system maintenance, due to ac-

cumulating deterioration, the failure rate of the system increases gradually

resulting in a monotone decreasing trend in the consecutive operating times.

Nonhomogeneous Poisson process has been used for trend data. If the suc-

cessive inter-arrival times are monotone, the Cox-Lewis model and expo-

nential process model are commonly used. Lam (1988a) and Lam (1988b)

on the other hand introduced a more direct approach, the geometric pro-

cess (GP) to analyze the trend in such monotone process. The GP model is

defined as follows.

Definition. Given a sequence of random variables {Xt, t = 1, 2, . . . }, if

for some a > 0, {Yt = at−1Xt} forms a renewal process (RP) (Feller,

1949), then {Xt} is called a geometric process (GP), and the real number a

is called the ratio of the GP.

The GP model asserts that if the ratio a discounts Xt geometrically by

t − 1 times, the resulting process {Yt} becomes stationary and forms a

RP, which may follow some parametric distributions f(yt) such as expo-

nential, gamma, Weibull and lognormal distributions with E(Yt) = µ and
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V ar(Yt) = σ2. Hence, the mean and variance of the GP model are:

E(Xt) =
µ

at−1
and V ar(Xt) =

σ2

a2(t−1)

respectively. Clearly, the GP model allows the mean and variance of the

outcome to change over time so that any non-stationarity and non-constant

volatility in the data can be allowed for. The moments are controlled by

three parameters µ, a, and σ2. The inverse relationship of the ratio a with

the mean E(Xt) explains why the trend becomes monotonically increasing

when a < 1 but decreasing when a > 1. When a = 1, it becomes a

stationary RP which is independently and identically distributed with the

same distribution f(yt).

The merits of the GP model are twofold: its geometric structure and

a ratio parameter a to model non-stationarity. Firstly, the model assumes

that the observed data at time t form a latent RP after discounted by a ratio

parameter a for t− 1 times. Such a geometric structure often exists in sys-

tems that generate time series. The GP model focuses on the modelling of

the latent stationary RP instead of the observed GP. By individually mod-

elling the ratio and the mean of the RP, the model separates the effects

on trend movement from the effects on the underlying system (the latent

RP) that generates the observed GP. This approach is natural and appealing.

Moreover the latent RP forms the state parameter of a state space model

and hence can adjust for model dispersion and achieve model robustness

by suitably assigning some heavy-tailed distributions to the latent RP. Sec-

ondly, the additional ratio parameter a makes the two-component (mean
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and ratio) GP model a different but simple modelling approach to capture

various characteristics, particularly the trend movement in time series.

With these nice features and simple model structure, the GP models

have been widely applied in modelling inter-arrival times with monotone

trend for the reliability and maintenance problems in the optimal replace-

ment or repairable models (Lam, 1988a,b, 1992a,b). For example, Lam

(1992b) succeeded in fitting the GP model to the inter-arrival times of the

unscheduled maintenance actions for the U.S.S. Halfbeak No.3 and No. 4

main propulsion diesel engines. Moreover Lam & Zhang (1996a) analyzed

the successive operating times in a two-component system arranged in se-

ries while Lam (1995) and Lam & Zhang (1996b) studied the times in a

two-component system emerged in parallel. More examples can be found

in Lam (1997), Lam et al. (2002), Lam & Zhang (2003), Lam et al. (2004),

Zhang (1999), Zhang et al. (2001), Zhang (2002) and Zhang et al. (2002).

In most cases, the inter arrival times exhibit time-variant or time-invariant

covariate effects, for instances, the operating time of a system is possibly

affected by the environmental factors like humidity and temperature of the

working site. Hence, adopting a homogeneous mean µ will be too restric-

tive in reality. Similar to GLM, the GP model can accommodate covariate

effects by log-linking a linear function of some time-evolving covariates to

the mean µ of the lifetime distribution f(yt) such that µ becomes µt and is

expressed as

lnµt = βµ0 + βµ1zµ1t + · · · + βµqµ
zµqµt (1.1)
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where zµkt, k = 1, . . . , qµ are some time-evolving covariates. After accom-

modating the covariates effects, {Yt} is no longer a renewal process but

becomes a stochastic process (SP) as Yt is not identically distributed with a

constant mean. Instead it evolves over time subject to different exogenous

effects. For example, Wan (2006) applied the extended GP model to study

the daily number of infected cases in an epidemic outbreak of Severe Acute

Respiratory Syndrome (SARS) in Hong Kong in 2003 and found that the

daily number of infected cases increased with the daily temperature since

the viruses are nourished under a warm environment.

In addition to covariate effects, multiple trends are often detected in

longitudinal data. In epidemiology, the number of infected cases will surge

before the precautionary measures such as contact tracing, quarantine and

travel advices are implemented, but it will die out after the virus is under

control. In marketing, the number of sales of an innovative product mounts

due to increasing popularity and demand but again will attenuate after the

market is saturated. Therefore, Chan et al. (2006) proposed the thresh-

old GP model which fits a separate GP to different stages of development,

like the growing, stabilizing and declining stages for the SARS outbreak in

2003. Assume Tκ, κ = 1, 2, . . . , K be the turning points of the κth GPs

where the κth GP with nκ observations is defined as

GPκ = {Xt, Tκ ≤ t < Tκ+1}, κ = 1, . . . , K, (1.2)

T1 = 1 and Tκ = 1 +
κ−1∑
j=1

nj, κ = 2, . . . , K are the turning points of the
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GPs such that
K∑

κ=1

nκ = n. Then, the corresponding stochastic process {Yt}

is given by

SPκ = {at−Tκ

κ Xt, Tκ ≤ t < Tκ+1}

where aκ, κ = 1, . . . , K is the ratio parameter of the κth GP. To estimate

the turning points, Chan et al. (2006) used a moving window method to

locate the turning points for the daily number of infected cases in different

stages of development for the 2003 SARS outbreak. The threshold model

successfully explained the strength and direction of the multiple trends in

the data. Other methods of estimating the turning points include the grid

search and Bayesian sampling method (Chan & Leung, 2010). However, if

there are too few observations or the time series is still on-going, it would be

difficult to locate the turning points and thus the estimation of other model

parameters and the accuracy of prediction may be affected. In general, the

number of turning points can be determined by running different models

that condition onK whereK can be selected based on some model selection

criteria such as Akaike information criterion (AIC) or deviance information

criterion (DIC). See Lam (2007) for an overview and further references for

the GP model and its extensions.

1.3.2. Binary geometric process model. Despite the flourishing de-

velopment of the GP models, the scope of applications is confined to posi-

tive continuous data. While binary longitudinal data arise in many real life

contexts, Chan & Leung (2010) pioneered the binary GP (BGP) model by



1.3. OVERVIEW OF GEOMETRIC PROCESS MODELS 17

assuming the observed binary outcome Wt, t = 1, . . . , n as an indicator of

whether an underlying GP Xt is greater than a certain cut off level b.

Definition. Assume the binary outcome Wt indicates if the underlying GP

Xt is greater than certain cut off level b. Without loss of generality, the

observed binary outcome can be written as

Wt = I(Xt > b) = I

(
Yt

at−1
> b

)
= I(Yt > at−1b)

where I(E) is an indicator function for the event E and {Yt = at−1Xt} is

the underlying stochastic process. Setting b = 1 for simplicity, the proba-

bility Pt for the occurrence of the event (Wt = 1) is given by

Pt = P (Wt = 1) = P (Xt > 1) = P (Yt > at−1) = 1−P (Yt < at−1) = 1−F (at−1)

where F (·) is the cumulative distribution function (cdf) of Yt. By assign-

ing some lifetime distributions such as Weibull distribution with E(Yt) =

µt =
Γ(1 + α)

λ
to the underlying stochastic process {Yt}, the probability

Pt becomes

Pt = P (Wt = 1) = 1 − F (at−1) = exp[−(λat−1)α]

where α > 0 and λ ≥ 0 are the shape and scale parameters of the Weibull

distribution respectively.

Besides allowing for the time-evolving covariates in (1.1) and multiple

trends in (1.2) by a threshold model, the ratio a can be log-linked to a linear

function of time-evolving covariates zakt, not necessary the same as zµkt, to
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account for non-monotone trend. So, a becomes at and is written as

ln at = βa0 + βa1za1t + · · · + βaqa
zaqat. (1.3)

See Chan & Leung (2010) for a detailed description on a variety of trend

patterns for Pt.

For applications, Chan & Leung (2010) studied the quarterly occurrence

of coal mining disasters in Great Britain during 1851 to 1962. In the same

paper, they analyzed the results from the weekly urine drug screens (pos-

itive or negative) of heroin use for 136 patients in a methadone clinic at

Western Sydney in 1986. Investigating the trend patterns of patients al-

lows the administrators to better monitor the condition of patients so that

prompt action can be made to patients with deteriorating responses. They

also demonstrated that the threshold BGP model performed better than the

conditional logistic regression model, a common model for fitting binary

data. Nevertheless, the extension to model binary longitudinal data cer-

tainly increases the applicability of GP models.

1.3.3. Poisson geometric process model. The development of the GP

model to binary data implies that other classes of data including discrete

counts and multinomial data can also be considered. Chan et al. (2004) and

Chan et al. (2006) analyzed the number of coal mining disasters and the

number of infected cases of SARS using the GP model and have adjusted

for a few zero observations as the GP model is designated to positive con-

tinuous data. This adjustment however would be inappropriate if the data
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is skewed or contains many zero observations. Wan (2006) therefore pro-

posed the Poisson geometric process (PGP) model to analyze longitudinal

count data.

Definition. Assume the count Wt, t = 1, . . . , n follows a Poisson distri-

bution fP (wt|xt) with mean Xt where Xt forms a latent GP. Following the

framework of GP model, the stochastic process {Yt = at−1
t Xt} follows

some lifetime distributions f(yt) with mean µt and variance σ2
t . Then, the

resultant model is called the Poisson geometric process (PGP) model with

probability mass function (pmf) given by

f(wt) =

∫ ∞

0

fP

(
wt

∣∣∣∣
yt

at−1
t

)
f(yt) dyt

=

∫ ∞

0

exp
(
− yt

at−1
t

)(
yt

at−1
t

)wt

wt!
f(yt) dyt. (1.4)

The PGP model belonged to the family of the GLMM model can be

classified as a state space model with state variable Xt where {Xt} is the

latent GP evolving independently of the past outcomes. Some literature

refers this to Poisson mixed model, a special case of GLMM because the

resultant pmf is a composite of Poisson distribution and a mixing distribu-

tion (Karlis & Xekalaki, 2005). The mean and variance of Wt can then be

derived as

E(Wt) = Ex[Ew(Wt|Xt)] = Ex(Xt) =
µt

at−1
t

V ar(Wt) = Ex[V arw(Wt|Xt)] + V arx[Ew(Wt|Xt)]

= E(Wt) + V arx(Xt) =
µt

at−1
t

+
σt

a
2(t−1)
t

(1.5)
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where µt and at refer to the mean and ratio functions of the PGP model

which can accommodate the time-evolving effects and non-monotone trend

and are given by (1.1) and (1.3) respectively. See Wan (2006) for a review

of different trend patterns. In addition, from (1.5) extra variation is added to

the model to accommodate overdispersion. These distinctive features make

the PGP model suitable for fitting count data with trends and overdispersion.

In Wan (2006), the exponential distribution is adopted for Yt with mean

E(Yt) = µt and variance V ar(Yt) = σ2
t = µ2

t . So the pmf in (1.4) becomes

f(wt) =
µ−1

t at−1
t

(µ−1
t at−1

t + 1)wt+1

with mean and variance of Wt given by

E(Wt) =
µt

at−1
t

and V ar(Wt) =
µt

at−1
t

+

(
µt

at−1
t

)2

.

Moreover, Wan (2006) extended the PGP model to study longitudinal count

data with multiple trends by adopting the threshold model approach as in

the GP and BGP models.

In order to simplify the PGP model, Wan (2006) simply assumes that

the mean Xt of the Poisson count data Wt equal to the mean of the latent

GP. In order words, the mean of the outcome becomes

E(Wt) = V ar(Wt) = E(Xt) =
µt

at−1
t

Although, theoretically, the simplified PGP model is equivalent to the stan-

dard Poisson regression model, the interpretation of model parameters is
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quite different. In the Poisson regression model, the regressors have multi-

plicative effect on the mean. However, in the PGP model, the mean function

which reveals the initial level of the trend and the ratio function which re-

veals the direction and progression of the trend are interpreted separately.

In this way, we can study the progression of trend more explicitly. This sim-

plified model, though cannot allow for overdispersion, is sometimes more

preferred to the PGP model due to its simplicity in model structure leading

to less computation time in parameter estimation.

Chan et al. (2010b) and Wan (2006) further extended the PGP model

to study panel count data. Assume that there are G groups of individuals

which demonstrate different trend patterns and each individual has a prob-

ability πl of coming from group l, l = 1, . . . , G. The resultant mixture PGP

(MPGP) model is essentially a probability mixture of G PGP models for

some mixing proportions 0 ≤ πl ≤ 1 where
G∑

l=1

πl = 1. The model is

used to study the annual donation frequency of the female and male donors

in Hong Kong whose first time donation was made between January 2000

and May 2001. The MPGP model lucidly identified three groups of donors

namely committed, drop-out and one-time which have distinct donation pat-

terns and the study provided useful information for the Hong Kong Blood

Transfusion Service to maintain a stable blood storage by targeting at those

regular committed donors.

Furthermore, considering the problem of overdispersion due to zero-

inflation, Wan (2006) developed the PGP model using the hurdle model
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approach originated from Mullahy (1986). Suppose that there is a proba-

bility φ that the outcome Wt at time t is zero, the zero-altered PGP (ZPGP)

model and the pmf fz(wt) is given by

fz(wt) =





φ, wt = 0

(1 − φ)
f(wt)

1 − f(0)
, wt > 0

where f(·) is given by (1.4). The ZPGP model has been applied to analyze

the number of new tumours for 82 bladder cancer patients who were divided

into control and treatment groups since an overwhelming percentage of ob-

servations (80%) in the data are zeros. However, the ZPGP model failed to

account for the population heterogeneity existed in both control and treat-

ment groups, and thus this gives us an insight to develop a zero-altered PGP

model with mixture effect to deal with the cluster effect.

1.4. Statistical inference

Apart from the modelling methodology, another extension of the PGP

model is the methodology of inference. For the statistical inference of GP

models, three methodologies are widely adopted including non-parametric

(NP) inference, frequentist inference and Bayesian inference. The follow-

ing Sections will discuss the three distinct methodologies.

1.4.1. Non-parametric inference. Non-parametric (NP) inference was

first considered for parameter estimation in the GP model by Lam (1992b)

as it is a simple distribution-free method. Some of the NP methods used in

the GP model include the least-square error (LSE) method and the log-LSE
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method. Later on, the NP inference is also adopted for parameter estimation

in GP model (Chan et al., 2004, 2006; Lam, 1992b; Lam & Zhang, 1996b;

Lam et al., 2004), BGP model (Chan & Leung, 2010) and PGP model (Wan,

2006) due to its simplicity. In this methodology, a criterion, usually the

sum of squared error (SSE) is defined to measure the goodness-of-fit of a

model. The NP method is so called because the criterion is independent of

the data distribution. The principle of this method is to estimate the model

parameters by minimizing the SSE which is defined as:

SSE1 =
n∑

t=1

[lnXt − E(lnXt)]
2

and SSE2 =
n∑

t=1

[Xt − E(Xt)]
2

for the log-LSE and LSE methods respectively. Lam (1992b) proposed the

log-LSE method for the GP model and Wan (2006) and Chan & Leung

(2010) considered the LSE method respectively for the PGP and BGP mod-

els.

To minimize the SSEm,m = 1, 2, the Newton Raphson (NR) iterative

method is used to solve the score equation SSE ′
m = 0 for the parameter es-

timates θ where SSE ′
m and SSE ′′

m are the first and second order derivatives

of the SSEm with respect to Xt. Denote the parameter estimates in the kth

iteration by θ(k), the updating procedure is given by:

θ(k+1) = θ(k) − [SSE ′′
m(θ(k))]−1SSE ′

m(θ(k)). (1.6)
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The iteration continues until ‖ θ(k+1) − θ(k) ‖ becomes sufficiently small

and the final LSE estimates θ̂LSE = θ(k+1).

1.4.2. Frequentist inference. The classical maximum likelihood (ML)

method has long been a popular methodology in statistical inference. Lam

& Chan (1998) and Chan et al. (2004) applied the ML method for the infer-

ence of the GP model and showed that the ML method performs better than

the NP methods in parameter estimation. The ML method was also adopted

by Chan & Leung (2010) and Wan (2006) for different GP models.

This method requires the derivation of likelihood function based on the

data distribution. Let f(xt) be the density function ofXt and denote a vector

of unknown model parameters by θ. The likelihood function L(θ|x) is

L(θ|x) =
n∏

t=1

f(xt|θ)

and the log-likelihood function `(θ|x) is

`(θ|x) = lnL(θ|x) =
n∑

t=1

ln f(xt|θ).

To estimate the parameters θ̂ML which maximizes the log-likelihood

function `(θ|x), we adopt the Newton Raphson (NR) iterative method in

(1.6) for the LSE method by replacing SSE ′
m(θ(k)) and SSE ′′

m(θ(k)) with

` ′(θ(k)) and `′′(θ(k)) respectively. The procedure is updated iteratively until

θ(k+1) converges and the ML estimates are given by θ̂ML = θ(k+1).

We can also derive the large sample properties for the ML estimates

θ̂ML using the following theorem:
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Theorem:

√
n(θ̂ML − θ)

D→ N(0, nΣ)

where
D→ means convergence in distribution when n is large, Σ is the co-

variance matrix and suv = −E
[
∂`2(θ)

∂θu∂θv

]−1

is the element in the uth row

and vth column of Σ. With these asymptotic distributions, we can construct

confidence intervals and perform hypothesis testing on θ.

While the likelihood function involves high-dimensional integration in

the presence of missing data or latent state variable, for example, the miss-

ing group memberships for individuals in a mixture model, Wan (2006) con-

sidered the expectation-maximization (EM) method proposed by Dempster

et al. (1977). The EM method consists of two steps: E-step and M-step.

In the E-step, the latent group memberships are estimated by taking condi-

tional expectation using the observed data and current parameter estimates.

In the M-step, the likelihood function conditioning on the latent parame-

ters, also called the “complete-data" likelihood, no longer involves integra-

tion. Hence, parameter estimates can be easily evaluated using NR iterative

method. The procedures iterate between the E-step and M-step until con-

vergence is attained.

However, Wan (2006) reported that the EM method is sensitive to start-

ing values of the parameter estimates and sometimes the convergence rate

is relatively slow (Jamshidian & Jennrich, 1997). In light of this, this re-

search adopts the Bayesian method which is a competitive approach with

the frequentist inference and has become more popular in the recent years.
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1.4.3. Bayesian inference. As a competitive approach to the frequen-

tist, the Bayesian inference is applied in Chan & Leung (2010) and Wan

(2006). The biggest advantage of the Bayesian method over the ML method

is that the former replaces the evaluation of complicated likelihood func-

tions and their derivatives which may involve high-dimensional integration

by some sampling algorithms. It has had increasing popularity in the recent

years due to the advancement of computational power and the development

of efficient sampling techniques. Moreover, the emergence of the statisti-

cal software WinBUGS makes the implementation of the Bayesian method-

ology more straightforward and feasible (Lunn et al., 2000). WinBUGS

is an interactive Windows version of the Bayesian inference using Gibbs

sampling (BUGS) program for Bayesian analysis of complex statistical mod-

els using MCMC techniques. It is a stand-alone program and can be called

from other software such as R statistical package, Stata and SAS. In this

thesis, all the MCMC algorithms are implemented using WinBUGS (Ver-

sion 1.4.3) and R2WinBUGS package in R. The latter is particularly useful

in performing simulations with a large number of repeated data sets because

WinBUGS can be called repeatedly using R and the results are returned to

R for estimating the model parameters in the simulation study.

In the statistical inference for GP models, Chan et al. (2010a), Chan

& Leung (2010), Chan et al. (2010b) and Wan (2006) have considered the

Bayesian approach for the BGP and PGP models. The Bayes theorem as-

serts that the posterior distribution for the parameter θ conditional on data
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x is proportional to the data likelihood f(x|θ) and the prior densities, in

other words,

f(θ|x) =
f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

∝ f(x|θ)f(θ).

With no specific prior information for θ, non-informative priors with large

variances are adopted. For parameters in non-restricted continuous ranges

of values, normal priors are usually used. Whereas, for those restricted to

positive ranges of values, gamma or generalized gamma priors are some

possible choices, and for those parameters which represent the probability

of certain events, uniform or beta priors are adopted.

After that, the model parameters are sampled from the posterior distri-

bution and the parameter estimates θ̂BAY are given by the mean or median

of the posterior samples. Very often, the posterior distribution has a non-

standard form and hence the evaluation of the posterior mean or median

will be analytically complicated. Therefore, sampling methods including

Markov chain Monte Carlo (MCMC) method with Gibbs sampling (Smith

& Roberts, 1993; Gilks et al., 1996) and Metropolis Hastings algorithm

(Hastings, 1970; Metropolis et al., 1953) are used to draw samples from the

posterior conditional distributions of model parameters.

The idea of the Gibbs sampling is described below. Assume that we

have three model parameters θ = {θ1, θ2, θ3}. The joint posterior dis-

tribution is written as f(θ1, θ2, θ3|x) and the conditional density of one

parameter given the other two parameters are written as f(θ1| θ2, θ3,x),
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f(θ2| θ1, θ3,x), and f(θ3| θ1, θ2,x) respectively. The algorithm for the im-

plementation is illustrated below:

1 Begin at starting values of θ(0)
1 , θ(0)

2 , and θ(0)
3 .

2 Draw θ
(1)
1 from the conditional distribution f(θ1| θ(0)

2 , θ
(0)
3 ,x).

3 Draw θ
(1)
2 from the conditional distribution f(θ2| θ(1)

1 , θ
(0)
3 ,x) using

θ
(0)
3 and the newly simulated θ(1)

1 .

4 Draw θ
(1)
3 from the conditional distribution f(θ3| θ(1)

1 , θ
(1)
2 ,x) using

θ
(1)
1 and θ(1)

2 .

5 Repeat Step 2 to 4 until R iterations have completed with the simu-

lated values converged to the joint posterior density function.

WinBUGS adopts Gibbs sampling to reduce the complexity of sampling

from the high-dimensional posterior distribution but at the cost of slower

convergence rate. For each parameter, a chain of simulated estimates is

obtained with its empirical distribution converges towards the posterior dis-

tribution. The posterior distribution f(θ|x) can thus be approximated on

the basis of these simulated values.

From the chain of R simulated values, we discard the first B iterations

as the burn-in period to ensure that convergence has reached. From the re-

maining (R − B) iterations, parameters are sub-sampled or thinned from

every H th iteration to reduce the autocorrelation in the samples. Resulting

samples will consist of M =
R−B

H
realizations with their mean or me-

dian taken to be the parameter estimates. In particular, when the posterior

distributions of the parameters are skewed, which is usually the case for the
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scale parameters, the sample median is adopted. To ensure the convergence

and independence of the posterior sample, the history and autocorrelation

function (ACF) plots have to be checked. A narrow horizontal band of

the posterior sample running from left to right in the history plots and a

sharp cut-off in the ACF plots indicate the convergence and independence

of the posterior sample respectively. Throughout the thesis, we set the val-

ues R = 55000, B = 5000 and H = 50 for different extended PGP models

unless otherwise specified.

In the data analysis, we sometimes need to test for the significance of

certain parameters that are of primary interest. Some examples include the

treatment effect of the medication in clinical trials and the effectiveness of

the regulation in policy making. In Bayesian analysis, the signficiance of

a parameter is based on a credible interval which is a posterior probabil-

ity interval for interval estimation in contrast to point estimation. Credible

intervals are used for purposes similar to those of confidence intervals in fre-

quentist statistics. However credible intervals incorporate problem-specific

contextual information from the prior distribution whereas confidence in-

tervals are based only on the data. A parameter estimate is not significantly

differ from zero if the credibility interval does not contain zero. For all the

analyses in this thesis, the 95% credibility interval will be obtained from

WinBUGS for some parameters of interest and Şthe parameter is signifi-

cant” indicates that the 95% credibility interval does not contain zero and
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hence the true value of the parameter of interest is significantly different

from zero.

1.5. Objective and structure of thesis

Undoubtedly, the emergence of the PGP model has marked a milestone

in the development of the GP models. However, so far only little work has

been done on modelling panel count data and the use of exponential dis-

tribution as the lifetime distribution for Yt is rather restrictive. Moreover,

contemporary models for Poisson count time series discussed in Section

1.2 look specifically into the problem of overdispersion and serial correla-

tion. Hence in this thesis, we will focus on incorporating the merits of both

GP model and contemporary OD and PD models to yield a more flexible

model that can allow for trend movements in particular and overdispersion

and serial correlation in general. We will examine the trend movement of

the panel and multivariate longitudinal count data while at the same time

allowing for serial correlation using the OD approach whenever necessary.

Therefore, with respect to degrees of dispersion, a more general lifetime

distribution such as the gamma distribution can be used as the mixing distri-

bution of the PGP model to allow for overdispersion which may be caused

by the presence of excess zeros or outliers. For zero-inflation, zero-inflated

model or alternative models with a higher probability of zero may be con-

sidered. For model robustness, heavy-tailed distribution, such as log-t and

log-exponential power (log-EP) distributions is a favorable choice for the
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mixing distribution. Using a mixing distribution with more inclusive prop-

erties will lead to a more general structure in the PGP model for handling

data with different degrees of overdispersion.

In addition, majority of literature focus on modelling count data with

overdispersion, yet the opposite side, underdispersion has not received much

attention. Under the PGP model, as extra variation is introduced by the

mixing distribution, the only method to reduce the variation is to replace

the Poisson distribution by another discrete distribution which can handle

underdispersion. In the past decades, a few discrete distributions such as

generalized Poisson and double Poisson distributions have emerged to fit

underdispersed count data. They can be considered as a substitute for the

Poisson distribution in the PGP model.

Furthermore, the existing aforementioned GP model and its extension

have not accounted for serial correlation which may be prominent in lon-

gitudinal or panel count data. Hence, the PGP model will be extended to

take into account this problem. Recently, Chan et al. (2010a) introduced

the conditional autoregressive geometric process range (CARGPR) model,

an extension of GP model using the approach of conditional autoregressive

range (CARR) model in Chou (2005). By incorporating past observations

in the mean function of the outcome, the CARGPR model can accommo-

date some AR structures which are prominent in financial data. Chan et al.

(2010a) showed that there is substantial improvement of CARGPR model

over CARR model in the in-sample estimation and out-sample forecast for
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the 50 days movement of the daily price range of the All Ordinaries Index

of Australia. This extension gives us insight that our subsequent proposed

models can incorporate an AR structure using past observations in the mean

of the latent GP in a similar way to the OD models.

However, as mentioned at the end of Section 1.2.1, using an OD model

approach leads to difficulty in parameter interpretation. To cope with such

problem, Diggle (1988) posited that the examination of the trend move-

ments, covariate and cluster effects should precede the investigation of the

serial correlation structure since the inference of the mean response with

respect to trends, covariates and clustering is usually of primary interest.

Hence in the first stage of the analysis, the specification of the mean of

the outcome needs to be sufficiently flexible to accommodate all the trend

movements, covariate effects and population heterogeneity and after that

the remaining unexplained errors are assumed to be stationary and are used

as a form of diagnostic to assess the preliminary serial correlation structure.

Whereas, in the second stage, a flexible but economical covariance structure

should be specified to allow for autocorrelation (Diggle, 1988).

Considering this modelling approach, our proposed models will first in-

vestigate the mean response such that the unexplained variation becomes

non-stationary after accounting for various effects. Afterwards, a test of

serial correlation for the Pearson residuals which are the standardized dif-

ferences between the observations and predicted values from the model will

be performed. In case of the presence of serial correlation, an appropriate
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AR structure will be introduced by incorporating past observations into the

mean function of the latent GP, the mean of the outcome. The suitability

of the AR structure can be validated by examining the significance of the

model parameters in the AR structure and by using some model selection

criteria such as DIC.

Last but not least, the modelling of multivariate longitudinal data using

GP model is an area that has not been explored. As multivariate longitudinal

count data with non-monotone trends arise in many contexts, the extension

of PGP model to study the trend patterns as well as the contemporaneous

and cross correlations between multiple time series is definitely a new area

that is worth of investigation.

The remaining thesis is structured as follows. Extensions of the PGP

model under different situations will be investigated in Chapters 2 to 5.

These situations include the zero-inflation caused by excess zero observa-

tions in Chapter 2, serious overdispersion due to extreme observations in

Chapter 3, underdispersion in Chapter 4 and multivariate outcomes in Chap-

ter 5. Lastly, Chapter 6 will summarize this research with some concluding

remarks and implications for future developments.



CHAPTER 2

Mixture Poisson geometric process model

This Chapter extends the PGP model in (1.4) to fit longitudinal count

data with zero-inflation.

2.1. Background

Repeated measurements of count data are common in many fields of

research. One important characteristic of these data is the presence of ex-

cess zeros contributing to substantial population heterogeneity and overdis-

persion. We aim to develop models that accommodate these effects and

to derive valid outcome measurement out of the proposed models. More

specifically, we focus on models that do not only handle zero-inflated data

but also provide useful information on treatment outcomes, say the identifi-

cation of distinct treatment patterns and their group memberships resulting

in better interpretation of the data.

The term “excess zeros" implies that the incidence of zero counts is

greater than that expected from the Poisson distribution. Excess zeros may

come from different sources and hence have different interpretations for

the research outcome. For instances, the number of tumours recorded and

removed from a patient in each visit may contain many zeros, either because

he/she has recovered or the tumours have not yet grown to an observable

34
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size by chance. Hence, it is important to treat the excess zeros carefully so

that they would not dominate in the trend and give misleading information

on treatment outcomes.

Researches on zero-inflated count data are extensive in areas like ecol-

ogy (Welsh et al., 1996), dental epidemiology (Bohning et al., 1999), occu-

pational health (Wang et al., 2003; Yau & Lee, 2001), road safety (Miaou,

1994), medical and public health researches (Lam et al., 2006), economet-

rics (Freund et al., 1999), etc. There are different techniques to handle

zero-inflated count data. The use of hurdle model (Mullahy, 1986) is one

and zero-inflated models (Lambert, 1992) are another. For the former, the

zero-altered hurdle models have received considerable attention in recent

years.

While the studies of cross-sectional zero-inflated count data are enor-

mous, models that address longitudinal zero-inflated count data, particu-

larly time series of clustered and correlated observations, have not been

well developed. Due to the hierarchical study design or the data collection

procedure, inherent correlated structure within subject and underlying het-

erogeneity or clustering across subjects are often resulted simultaneously

in the longitudinal data. This situation, particularly prevalent in medical

research (Lee et al., 2006), must be remedied as the ignorance leads to in-

correct conclusions (Hur et al., 2002).

Moreover, although most studies focus on the identification of signifi-

cant covariates that affect the probability of the outcome, the overall time
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trend of the outcome and the clustered pattern have seldom been addressed.

The investigation of trend pattern is important as it provides insight about

the progression of the outcome, and thus the appropriate remedial measures

offered to different patients.

Considering the clustering and trends in the panel data, Chan & Leung

(2010) applied the mixture Poisson geometric process (MPGP) model with

exponential distribution to study the trends of the donation frequencies for

some female and male donors in a blood service center and a simplified

MPGP model was also considered. Results showed that the latter simpli-

fied MPGP model with a better model fit and mean squared error outper-

formed the MPGP model. On the other hand, to handle zero-inflation, Wan

(2006) fitted a zero-altered Poisson geometric process (ZPGP) model using

a hurdle model approach in Mullahy (1986) to the panel data in the blad-

der cancer study. The ZPGP model successfully coped with the problem of

zero-inflation however has not accounted for the cluster effect within differ-

ent treatment groups.

In order to deal with the population heterogeneity in the bladder cancer

data, we propose two new models by extending the simplified MPGP model

in Chan & Leung (2010) in two directions. First of all, we propose the

zero-altered mixture Poisson geometric process (ZMPGP) model by adopt-

ing the hurdle model approach in the simplified MPGP model. Secondly,

instead of using exponential distribution, we adopt a more general lifetime

distribution for the stochastic process {Yt = at−1
t Xt} namely the gamma
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distribution which contains an extra parameter to control the shape of the

distribution. The resultant model is named as the mixture Poisson-gamma

geometric process (MPGP-Ga) model. These models are compared with

the simplified MPGP model from which they are extended.

To demonstrate the characteristics and applicability of our proposed

models, the remaining Chapter is structured as follows. Firstly, the blad-

der cancer data will be described in Section 2.2. Then Section 2.3 will give

a brief review of the simplified MPGP model on how it includes mixture ef-

fects to handle the population heterogeneity and to identify subgroups with

distinct trend patterns, and follow by that is the introduction of the ZMPGP

model using the hurdle model approach and MPGP-Ga model. After that,

Section 2.4 will discuss the methodology for parameter estimation and some

model selection criteria for the best model. The applicability of the pro-

posed models will then be demonstrated through the bladder cancer data

with model comparison in Section 2.5 followed by a conclusion in Section

2.6.

2.2. Bladder cancer data

In this research, we model the longitudinal count data obtained from a

bladder cancer study conducted by the Veterans Administration Coopera-

tive Urological Research Group (Hand et al., 1994). In the study, a group

of 82 patients who had superficial bladder tumours were selected to enter

the trial. After removing the tumours inside their bodies, the patients were
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assigned to one of the treatment groups with 46 taking placebo, an inac-

tive substance having no therapeutic value, and 36 receiving thiotepa, an

anti-cancer chemotherapy drug. The treatments were made quarterly for 36

months. At each visit, count of new tumours Wit, the outcome of the study,

was recorded and new tumours were removed, thereafter the treatment con-

tinued. Since there are some outlying observations in the last two visits, we

excluded these observations and the reduced dataset is given in Appendix

2.1. As the patients may not return for treatments at every quarter or may

drop out of the clinical trial completely, there are 37% of missing appoint-

ments resulting in n = 517 observed data, amongst which 80% (n0 = 413)

are zero. Because of the high proportion of missing observations, the serial

correlation in this panel data is not taken into consideration.

Over the visiting period, the overwhelming proportion of zero con-

tributes to an overdispersion in the data which cannot be neglected. In this

study, while treatment effect, placebo or thiopeta, on the new tumour counts

is the main interest, the distinctive trend patterns displayed in the outcomes

of the patients are also worthy of investigation. Therefore we extend the

simplified MPGP model in Chan & Leung (2010) to include mixture ef-

fects, stochastic means for Poisson distribution and zero-inflated modelling

in order to handle population heterogeneity and excess zeros.

2.3. MPGP model and its extension

2.3.1. Simplified MPGP model. Population heterogeneity and overdis-

persion are obvious in the bladder cancer data as some patients had very
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high new tumour counts while the majority of other patients had zero counts

throughout the visiting period. One way to accommodate population het-

erogeneity is to incorporate mixture effect into the mean and ratio functions.

For the bladder cancer data, denote Wit as the count of new tumours for pa-

tient i at time t, i = 1, . . .m; t = 1, . . . , ni and n =
m∑

i=1

ni. Assume that

there are G groups of patients who have different trend patterns and each

patient has a probability πl of coming from group l, l = 1, . . . , G. Under

the framework of PGP model and conditional on group l, Wit is assumed to

follow a Poisson distribution with mean Xitl. The simplified MPGP model

set Xitl to be the mean of the latent GP for patient i directly. Then the mean

of Wit is given by

El(Wit) = V arl(Wit) = E(Xitl) =
µitl

at−1
itl

. (2.1)

To study the treatment effect while allowing different trend patterns, we

accommodate covariate effect into the mean and ratio functions. Let the pa-

rameters βjl = (βj0l, βj1l, . . . , βjqj l)
T be a vector of regression parameters

βjkl, where j = µ, a, k = 0, . . . , qj and l = 1, . . . , G. The mean and ratio

functions µitl and aitl are given correspondingly by:

µitl = exp(βµ0l + βµ1lzµ1it + · · · + βµqµlzµqµit) (2.2)

aitl = exp(βa0l + βa1lza1it + · · · + βaqalzaqait) (2.3)

where zj0it = 1 and zjkit, j = µ, a; k = 1, . . . , qj are some time-evolving

covariates. The non-constant ratio function allows a non-monotone trend.

For instance, considering za1it = t, the time of visits of the bladder cancer



2.3. MPGP MODEL AND ITS EXTENSION 40

patients, an insignificant βa1l reveals a monotone trend in group l and vice

versa. Moreover, a significant positive estimate of βa0l implies a decreasing

trend whilst a significant negative estimate represents an increasing trend

of new tumour counts throughout the visiting period. In case of a non-

monotone trend, different values for βa0l and βa1l can describe a variety

of trend patterns including U-shaped, bell shaped, exponential growth and

decay with different rates, Gompertz curve, etc. Refer to Wan (2006) for

more details.

The resultant model is essentially a probability mixture of G simplified

PGP models such that the lth PGP is associated with probability πl subject

to
G∑

l=1

πl = 1 and a special case of this would be the simplified PGP model

when G = 1. In the sequel to this Chapter, we will use PGP and MPGP

models to refer to the simplified PGP (G = 1) and simplified MPGP models

respectively. The pmf for Wit in the condition that patient i comes from

group l can be expressed as:

fitl(wit) = Litl =

exp

(
− µitl

aitl
t−1

)(
µitl

aitl
t−1

)wit

wit!
(2.4)

Since there are some missing observations in the bladder cancer data,

we denote I∗it = 1 as the indicator of a non-missing observation i at time t

and 0 otherwise. The likelihood Lc(θ) and log-likelihood `c(θ) functions

for the complete data {Wit, Iil} are then derived as

Lc(θ) =
m∏

i=1

G∏

l=1

(
πl

ni∏

t=1

L
I∗it

itl

)Iil

and `c(θ) =
m∑

i=1

G∑

l=1

Iil(ln πl +

ni∑

t=1

I∗it lnLitl) (2.5)
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where Litl is given by (2.4) and Iil is the group membership indicator for

patient i such that Iil = 1 if patient i comes from group l and zero otherwise.

The vector of model parameters is θ = (θT
1 , . . . ,θ

T
G, π1, . . . , πG)T where θl

is a vector of parameters (βµ0 l, . . . ,βµqµl,βa0l, . . . ,βaqal)
T .

2.3.2. Zero-altered MPGP model. The hurdle model was originally

proposed by Mullahy (1986) in the econometric study. The model is es-

sentially a two-part model in which one part is a binary model for measur-

ing whether the outcome overcomes the hurdle (say zero for zero-inflated

data), while another part is a truncated model explaining those outcomes

which pass the hurdle. A discrete distribution, like the Poisson distribution

or negative binomial distribution which is suitable for overdispersed data, is

usually assigned to the truncated model. As an effective technique to handle

zero-inflated count data, we adopt the hurdle model approach and extend the

MPGP model into the two-part zero-altered mixture PGP (ZMPGP) model.

Suppose there is a probability φt that the observed countWit of patient i

at time t is zero, we denote the indicator of the non-missing event ‘Wit = 0’

by I∗it0 = I(Wit = 0) and ‘Wit > 0’ by I∗it1 respectively. Then the pmf for

Wit conditional on group l in the ZMPGP model is given by:

fz,itl(wit) =





φt, wit = 0

(1 − φt)
Litl

1 − Litl0

, wit > 0

where Litl0 = fitl(0), Litl = fitl(wit), fitl(·) are given by (2.4) and the

mean function µitl and ratio function aitl in (2.4) are given by (2.2) and
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(2.3) respectively. The subscript z in fz,itl(wit) represents the model is zero-

altered. Then, the means E(Wit) and variances V ar(Wit) are expressed as:

E(Wit) = (1 − φt)
G∑

l=1

πl El(Wit) = (1 − φt)
G∑

l=1

πl

(
∞∑

s=1

sfitl(s)

1 − fitl(0)

)
(2.6)

V ar(Wit) = (1 − φt)
G∑

l=1

πl

(
∞∑

s=1

[s− El(Wit)]
2fitl(s)

1 − fitl(0)

)

+(1 − φt)
2




G∑

l=1

πl

(
∞∑

s=1

sfitl(s)

1 − fitl(0)

)2

−
(

G∑

l=1

πl El(Wit)

)2

(2.7)

respectively where El(Wit) are the conditional means conditional on group

l and given Wit > 0. Thereafter, we can derive the likelihood function L(θ)

for the complete data {Wit, Iil} as:

L(θ) =
m∏

i=1





(
ni∏

t=1

φ
I∗it0
t

)
G∏

l=1

[
πl

ni∏

t=1

(
(1 − φt)

Litl

1 − Litl0

)I∗it1
]Iil



 (2.8)

and the log-likelihood function `(θ) as:

`(θ) =
m∑

i=1

ni∑

t=1

I∗it0 lnφt +
m∑

i=1

ni∑

t=1

I∗it1 ln(1 − φt) +

m∑

i=1

G∑

l=1

Iil

{
lnπl +

ni∑

t=1

[
I∗it1 ln

(
Litl

1 − Litl0

)]}
.

where θ = (θT
1 , . . . ,θ

T
G, π1, . . . , πG, φ1, . . . , φmaxi(ni))

T is a vector of model

parameters.

2.3.3. MPGP model with gamma distribution. An alternative way to

handle zero-inflation is to add extra variability into the Poisson distribution

so that the new distribution can allow for overdispersion. With a more flex-

ible variance structure, the probability of zero can be adjusted to allow for
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zero-inflation in the data. Therefore, we extend the MPGP model in the

following way.

Conditional on group l, we assume that the mean of Wit forms a la-

tent GP Xitl and the stochastic process {Yitl = at−1
itl Xitl} follows gamma

distribution denoted by fG

(
yitl

∣∣∣ rl,
1

µitl

)
with mean E(Yitl) = rlµitl and

variance V ar(Wit) = rlµ
2
itl. Then the unobserved {Xitl} can be integrated

out to obtain the marginal pmf for Wit:

fg,itl(wit) =

∫ ∞

0

exp(−xitl)xitl
wit

wit!

(at−1
itl xitl)

rl−1 exp(−at−1
itl xitl/µitl)

µrl

itlΓ(rl)
aitl dxitl

=
Γ(rl + wit)

wit! Γ(rl)

(
µitl

at−1
itl

)wit

(
1 +

µitl

at−1
itl

)rl+wit
(2.9)

which is the pmf for the well-known negative binomial (NB) distribution

and the subscript g in fg,it(wit) represents the use of gamma distribution.

Again the mean µitl and ratio aitl functions are given by (2.2) and (2.3)

respectively.

Conditional on group l, the resultant MPGP-Ga model has mean and

variance for Wit given by

El(Wit) = rl
µitl

at−1
itl

and V arl(Wit) = rl

[
µitl

at−1
itl

+

(
µitl

at−1
itl

)2
]
. (2.10)

Clearly, the NB distribution shows overdispersion as V arl(Wit) = El(Wit)+

El(Wit)
2

rl

. Moreover, the additional parameter rl in the gamma distribution

provides more flexibility to the distribution in handling overdispersion and

makes the pmf in (2.9) capable of describing a number of shapes ranging
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from exponential decay to normal. These distinctive features of the MPGP-

Ga model make it suitable for modelling the new tumour counts in the blad-

der cancer data with substantial overdispersion, population heterogeneity

and excess zeros.

The likelihood L(θ) and log-likelihood `(θ) functions for the complete

data {Wit, Iil} are the same as (2.5) with Litl replaced by fg,itl(wit) in (2.9)

and θ = (θT
1 , . . . ,θ

T
G, r1, . . . , rG, π1, . . . , πG)T is a vector of model param-

eters. Analytically since gamma distribution can be reduced to exponential

distribution when rl = 1 and the NB distribution converges to the Poisson

distribution when rl approaches to infinity, the MPGP-Ga model can be re-

duced to the simplified MPGP model proposed in Wan (2006) and further

reduced to the simplified PGP model with G = 1.

The following Section will discuss the Bayesian inference of different

PGP models.

2.4. Bayesian Inference

For parameter estimation of the PGP, MPGP, ZMPGP and MPGP-Ga

models, we adopt the Bayesian method using MCMC algorithms. The

Bayesian framework, posterior and prior distributions and the full condi-

tional posterior densities for the unknown model parameters will be derived

in the next Section. While for model assessment, the best model is selected

based on the a model selection criterion named as deviance information cri-

terion (DIC). This will be discussed after the discussion of the MCMC

algorithms.
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2.4.1. MCMC algorithms. To implement the Bayesian method, dif-

ferent Bayesian hierarchies are established for different PGP models. With-

out loss of generality, the algorithms are given as follows:

wit ∼ fit(wit)

fit(wit) = Ii1fit1(wit) + · · · + IiGfitG(wit)

fitl(wit) = Litl for PGP, MPGP, MPGP-Ga models (2.11)

fitl(wit) = φ
I∗it0
t

[
(1 − φt)

Litl

1 − Litl0

]I∗it1

for ZMPGP model

where I∗it0 and I∗it1 are the indicators of Wit = 0 and Wit > 0 respectively.

Since the PGP model is a special case of the MPGP model when G = 1,

therefore Litl in (2.11) are given by (2.4) for the PGP and MPGP models

and (2.9) for the MPGP-Ga model. For the ZMPGP model, Litl0 = fitl(0),

Litl = fitl(wit) and fitl(·) refer to (2.4). The PGP, MPGP and MPGP-Ga

models can be specified directly using the Poisson and NB data distribu-

tions while the truncated Poisson data distribution in the ZMPGP model

requires the use of “ones trick” technique in WinBUGS. This technique al-

lows the specification of any non-standard distributions, especially trun-

cated distributions, that are not included in the list of standard distributions

in WinBUGS. By creating an artificial data set with all data equal to one

and same sample size as the observed data, and furthermore by assum-

ing the artificial data follows a Bernoulli distribution with probability pit,

the required non-standard likelihood function can be attained by specifying
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pit = fit(wit)/C in WinBUGS where C is a scaling constant to ensure all

pit < 1.

In order to construct the posterior density, some prior distributions are

assigned to the model parameters θ as follows:

βjkl ∼ N(0, τ 2
jkl), j = µ, a; k = 0, 1, . . . , qj; l = 1, . . . , G (2.12)

φt ∼ Uniform(0, 1) for ZMPGP model (2.13)

rl ∼ Gamma(al, bl) for MPGP-Ga model (2.14)

π1 ∼ Uniform(0, 1) for MPGP, ZMPGP & MPGP-Ga models(2.15)

The prior specifications are mostly non-informative. For example, we set

the hyperparameter τ 2
jkl = 1000. For the gamma distribution of the MPGP-

Ga model in (2.14), we set a1 = 7.5, a2 = 0.1 and bl = 10 based on the

information from the MPGP model that one group shows overdispersion

whilst another shows underdispersion in the new tumour counts. In case

of a G-group (G > 2) mixture model, the prior for π = (π1, . . . , πG) can

be replaced by the Dirichlet distribution Dir(α1, . . . , αG) where αl is set to

be 1/G. Note that I i = (Ii1, . . . , IiG) are not observed, thus a Bernoulli

distribution is assigned to Ii1 ∼ Bern(π1) or a multinomial distribution

I i ∼ multinomial(1, π1, . . . , πG) is assigned if G > 2. With the posterior

means Īil of the group membership indicators Iil, patient i is classified to

group l′ if Īil′ = max
l
Īil.
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To implement the MCMC algorithms, we derive the conditional poste-

rior densities from which parameters are sampled. The conditional poste-

rior densities are proportional to the joint posterior density of complete data

likelihood and prior densities. Taking a 2-group ZMPGP model as an exam-

ple, the complete data likelihood is given by (2.8) and the priors are given

by (2.12), (2.13) and (2.15), hence treating Iil as missing observations, the

joint posterior density is

f(β,π,φ|w, I) ∝




m∏

i=1





(
ni∏

t=1

φ
I∗it0
t

)
G∏

l=1

{
πl

ni∏

t=1

[
(1 − φt)

exp(−ŵitl)(ŵitl)
wit

wit!(1 − exp(−ŵitl))

]I∗it1
}Iil








(∏

j=µ,a

1∏

k=0

G∏

l=1

fN(βjkl| 0, τ 2
jkl)

)(
10∏

t=1

fU(φt| 0, 1)
)
fU(π1| 0, 1)

where fN(·| 0, τ 2
jkl) represents a normal distribution with mean 0 and vari-

ance τ 2
jkl, fU(·| 0, 1) denotes a uniform distribution on the interval [0, 1], w

is a vector of the data wit, I is a vector of Iil, β is a vector of βjkl and φ is a

vector φt. The univariate full conditional posterior densities for each of the

unknown model parameters θ = (β, π1,φ) and the latent group indicator

Ii1 are therefore given by:

f(βjkl|w, I,β−, π1,φ) ∝
{

m∏

i=1

ni∏

t=1

[
exp(−ŵitl + βjklzjkitwit)

1 − exp(−ŵitl)

]I∗it1(Iil)
}

exp

(
−
β2

jkl

2τ 2
jkl

)
,

j = µ, a; k = 0, 1; l = 1, 2

f(Ii1|w,β, π1,φ) ∝
G∏

l=1




πl

ni∏
t=1

(
exp(−ŵitl)ŵ

wit
itl

1−exp(−ŵitl)

)I∗it1

G∑
l′=1

[
πl′

ni∏
t=1

(
exp(−ŵitl′ )ŵ

wit
itl′

1−exp(−ŵitl′ )

)I∗it1
]




Iil

= Bernoulli(π′
1)
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where π′
1 =

π1

ni∏
t=1

(
exp(−ŵit1)ŵ

wit
it1

1−exp(−ŵit1)

)I∗it1

G∑
l′=1

[
πl′

ni∏
t=1

(
exp(−ŵitl′ )ŵ

wit
itl′

1−exp(−ŵitl′ )

)I∗it1
]

f(π1|w, I,β,φ) ∝
m∏

i=1

G∏

l=1

πIil

l = πm1
1 (1 − π1)

m2

f(φt|w, I,β,π,φ−) ∝
m∏

i=1

φ
I∗it0
t (1 − φt)

I∗it1 = φn0t
t (1 − φt)

n1t

where β− and φ− are vectors β and φ excluding βjkl and φt, ml =
m∑

i=1

Iil is

the number of patients classified to group l, n0t =
m∑

i=1

I∗it0 and n1t =
m∑

i=1

I∗it1

are the number of zero and non-zero observations at visit t respectively, and

ŵitl = El(Wit) is given by (2.6).

The MCMC algorithms can be derived for the MPGP and MPGP-Ga

models in a similar way. Nevertheless, the MCMC algorithms are im-

plemented using the user-friendly software WinBUGS where the sampling

scheme based on the conditional posterior densities is outlined in this Sec-

tion and the Gibbs sampling procedures are described in Section 1.4.3. The

posterior sample means are adopted as parameter estimates since the poste-

rior densities of most model parameters are highly symmetric and the pos-

terior sample mean is close to the posterior sample median.

2.4.2. Model selection criterion. For model assessment and compar-

ison, a common measure, namely deviance information criteria (DIC) is
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adopted. DIC originated by Spiegelhalter et al. (2002) is a Bayesian ana-

logue of Akaike’s Information Criterion (AIC) (Akaike, 1974). It is a mea-

sure of model fit and model complexity and has an advantage over the tradi-

tional AIC as it is not only applicable to nested models. DIC is composed

of the posterior mean devianceD(θ) which accounts for the fit of the model

and the effective dimension pD which assesses the complexity of the model.

For the PGP model, DIC is given by

DICM1 = D(θ) + pD

= − 4

M

M∑

j=1

m∑

i=1

ni∑

t=1

[I∗it ln fit(wit|θ(j))] + 2
m∑

i=1

ni∑

t=1

I∗it ln fit(wit|θ)

where M is the number of realizations in the MCMC sampling algorithms,

θ(j) represents the vector of model parameter estimates under the j th simu-

lation in the posterior sample, θ is the vector of posterior means and fit(wit)

is a density function given by (2.4) with G = 1. DICM1 is output in

WinBUGS as it supports the calculation of DIC of the PGP model. Un-

fortunately the computation of DIC is infeasible for mixture models like

the MPGP (Model 2), ZMPGP (Model 3) and MPGP-Ga (Model 4) mod-

els. Applying the idea of Celeux et al. (2006), by considering Iil as missing

data, the complete DIC are defined for Model 2 to 4 respectively as fol-

lows:

For the MPGP and MPGP-Ga models,
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DICM2,4 = − 4

M

M∑

j=1

m∑

i=1

G∑

l=1

I ′il(θ
(j))

[
ln π

(j)
l +

ni∑

t=1

I∗it ln fitl(wit|θ(j))

]
+

2
m∑

i=1

G∑

l=1

I ′il(θ)

[
lnπl +

ni∑

t=1

I∗it ln fitl(wit|θ)

]
(2.16)

where I ′il(θ
(j)) =

π
(j)
l

ni∏
t=1

fitl(wit|θ(j))I∗it

G∑
l′=1

π
(j)
l′

ni∏
t=1

fitl′(wit|θ(j))I∗it

and fitl(wit) are given by (2.4) and (2.9) for the MPGP and MPGP-Ga re-

spectively. For the ZMPGP model, DICM3 is calculated below in a similar

way as in (2.16) but with a different log-likelihood lnL(θ(j)) given by (2.8)

to account for the different likelihoods for the zero and non-zero observa-

tions. So, we have

DICM3 = − 4

M

M∑

j=1

m∑

i=1

{
ni∑

t=1

I∗it0 lnφ
(j)
t +

ni∑

t=1

I∗it1 ln(1 − φ
(j)
t )

+
G∑

l=1

I ′il(θ
(j))

[
lnπ

(j)
l +

ni∑

t=1

I∗it1 ln

(
fitl(wit|θ(j))

1 − fitl(0|θ(j))

)]}
+ 2

m∑

i=1

{
ni∑

t=1

I∗it0 lnφt

+

ni∑

t=1

I∗it1 ln(1 − φt) +
G∑

l=1

I ′il(θ)

[
lnπl +

ni∑

t=1

I∗it1 ln

(
fitl(wit|θ)

1 − fitl(0|θ)

)]}
. (2.17)

where I ′il(θ
(j)) =

π
(j)
l

ni∏
t=1

(
fitl(wit|θ(j))

1−fitl(0|θ(j))

)I∗it1

G∑
l′=1

π
(j)
l′

ni∏
t=1

(
fitl′ (wit|θ(j))

1−fitl′ (0|θ(j))

)I∗it1

and fitl(wit) is given by (2.4). Equations (2.16)-(2.17) correspond to DIC6

for mixture distributions in Celeux et al. (2006) and as suggested there,
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I ′il(θ
(j)) is used in place of I (j)

il to save computing storage space. A model

with the smallest DIC is preferred as it indicates the chosen model has the

best fit of the data accounting for its complexity.

2.5. Real data analysis

In the bladder cancer study, we are interested in investigating the treat-

ment effect as well as the trend patterns of the patients’ tumour counts while

allowing for the population heterogeneity and excess zeros in the data. Ta-

ble 2.1 in Appendix 2.2 summarizes the parameter estimates and their stan-

dard errors (SE) (in italics) and model assessment measures for all fitted

models.

==================================

Table 2.1 about here

==================================

Starting from the simplest model, we first fitted the PGP model (Model

1). The mean function µit = exp(βµ0 + βµ1b) adopts ‘treatment’ (zµ1it =

b = 1, 2 to indicate ‘thiotepa’ and ‘placebo’ respectively) as a covariate

and the ratio function ait = exp(βa0 + βa1 t) adopts ‘time’ (za1it = t =

1, . . . , 10) as a time-evolving covariate. The time effect in the ratio func-

tion measures the change in trend direction, increasing or decreasing, over

time. As both the treatment and time effects are significant, they imply that

thiotepa treatment is associated with a decrease in new tumour count (95%
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CI for βµ1:[−1.196,−0.6807]) and the new tumour count shows a decreas-

ing and then a slightly increasing trend (95% CI for βa0:[0.0368, 0.3075];

βa1:[−0.0298,−0.0020]).

Not surprisingly, patients with thiotepa treatment have lower tumour

counts in general. However within the treatment group, some of these pa-

tients had much higher counts (up to 9) while others had only zero counts

throughout the visiting period. To handle the population heterogeneity, we

postulate that there are two clusters of patients who responded differently

to the placebo treatment and the thiotepa treatment. We fitted the MPGP

model (Model 2) with the same set of covariates in the mean and ratio func-

tions. We have considered the quadratic effect of time and interaction effect

of time and treatment effect in the ratio function separately, but the parame-

ter estimates were found to be insignificant (95% CI contains zero) and were

discarded. Two clusters, namely the high-level and the low-level tumour

groups, are identified in which patient i is classified to group l, l = 1, 2 if

the posterior mean Īil = max
l′

Īil′ . The low-level (l = 1) group mainly con-

sists of patients with less than four tumour counts throughout the visiting

period whereas the high-level (l = 1) group contains patients with relatively

more tumours. Hence, the overdispersion in tumour counts amongst pa-

tients is captured by the mixture effect. The time effects (βa1l) in both ratio

functions are insignificant (95% CI contains zero) and hence are discarded.

After refitting the model, the low-level groups show a monotone decreas-

ing trend (95% CI for βa0l:[0.0392, 1.0350]) in new tumour counts over the
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period of visits. Whereas the trend for the high-level group is stationary

(βa02:[−0.0143, 0.0658]). Moreover the treatment effect is significant (95%

CI for βµ12:[−0.8609,−0.2646]) only in the high-level group. These indi-

cate that the thiotepa treatment is ‘effective’ mainly for those patients with

higher level of new tumours.

Comparing the observed (80%) and the expected (67%) proportions of

zeros averaged over time, we find that the expected proportion is still much

lower than the observed one. This signifies that the MPGP model is inad-

equate in modelling the zero-inflation in the data. These zeros contribute

substantial noise in the detection of trends leading to insignificant time ef-

fects in both ratio functions. Hence despite the accommodation of popu-

lation heterogeneity by incorporating the mixture effect, the DIC for the

MPGP model does not show a great improvement.

To allow for zero-inflation, two models are considered, namely the ZMPGP

model (Model 3) and the MPGP-Ga model (Model 4) as the distribution of

both models give higher probabilities of zero counts than the Poisson dis-

tribution. Fitting a ZMPGP model using the hurdle approach is essentially

equivalent to remove all zero observations and model the non-zero obser-

vations using a zero-truncated distribution. Equivalently, the model is a

combination of a binary model to model the zero observations over the vis-

iting period and a MPGP model for the non-zero observations. Hence, this

model yields different results and interpretations from the MPGP model.
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Under the ZMPGP model, after ignoring the zero observations, a major-

ity of 72 (88%) patients are classified to the low-level group, amongst them

34 (47%) patients received treatment. In this model, the treatment effect is

only significant in the low-level group (95% CI for βµ11:[−1.0870,−0.2996]).

The time effect in the ratio functions of both groups indicates the non-

monotone trends of new tumour counts prevail. In Appendix 2.3, Figure

2.1(a) shows the trends of new tumour counts given by (1 − φt)Ŵitl where

Ŵitl = El(Wit) in (2.6) for respectively the three groups, namely the high-

level (l = 2), the low-level without treatment (l = 1, b = 1) and the low-

level with treatment (l = 1, b = 1) groups, and Figure 2.1(b) reveals the

trends of individuals within each group. The predicted new tumour count

for patient i at time t is given by Ŵit = (1− φt)
(
Īi1Ŵit1 + Īi2Ŵit2

)
. Note

that the PGP model applies to discrete-time time series. However as we aim

to generalize the model to a continuous-time one, smoothing curves are thus

used to demonstrate the trend movements over a continuous time frame.

==================================

Figures 2.1(a) and 2.1(b) about here

==================================

Due to the fluctuating zero proportion over time, the expected new tu-

mour counts are fluctuating but the fluctuation is much less rigorous for

the low-level groups. In general, the new tumour counts for the high-level

group decline but rebound nearly to the starting level whereas those for the

low-level groups rise gently throughout but drop slightly near the end. The



2.5. REAL DATA ANALYSIS 55

wide gap of the new tumour counts between patients with and without treat-

ment shows that there is treatment effect in the low-level group. Trends in

both low- and high-level groups reveal that the condition of patients in the

high-level group deteriorates in the later half of the visiting period whereas

the treatment effect in the low-level groups starts with a lag. Since the

ZMPGP model performs much better in handling the zero-inflated data, the

DIC calculated using (2.17) decreases dramatically.

For the MPGP-Ga model, as it is capable of modelling overdispersed

count data, the low-level group (l = 1) shrinks to accommodate patients

essentially with zero observations throughout the study period. On the other

hand, the high-level group (l = 2) contains mainly patients with fluctuating

observations and hence accounts for most of the overdispersion in the new

tumour counts. Compared to the MPGP model, the MPGP-Ga model has

more distinct low-level and high-level groups. Overall, 46 patients (56%)

are classified into the high-level group with 16 of them (35%) receiving

treatment. Again in Appendix 2.3, Figure 2.2(a) reveals the predicted trends

of new tumour counts for respectively the three groups, namely the low-

level (l = 1), the high-level without treatment (l = 2, b = 1) and the

high-level with treatment (l = 1, b = 2) groups, and Figure 2.2(b) shows

the trends of individuals within each group. The predicted new tumour

count for patient i at time t is given by Ŵit = Īi1Ŵit1 + Īi2Ŵit2 where

Ŵitl = El(Wit) is given by (2.10).
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==================================

Figures 2.2(a) and 2.2(b) about here

==================================

Including zeros, differences across the three groups get wider for both

observed and expected levels of new tumour counts when compared to those

of the ZMPGP model. The low-level group contains patients with essen-

tially zero new tumour counts throughout the visiting period and hence the

treatment effect is insignificant in this group and is dropped thereafter. On

the contrary, for the high-level groups, the time effect (β̂a12 = −0.0137)

in the ratio function demonstrates a U-shaped trend pattern and represents

that the new tumour counts increase again after a gradual decline in the first

five visits. Again the wide gap in the levels between new tumour counts in

the high-level with and without treatment groups shows that there is signif-

icant treatment effect in this group (95% CI for βµ12:[−0.8318,−0.1357]).

These distinct trend patterns from the MPGP-Ga and ZMPGP models can

probably be explained by their different modelling approaches and resultant

classification.

Comparing to the ZMPGP model, there is an authentic decrease in the

DIC calculated using (2.16) for the MPGP-Ga model, despite the fact that

the expected proportion of zeros does not fit the observed one as good as in

the ZMPGP model. The better DIC can be explained by the brevity and

flexibility in the pmf of the MPGP-Ga model to handle overdispersion and

thus it gives a better fit to the data.
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Finally we conclude the performances of the proposed models to han-

dle excess zero and overdispersion by plotting the expected proportions of

zeros p0t and expected variances vt, over time with the observed propor-

tions of zeros P0t and observed variances Vt in Figures 2.3(a) and 2.3(b) in

Appendix 2.3. The observed proportions of zeros and variances are simply

calculated based on the observed data for each time t and are constant across

models. The expected proportions of zeros p0t are expressed as a weighted

average of the probability of getting zero based on different densities over

each treatment and mixture subgroup, where the weights are the sum of the

mixture group indicators of the patients
∑

i

Iil in the subgroups. The ex-

pected variances vt are also computed as weighted averages of the variance

of each treatment and mixture groups. In particular, if there are two mixture

groups in Model 2 to 4, the variance vt comprises of the variance of expec-

tation and the expectation of variance conditional on the mixture group l,

that is we get the weighted average within the mixture group using πl before

calculating the overall expected variances. In other words,

vt =
1

m

[
m∑

i=1

I(zµ1i = 1)v1t +
m∑

i=1

I(zµ1i = 2)v2t

]
(2.18)

vbt =
G∑

l=1

πl

[
V arl(Wit) + El(W

2
it)
]
−
[

G∑

l=1

πlEl(Wit)

]2

, b = 1, 2 (2.19)

where the mean El(Wit) and variance V arl(Wit) conditional on group l are

given by (2.1) and (2.10) for the MPGP and MPGP-Ga models respectively.

For the ZMPGP model, vbt = V ar(Wit) is given by (2.7) when zµ1i = b.
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==================================

Figures 2.3(a) and 2.3(b) about here

==================================

Figure 2.3(a) shows that, across Model 1 to Model 4, the expected pro-

portions of zeros p0t increase in general and approach those of the observed

proportions P0t, with those of ZMPGP model being the best because φt is

indeed estimated by P0t at each time t. Hence the models are becoming

more and more capable of handling excess zero which is the first focus of

this Chapter. The second focus concerns the overdispersion of the data. Fig-

ure 2.3(b) shows that the observed and expected variances under different

models are more deviated. While Model 1 and 2 are still inefficient to han-

dle overdispersion, the performance of the MPGP-Ga model and ZMPGP

model are much more satisfactory.

2.6. Discussion

Motivated by the bladder cancer data and the limited literature in mod-

elling zero-inflated and overdispersed longitudinal time series of counts, we

extend, in this Chapter, the MPGP model of Chan & Leung (2010) which

cannot cope with excess zeros and substantial overdispersion. As the blad-

der cancer data from longitudinal measurements have substantial population

heterogeneity, we first extend the PGP model to incorporate mixture effect

and the resultant MPGP model is capable of distinguishing two groups of

patients with very different trends of new tumour counts. At the same time,
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zero-inflation is another problem in the data which seriously affects the pre-

diction of trend patterns in the data. Hence, we develop two distinct models,

namely the ZMPGP model and MPGP-Ga model to handle such problem.

The ZMPGP model is essentially a mixture of zero-degenerated model and

a zero-truncated MPGP model via the hurdle approach, while the MPGP-

Ga model is a state space model with state variable El(Wit) = Xitl where

Xitl follows a gamma distribution.

It should be noted that while both ZMPGP and MPGP-Ga models are

suitable for modelling data with overdispersion and excess zeros, they are

not built to cater for serial correlation in the time series. This is because the

data contains too many missing observations such that the autoregressive

terms cannot be defined for a substantial portion of time points in the time

series of most patients. Hence the OD and PD approaches of the popular

panel count models reviewed in Chapter 1 are not considered here.

For model implementation, we adopt the Bayesian method with MCMC

techniques by using WinBUGS. The models are assessed and compared

through a popular criterionDIC which measures the fit of the model taking

into account the model complexity. Results show that the ZMPGP model,

though gives a substantial drop in DIC when compared with the MPGP

model, is not as good as the MPGP-Ga model after model complexity is

also taken into consideration.

In conclusion, the two target models, MPGP-Ga and ZMPGP have dif-

ferent performance and interpretation. The MPGP-Ga model has largest
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variances in general because of the extra variability from the stochastic

GP in the mean of Poisson distribution. The ZMPGP model also has rela-

tively large variances due to the zero-truncated Poisson distribution. While

other models still have relatively smaller variances, the MPGP-Ga model

and ZMPGP model are more suitable for data with overdispersion. For

zero-inflation, the two models handle the problem in a different way and

therefore are suitable under different situations. In a medical context, the

ZMPGP model recognizes the development of new tumours as a two-stage

disease progression. The binary model decides whether the patients are at

carcinogenic risk of recurrence of tumours. If they suffer from recurrence

(Wit > 0), the truncated Poisson model describes the subsequent trends

which is usually of more clinical interest. On the contrary, if the zero obser-

vations reveal important information for treatment outcomes, the MPGP-Ga

model is perhaps more appropriate.

Our study also gives us insight on the existence of non-monotone trend

of new tumour counts. Both ZMPGP and MPGP-Ga models suggest that

there is a possibility of resurgence of tumours across the visiting period

despite the use of thiotepa. Therefore, clinicians should exercise some pre-

cautionary measures, such as dosage increment, to inhibit the resurrection

of the tumours.

Lastly, there are 37% of missing data and they are simply ignored in

the models by implicitly assuming that the missing are completely random.

This assumption may be invalid as experiences in clinical trials show that
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such dropouts are often nonignorable. Hence one possible remedy in this

data analysis is to set up a dropout model to allow for the dropout effect on

the treatment outcomes.
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Appendix 2.1
Number of new tumours found in 82 patients taking placebo and thiotepa treatments in the bladder cancer study

Placebo: Visit (months)
Patient 3 6 9 12 15 18 21 24 27 30

1 0 - - - - - - - - -
2 - 0 - - - - - - - -
3 0 - 0 - - - - - - -
4 0 1 0 - - - - - - -
5 0 - 0 - 0 - - - - -
6 0 - 0 2 3 0 - - - -
7 0 - - - 0 0 - - - -
8 - 2 0 0 - 0 - - - -
9 0 0 6 - 3 0 - 0 - -
10 8 - 0 0 8 0 - 8 - -
11 1 0 1 0 0 0 8 0 - -
12 0 0 0 0 0 0 - 0 - -
13 0 8 7 0 5 - - 7 - -
14 1 0 0 0 1 0 0 3 - -
15 8 0 - 0 0 0 0 0 0 -
16 4 0 - - - - - - 8 -
17 0 0 - 0 0 - 0 0 0 -
18 - 0 - - - - - 3 0 -
19 - 0 0 - - 0 - - - 0
20 0 0 - - 0 - - - - 0
21 0 0 0 0 - 0 - 0 - 0
22 4 - 0 - - 2 4 0 0 0
23 1 3 3 3 0 0 0 0 3 0
24 0 0 0 0 - - 0 - 2 1
25 0 0 0 2 3 0 - 1 0 0
26 0 0 0 0 0 0 0 - 0 -
27 0 - 0 - 0 - 0 - - 0
28 0 0 0 0 0 0 0 0 - 0
29 - - 0 - - - 0 - - 8
30 0 - 0 - - 0 - 0 - 0
31 0 - 8 - 0 2 5 1 0 0
32 0 0 0 0 0 9 - 1 0 2
33 0 0 0 0 0 0 0 0 0 0
34 3 0 0 - 0 - 0 - 0 0
35 0 1 0 0 0 0 0 0 - -
36 5 3 4 - 0 0 0 0 0 0
37 0 0 1 3 - 0 1 0 4 3
38 0 0 0 0 0 1 0 0 0 0
39 - 0 0 0 - 0 - 0 - 0
40 0 0 - 0 - 0 - 0 - 0
41 0 - 0 0 0 1 0 0 0 0
42 7 - - 0 2 - - - 0 0
43 0 0 0 0 0 0 0 - 0 -
44 1 0 0 0 3 0 - 4 0 3
45 0 3 0 0 4 0 2 0 5 0
46 1 0 3 6 - 4 1 0 0 0
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Thiotepa:

Visit (months)
Patient 3 6 9 12 15 18 21 24 27 30

47 - 8 - - - - - - - -
48 0 0 0 - - - - - - -
49 - 0 0 - - - - - - -
50 0 - - 0 - - - - - -
51 1 0 0 0 0 - - - - -
52 7 7 2 0 0 0 - - - -
53 - 0 - 0 - 2 - - - -
54 - - - - - 0 - - - -
55 2 - - - - 0 - - - -
56 0 0 0 0 0 2 0 - - -
57 0 0 0 - 0 0 0 - - -
58 0 - 0 0 - 0 0 0 - -
59 - - 0 0 - 0 - 0 - -
60 0 0 0 0 0 0 0 0 - -
61 0 2 0 3 - - 1 0 0 -
62 0 1 0 0 0 - 0 - 0 -
63 2 - - - - - - - - 0
64 0 0 0 - - - 0 0 3 0
65 0 0 0 0 0 0 0 0 0 -
66 0 1 0 0 3 0 0 3 3 0
67 0 0 0 0 0 0 2 1 2 -
68 - 0 - - 0 0 - 3 2 1
69 0 0 0 0 0 0 0 0 0 0
70 0 0 0 0 0 0 0 0 0 0
71 1 0 - 0 - 0 0 0 1 0
72 - - 0 - - - - 0 - -
73 2 0 0 0 0 0 1 2 1 0
74 0 0 0 0 0 - 0 0 0 -
75 1 0 0 0 0 0 0 0 0 -
76 0 0 0 0 0 0 0 0 0 0
77 - - - 0 0 - - 0 - 0
78 1 - 0 0 - - 0 1 - 0
79 0 - - - - - 0 0 - -
80 0 0 0 0 0 0 0 0 0 0
81 0 0 0 0 0 0 0 0 0 0
82 0 0 0 0 0 0 0 0 0 0
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Appendix 2.2

Tables

Table 2.1: Parameter estimates, SE (in italics) and DIC in different PGP

models for the bladder cancer data

Shape Group Mean Ratio GOF

parameter proportion parameter parameter measure

zero mixture intercept treatment intercept time

rl φ† πl βµ0l βµ1l βa0l βa1l DIC

Model 1 1.0110 -0.9390 0.1707 -0.0158 1446.22

0.1895 0.1311 0.0694 0.0071

Model 2

low-level 0.5439 -2.0640 0.5134 1204.83

l = 1 0.0579 0.5126 0.4406

high-level 0.4561 1.1000 -0.5717 0.0266

l = 2 0.0579 0.2110 0.1558 0.0204

Model 3

low-level 0.7882 0.7366 1.053 -0.7118 -0.3398 0.02979 1012.98

l = 1 0.0554 0.0857 0.3857 0.1935 0.1578 0.0158

high-level 0.7882 0.2634 1.897 0.2113 -0.02212

l = 2 0.0554 0.0857 0.1492 0.1531 0.0172

Model 4

low-level 76.37 0.3823 -6.9760 3.5120 889.09
l = 1 15.34 0.0634 0.4293 0.4819

high-level 0.2943 0.6177 2.0900 -0.5064 0.1443 -0.0137

l = 2 0.0484 0.0634 0.2267 0.1751 0.1186 0.0131

†φ is the average of φt, t = 1, . . . , 10 with average standard error.
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Appendix 2.3

Figures

Figure 2.1: Trends of new tumour counts using ZMPGP model (Model 3)

(a) Overall trends
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Figure 2.2: Trends of new tumour counts using MPGP-Ga model (Model 4)

(a) Overall trends
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Figure 2.3: Proportions of zeros and variances of new tumour counts for

Model 1 to 4

(a) proportions of zeros across time
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(b) variances across time
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CHAPTER 3

Robust Poisson geometric process model

Continued from the development of PGP models to allow for overdis-

persion due to zero-inflation by the ZMPGP model in (2.4) and MPGP-Ga

model (2.9), this Chapter focuses on accommodating overdispersion due to

outlying observations.

3.1. Background

Most time series measured over continuous range assume a normal error

distribution. These traditional time series models are however vulnerable to

outliers. Outliers in time series have been realized as an influential factor

in model fitting and forecasting. Failure to downweigh the outlying effects

may lead to a poor model fit, an overestimation of variance, an inappropri-

ate interpretation and an inaccurate prediction. This issue has received a

great deal of attention, therefore several approaches have been developed to

reduce the influence of outliers and the distributional deviation in the data

analysis. In the past, two main approaches have been considered to cope

with the overdispersion caused by the outliers. The first approach simply

incorporates mixture effects to account for the heterogeneity in the distri-

bution of the data. This can be viewed as a missing data problem assuming

that the membership of the data from one of the distributions is unknown

68
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and has to be estimated. The mixture model is usually implemented using

expectation-maximization (EM) algorithm or Markov chain Monte Carlo

(MCMC) sampling algorithm.

The second approach is to adopt a heavy-tailed distribution instead of

the commonly used Gaussian distribution as the error distribution of the

data. Some popular choices of heavy-tailed distributions include the Stu-

dent’s t-distribution and a more general class of distributions is the Pear-

son Type IV distribution (Johnson et al., 1995). Alternatively, the expo-

nential power (EP) distribution which can describe a leptokurtic (positive

excess kurtosis) or platykurtic (negative excess kurtosis) shape is another

good choice. However, in the context of Bayesian analysis, the implemen-

tation of these distributions is troublesome because the marginal posterior

distributions of the parameters are difficult to derive using conventional nu-

merical and analytic approximations (Choy & Smith, 1997). To overcome

this problem, Box & Tiao (1973) proposed a new exponential power family

of normal scale mixtures (SMN) and later Qin et al. (1998) pioneered the

scale mixtures of uniforms (SMU) which replaces the normal distribution

in the SMN form by uniform distribution. Theoretically, any distribution

that can be expressed by SMN form, also has a SMU representation.

The hierarchical structure of the SMN or SMU representation possesses

two prominent advantages: (1) the resulting density contains a mixing pa-

rameter which can accommodate the extra-Poisson variation and help to
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identify the extreme values in outlier diagnosis and (2) the parameter esti-

mation can be simplified by sampling from normal or uniform distribution

using MCMC algorithms such as Gibbs sampling. The recent emergence

of the software WinBUGS which performs Bayesian statistical inferences

using MCMC algorithms also facilitates the implementation of these repre-

sentations, thus enhancing their popularity in the context of Bayesian mod-

elling. This hierarchical structure is very practical in insurance applications

because it is well known that the normal error distribution falls short of

allowing for irregular and extreme claims and hence contaminates the es-

timation procedure and leads to poor estimation. For instances, Choy &

Chan (2003) applied the Student’s t- and EP distributions in scale mixtures

(SM) representations to predict the insurance premiums to be charged on

the policyholders in credibility analysis and Chan et al. (2008) predicted

and projected the loss reserves data with various heavy-tailed distributions

under the generalized-t distribution family expressed in SMU representa-

tion.

So far, the techniques of using scale mixtures representation apply solely

to continuous time series. Yet, discrete count time series is observed in

many occasions especially in a medical context. In clinical trials where the

measurements are usually longitudinal, sometimes the appearance of outly-

ing observations may inflate the mean and variance of the data distribution

and have an adverse effect on both the parameter estimation and predic-

tion. Despite overdispersion caused by outlying observations, trend, cluster
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effect and serial correlation are often detected in longitudinal count time

series. Examining the trend patterns is particularly important as it provides

useful information on the movement of outcomes over time.

To cope with overdispersion, clustering as well as serial correlation,

Thall & Vail (1990) proposed adding subject-specific and time-specific ran-

dom effects into the mean link function to give extra Poisson-variation to the

outcomes. Assume that the outcome Wit follows a Poisson distribution, xit

and β are vectors of time-evolving covariates and regression coefficients,

{γi, i = 1, ,̇m} are positive-valued subject-specific random effects which

are independently distributed and {ut, t = 1, . . . , n} are positive-valued

time-specific random effects which are independently and identically dis-

tributed. Under the GLMM framework, Thall & Vail (1990) showed that

the marginal moments for Wit are given by

E(Wit) = exp(xT
itβE[ln(γiut)])

V ar(Wit) = exp(xT
itβ) +

{
V ar(γi)

[E(γi)]2
+
V ar(ut)

[E(ut)]2

}
[exp(xT

itβ)]2

Cov(Wit,Wi,t−k) =
V ar(γi)

[E(γi)]2
exp(xT

itβ) exp(xT
i,t−kβ).

However, Jowaheer & Sutradhar (2002) pointed out that the above model is

unable to accommodate autocorrelation structures such as the first-order au-

toregressive (AR(1)) structure. Therefore he considered a Poisson-gamma

mixed model to allow for overdispersion and incorporated an autoregres-

sive (AR) structure to the outcome to accommodate serial correlation. His

model is essentially a negative binomial model and can be classified as a
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OD model as the current outcome depends on past observations. Neverthe-

less, their models have not put much emphasis on investigating the trend

movements and the mixed model approach which assumes the mean of the

Poisson distribution follows gamma or log-normal distribution may be in-

adequate to cast light on the outlying effect caused by the extreme obser-

vations. To tackle this pitfall, plenty of studies considered various mix-

ing distributions. Some useful ones include generalized inverse Gaussian,

generalized gamma, generalized exponential, inverse gamma, etc. Refer to

(Gupta & Ong, 2005) for more details.

In this Chapter, we seek a new direction to model overdispersed longitu-

dinal time series of counts due to the presence of outliers while allowing for

non-monotone trends, cluster effect and serial correlation. Our proposed

model is an extension of the mixture Poisson geometric process (MPGP)

model introduced by Chan et al. (2010b) and Wan (2006) and a modifica-

tion of the MPGP-Ga model in the last Chapter by replacing the gamma

distribution with some heavy-tailed distributions in SM representation. The

resultant model is named as the robust mixture Poisson geometric process

(RMPGP) model. In the RMPGP model, we assume that the outcome vari-

able has a Poisson distribution with a stochastic mean which forms a latent

GP, and the mean of the GP after geometrically discounted by the ratio fol-

lows a heavy-tailed distribution such as log-t distribution or log-exponential

power (log-EP) distribution represented in SMN and SMU forms respec-

tively. Under the SM representation, the model parameters can be simulated
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using MCMC algorithms and the mixing parameters help to identify the ex-

treme values in outlier diagnosis. To our knowledge, this is a pioneering

work in adopting Student’s t- and EP distributions as mixing distributions

for time series of counts. Moreover, our proposed GP models have a trend

component (ratio function) which enables the study of trend movements and

can accommodate cluster effect using a mixture of robust Poisson geometric

process (RPGP) models. These make the RPGP models more advantageous

than many existing time series models for count data.

To demonstrate the characteristics and application of our models, the

rest of the Chapter is presented as follows. First, the development of RPGP

and RMPGP models using Student’s t- and EP distributions from the PGP

model will be described in Section 3.2. Section 3.3 will introduce the SM

representation of the two heavy-tailed distributions and their implementa-

tion in the RMPGP model. Besides, the hierarchical structure and MCMC

algorithms of the models will be given followed by the introduction of the

model assessment criterion and a test for serial correlation. Furthermore,

Section 3.4 will investigate the properties of the RMPGP models through

a simulation study and Section 3.5 will demonstrate an application of the

proposed models using the epilepsy data studied by Leppik et al. (1985)

with discussion. Lastly, a brief summary will be given in Section 3.6.
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3.2. Model specification

This Section first introduces the general framework of the RPGP model.

Then the proposed model using two commonly used heavy-tailed distri-

butions will be discussed with an examination of the model distributions.

After that, the incorporation of mixture effect will be described briefly.

3.2.1. RPGP Model. LetWit denotes the outcome for subject i at time

twhere i = 1, . . .m, t = 1, . . . , ni and n =
m∑

i=1

ni. Assume thatWit follows

a Poisson distribution fP (wit|xit) with mean Xit which forms a latent GP.

Furthermore, the stochastic process {Yit = at−1
it Xit, t = 1, . . . , ni} follows

some lifetime distributions f(yit), such as exponential distribution in Wan

(2006) and gamma distribution in Chapter 2, with mean E(Yit) = µit, the

resultant model is called Poisson geometric process (PGP) model.

Without loss of generality, we assume that the logarithm of Yit, i.e.

Y ∗
it = lnYit follows a heavy-tailed distribution f(y∗it) with mean E(Y ∗

it ) =

µ∗
it. Then, the marginal pmf for Wit is

f(wit) =

∫ ∞

0

fP

(
wit

∣∣∣∣
ey∗

it

at−1
it

)
f(y∗it) dy

∗
it

=

∫ ∞

0

exp
(
− ey∗it

at−1
it

)(
ey∗it

at−1
it

)wit

wit!
f(y∗it) dy

∗
it. (3.1)

The resultant model is named as the robust Poisson GP (RPGP) model.

The RPGP model is essentially a state space model with state variables

Xit and has time-evolving mean and ratio functions to accommodate ex-

ogenous effects and non-monotone trends. The mean function µ∗
it which is
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identity-linked and ratio function ait which is log-linked to linear functions

of covariates are defined as:

µ∗
it = βµ0 + βµ1zµ1it + · · · + βµqµ

zµqµit (3.2)

ln ait = βa0 + βa1za1it + · · · + βaqa
zaqait (3.3)

where zjkit, j = µ, a; k = 1, . . . , qj are some time-evolving covariates.

By mixing the Poisson distribution with some heavy-tailed distribu-

tions, extra variability is added to the Poisson distribution which enables

the model to accommodate the inflated variance caused by some extreme

observations. In this Chapter, we consider the Student’s t- and EP distribu-

tions because they have different shapes including heavier-than-normal to

normal tails in the former as well as platykurtic shape and leptokurtic shape

with a kink in the latter. The various shapes allow the model to be more

flexible to capture different kurtoses in the data.

3.2.1.1. RPGP model with Student’s t-distribution. If Y ∗
it has a Stu-

dent’s t-distribution with mean µ∗
it and variance

ν

ν − 2
σ2, the probability

density function of Student’s t-distribution fT (y∗it) is given by

fT (y∗it) =
Γ(ν+1

2
)√

νπσΓ(ν
2
)

[
1 +

(y∗it − µ∗
it)

2

νσ2

]− (ν+1)
2

(3.4)

where µ∗
it is given by (3.2) and ν > 2 is the degrees of freedom which

controls the tailedness. A small ν gives a heavier tail and Student’s t-

distribution converges to normal distribution when ν → ∞. The kurtosis

is
6

ν − 4
+ 3 for ν > 4 which is greater than 3, the kurtosis of the normal

distribution.
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To study the pmf of the proposed RPGP-t model, we assume qµ = qa =

1, zµ1 = b = 0, 1 as the covariate effect and za1t = t as the time-evolving

effect in (3.2) and (3.3). Hence the mean function µt = exp(βµ0 + βµ1b)

and ratio function at = exp(βa0 +βa1t). Fixing b = 1 and t = 2, we change

the values of one of the scale σ, shape ν or location parameters βa0 and βµ0

each time while keeping the other parameters constant and approximate

the pmf in (3.1) using Monte Carlo (MC) integration as described below.

Conditional on covariate zµ1 = b and time t, the marginal pmf estimator

f̂bt(w), in general, can be obtained by:

f̂bt(w) =
Ms∑

j=1

fP

(
w

∣∣∣∣∣
eŷ

∗(j)
bt

at−1
t

)
=

Ms∑

j=1

exp

(
− e

ŷ
∗(j)
bt

at−1
t

)(
e
ŷ
∗(j)
bt

at−1
t

)w

w!
, w = 0, 1, . . . ,∞; and

ŷ
∗(j)
bt ∼ fT (y

∗(j)
bt |µ∗

t , σ, ν), j = 1, . . . ,Ms (3.5)

whereMs = 10000 is the number of simulations and the latent ŷ∗(j)bt are sim-

ulated from the Student’s t-distribution in (3.4) given the parameters µ∗
it, σ

and ν. Besides examining the mean and variance, we also study the kurtosis

of the approximated pmf using the method in Gupta & Ong (2005) for a dis-

crete distribution. The relative long-tailedness of the distribution is defined

as limw→∞
f̂bt(w + 1)

f̂bt(w)
where the limit is zero for Poisson distribution. By

fixing the parameters at ν = 10, σ = 0.5, βµ0 = 3.0, βµ1 = −0.2, βa0 = 0.5

and βa1 = −0.1 but leaving one floating, the marginal pmfs are displayed

in Figures 3.1(a) to 3.1(d) in Appendix 3.3 with their means, variances and

kurtoses summarized in Table 3.1 in Appendix 3.2. Note that since different
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pmfs are drawn on the same graph for comparison, we use curves instead

of bars to represent the marginal pmfs for better visualization.

====================================

Figures 3.1(a) to 3.1(d) and Table 3.1 about here

====================================

Results from Figures 3.1(a) to 3.1(d) reveal that in general the loca-

tion, variability and tailedness of the marginal pmf depend on parameters

βjk, j = µ, a; k = 0, 1, in which a larger βµ0 and a smaller βa0 lead to larger

mean, variance and kurtosis. Whereas, ν and σ control the spread and the

tail behaviour of the distribution without altering its mean. A smaller ν and

a larger σ contribute to a larger variability and a heavier tail and thus the

model can accommodate the outlying effect due to extreme values while

keeping the mean unchanged. Since the variance of each distribution in

Table 3.1 is substantially larger than the mean, the RPGP-t model is capa-

ble of fitting data with overdispersion due to outliers as well as data with

equidispersion when σ is small.

3.2.1.2. RPGP model with EP distribution. If Y ∗
it has an exponential

power (EP) distribution, also known as generalized error distribution, with

mean µ∗
it and variance σ2, it has a probability density function

fEP (y∗it) =
c1
σ

exp


−
∣∣∣∣∣
c
1/2
0 (y∗it − µ∗

it)

σ

∣∣∣∣∣

2/ν

 (3.6)

where c0 =
Γ(3ν/2)

Γ(ν/2)
, c1 =

c
1/2
0

(νΓ(ν/2))
and ν ∈ (0, 2] is a shape parameter

which controls the kurtosis. This family subsumes a range of symmetric
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distributions such as uniform (ν → 0) with kurtosis equal to 1.8, normal

(ν = 1) with kurtosis equal to 3 and double exponential (ν = 2) with

a kurtosis of 6. Its tails can be more platykurtic when ν < 1 or more

leptokurtic when ν > 1 compared with the normal tail (ν = 1).

By fixing the parameters at ν = 1, σ = 0.5, βµ0 = 3.0, βµ1 = −0.5, βa0 =

0.5 and βa1 = −0.1 but leaving one floating, the marginal pmfs are again

approximated using MC integration specified in (3.5) but replacing fT (y
∗(j)
bt |µ∗

t , σ, ν)

with fEP (y
∗(j)
bt |µ∗

t , σ, ν) in (3.6). The effects of different parameters on

the resulting pmfs are illustrated in Table 3.2 in Appendix 3.2 and Figures

3.2(a) to 3.2(d) in Appendix 3.3. Clearly, the tail of the distribution depends

on all the parameters and the behaviours of the parameters σ, βµ0 and βa0 on

the resultant pmf are quite close to that of RPGP-t model. However, com-

paring Figure 3.2(a) with Figure 3.1(a), the shape parameter ν in the RPGP-

EP model allows a wider range of shapes than that of the RPGP-t model as

the EP distribution includes both leptokurtic and platykurtic shapes. Hence

the RPGP-EP model can accommodate different degrees of tailedness due

to moderate to adverse outlying effects.

====================================

Figures 3.2(a) to 3.2(d) and Table 3.2 about here

====================================

3.2.2. Incorporation of mixture effects. Overdispersion may arise due

to cluster effect, hence an alternative way to tackle overdispersion is to add

mixture effects into the mean and ratio functions. Suppose that there are G
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groups of subjects who have different trend patterns and each subject has a

probability πl of coming from group l, l = 1, . . . , G. Conditional on group

l, the marginal pmf for Wit is given by:

fDl(wit) =

∫ ∞

−∞

exp
(
− ey∗

itl

at−1
itl

)(
ey∗

itl

at−1
itl

)wit

wit!
fD(y∗itl) dy

∗
itl (3.7)

whereD = T,EP denotes the Student’s t- and EP distributions respectively

and the group-specific mean µitl and ratio aitl functions become

µ∗
itl = βµ0l + βµ1lzµ1it + · · · + βµqµlzµqµit, and (3.8)

ln aitl = βa0l + βa1lza1it + · · · + βaqalzaqait (3.9)

respectively. The resultant model is named as robust mixture Poisson geo-

metric process (RMPGP) model in which fD(y∗itl) is given by fT (y∗itl) in

(3.4) or fEP (y∗itl) in (3.6) for the RMPGP-t or RMPGP-EP model. To illus-

trate the distribution of a 2-group RMPGP-EP model, its pmf (π1f1(wit) +

(1−π1)f2(wit)) where fl(wit), l = 1, 2 is given by (3.7) is plotted in Figure

3.3 by assuming G = 2, qµ = qa = 1, t = 1, zµ1i = 1 and za1it = t.

For l = 1, we set π1 = 0.8, βa01 = −0.1, βa11 = 0.05, βµ01 = 3, βµ11 =

−0.2, ν1 = 0.2 and σ1 = 0.2 while for l = 2, we use βa02 = 0.1, βa12 =

−0.01, βµ02 = 5, βµ12 = −0.4, ν2 = 1.9 and σ2 = 0.01. Figure 3.3 clearly

displays the two distinct modes in the distribution with a larger mode (l = 1)

at smaller values ofW and a smaller one (l = 2) at larger values ofW repre-

senting the outliers. This explains how the incorporation of mixture effects
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in the RMPGP-EP model can accommodate overdispersion due to cluster

effects.

====================================

Figure 3.3 about here

====================================

3.3. Bayesian inference

Performing statistical inference using classical methods like maximum

likelihood approach is cumbersome when the data distribution has no closed-

form because the likelihood function involving high-dimensional integra-

tion is intractable. To avoid such numerical difficulties, we use a Bayesian

approach via MCMC algorithms to convert the optimization problem to a

sampling problem. Since the non-conjugate structure in the posterior distri-

bution for both RMPGP models and the absolute term in the density func-

tion of the EP distribution complicate the sampling algorithms, representing

the heavy-tailed distributions in a scale mixtures form produces a simpler

set of full conditional posterior distributions for the parameters and allevi-

ates the computational burden of the Gibbs sampler in the MCMC algo-

rithms.

3.3.1. Scale mixtures representation of heavy-tailed distributions.

Choy & Smith (1997) has shown that Student’s t- and EP distributions can

be expressed in scale mixtures representation to facilitate the simulation in

the MCMC algorithms via a Bayesian hierarchical structure. However, the
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ways they handle outliers are different. Choy & Walker (2003) revealed

that the former downweighs the extreme values, whereas the latter merely

downweighs or bounds the influence of the outliers. Thus, it will be inter-

esting to study their performances in outlier diagnosis. In the following,

the Student’s t-distribution expressed in SMN form and the EP distribution

represented in SMU form will be discussed in detail.

3.3.1.1. Student’s t-distribution in SMN representation. Assume that a

continuous random variable Y has a Student’s t-distribution fT (y) with lo-

cation µ, scale σ2 and degrees of freedom ν. The probability density func-

tion of Y is said to have a SMN representation if it can be expressed as

fT (y|µ, σ, ν) =

∫ ∞

0

fN

(
y

∣∣∣∣µ,
σ2

u

)
fG

(
u
∣∣∣ν
2
,
ν

2

)
du (3.10)

where fN(·| c, d) represents a normal distribution with mean c and variance

d, fG(·| c, d) refers to a gamma distribution with mean
c

d
and variance

c

d2
,

ν is a shape parameter and u is a mixing parameter which can be used to

identify outlier. An outlier is indicated if u is substantially small since small

value implies that the normal distribution in (3.10) has an inflated variance.

When the variance
σ2

u
is inflated by a small u, the effect of the outlier on

the parameter σ2 will be downweighed.

Substituting the SMN form in (3.10) for (3.4) in the RMPGP-t model,

the marginal pmf for Wit in (3.7), conditional on group l, becomes:

∫ ∞

−∞

exp
(
− ey∗

itl

at−1
itl

)(
ey∗

itl

at−1
itl

)wit

wit!

∫ ∞

0

fN

(
y∗itl

∣∣∣∣µ∗
itl,

σ2
l

uitl

)
fG

(
uitl

∣∣∣νl

2
,
νl

2

)
duitl dy

∗
itl.
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3.3.1.2. Exponential power distribution in SMU representation. Theo-

retically, any distribution that can be expressed in SMN form, also has a

SMU representation (Qin et al., 1998). To simplify the implementation of

the MCMC sampling algorithm, Walker & Gutiérrez-Peña (1999) first pro-

posed to express the EP distribution in SMU representation. In a slightly

different form, Chan et al. (2008) wrote the EP distribution in SMU form

as follows:

fEP (y|µ, σ) =

∫ ∞

0

fU

(
y|µ− σuν/2, µ+ σuν/2

)
fG

(
u

∣∣∣∣ 1 +
ν

2
,
1

2

)
du (3.11)

where fU(·| c, d) is a uniform distribution on the interval [c, d] and again u

is a mixing parameter. Different from the Student’s t-distribution, the larger

the u, the wider is the range of the uniform distribution to accommodate a

possible outlier.

In the RMPGP-EP model, if we replace (3.6) with (3.11), the marginal

pmf for Wit in (3.7), conditional on group l becomes:

∫ ∞

−∞

exp
(
− ey∗

itl

at−1
itl

)(
ey∗

itl

at−1
itl

)wit

wit!

∫ ∞

0

fU

(
µ∗

itl − σlu
νl/2
itl , µ

∗
itl + σlu

νl/2
itl

)
fG

(
uitl

∣∣∣∣1 +
νl

2
,
1

2

)
duitl dy

∗
itl.

(3.12)

3.3.2. MCMC algorithms. WinBUGS described in Section 1.4.3 is

used to implement the MCMC algorithms. For the RMPGP-t and RMPGP-

EP models, the hierarchical structure under the Bayesian framework is out-

lined as follows:
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wit ∼ Ii1fP

(
ey∗

it1

at−1
it1

)
+ · · · + IiGfP

(
ey∗

itG

at−1
itG

)

y∗itl ∼





fN

(
µ∗

itl,
σ2

l

uitl

)
and uitl ∼ fG

(
νl

2
, νl

2

)
, for RMPGP-t model

fU

(
µ∗

itl − σlu
νl/2
itl , µ

∗
itl + σlu

νl/2
itl

)
and uitl ∼ fG

(
1 + νl

2
, 1

2

)
, for RMPGP-EP model

where µ∗
itl and aitl are given by (3.8) and (3.9) and Iil is the group member-

ship indicator for subject i such that Iil = 1 if he/she comes from group l

and zero otherwise. In order to construct the posterior density, some prior

distributions are assigned to the model parameters as follows:

βjkl ∼ N(0, τ 2
jkl), (3.13)

j = µ, a; k = 0, 1, . . . , qj; l = 1, . . . , G

σ2
l ∼ IG(cl, dl) (3.14)

νl ∼





Uniform(0.01, el), for RMPGP-t model

Uniform(0, 2), for RMPGP-EP model
(3.15)

(Ii1, . . . , IiG)T ∼ Multinomial(1, π1, . . . , πG) (3.16)

(π1, . . . , πG)T ∼ Dir(α1, . . . , αG) (3.17)

where cl, dl, el are some positive constants, IG(cl, dl) denotes the inverse

gamma distribution with density given by

fIG(x| cl, dl) =
d cl

l

Γ(cl)
x−(cl+1) exp

(
−dl

x

)

and Dir(α) represents a Dirichlet distribution, a conjugate to multinomial

distribution, with parameters α = (α1, . . . , αG) where αl is set to be 1/G.
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In case of a 2-group (G = 2) mixture model, (3.16) can be simplified to

Ii1 ∼ Bernoulli(π1), Ii2 = 1 − Ii1 and (3.17) becomes a uniform prior

Uniform(0, 1) for π1 with π2 = 1 − π1. With the posterior means Īil of

the group membership indicators Iil, patient i is classified to group l′ if

Īil′ = max
l
Īil.

According to Bayes’ theorem, the posterior density is proportional to the

joint densities of complete data likelihood and prior distributions. For the

RMPGP-t and RMPGP-EP models, the complete data likelihood functions

LT (θ) and LEP (θ) for the observed data wit and missing data {y∗itl, uitl, Iil}

are:

LT (θ) =
m∏

i=1

G∏

l=1

[
πl

ni∏

t=1

fP (wit|βal, y
∗
itl)fN(y∗itl|βµl, σl, uitl)fG(uitl| νl)

]Iil

and

LEP (θ) =
m∏

i=1

G∏

l=1

[
πl

ni∏

t=1

fP (wit|βal, y
∗
itl)fU(y∗itl|βµl, σl, νl, uitl)fG(uitl| νl)

]Iil

. (3.18)

The vector of model parameters θ = (βT ,σT ,νT ,πT )T where β = (βT
µ1, ...,β

T
µG,

βT
a1, ...,β

T
aG)T = (βµ01, ..., βµqµG, βa01, ..., βaqaG)T , σ = (σ1, ..., σG)T ,

ν = (ν1, ..., νG)T and π = (π1, ..., πG)T .

Treating {y∗itl, uitl, Iil} as missing observations, the joint posterior den-

sity of the RMPGP-EP model is expressed as follows:

f(β,σ,ν,π|w, I,y∗,u) ∝ LEP (θ)

(∏

j=µ,a

qj∏

k=0

G∏

l=1

fN(βjkl| 0, τ 2
jkl)

)(
G∏

l=1

fIG(σ2
l | cl, dl)

)

(
G∏

l=1

fU(νl| 0, 2)
)
fDir(π|α)
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where w = (w11, w12, ..., wmnm
)T , I = (I11, I12, ..., ImG)T , y∗ = (y∗111, y

∗
121, ..., y

∗
mnmG)T

and u = (u111, u121, ..., umnmG)T . The complete data likelihood LEP (θ)

of the RMPGP-EP model is given by (3.18) and the priors are given by

(3.13)-(3.17). In Gibbs sampling, the unknown parameters are simulated it-

eratively from their univariate conditional posterior distributions which are

proportional to the joint posterior density of complete data likelihood and

prior densities.

The univariate full conditional posterior densities for each of the un-

known model parameters in θ and missing observations in {y∗,u, I} are

given by:

f(βµkl|w, I,y∗,u,β−,σ,ν,π) ∝ exp

(
−
β2

µkl

2τ 2
µkl

)
restricted to

βµkl ∈
[
z−1

µkit max
i, t

(y∗itl − σlu
νl/2
itl −

∑

κ6=k

βµκlzµκit), z
−1
µkit min

i, t
(y∗itl + σlu

νl/2
itl −

∑

κ6=k

βµκlzµκit)

]
,

if zµkit 6= 0

f(βakl|w, I,y∗,u,β−,σ,ν,π) ∝ exp

{
−

m∑

i=1

Iil

ni∑

t=1

[
ey∗

itl

at−1
itl

+ βaklzakit(t− 1)wit

]
− β2

akl

2τ 2
akl

}

f(y∗itl|w, I,y∗−,u,β,σ,ν,π) ∝ exp

(
− ey∗

itl

at−1
itl

+ y∗itlwit

)

restricted to y∗itl ∈ (µ∗
itl − σlu

νl/2
itl , µ

∗
itl + σlu

νl/2
itl )

f(σ2
l |w, I,y∗,u,β,σ−,ν,π) ∝ σ

−(
mP

i=1
niIil+2cl+2)

l exp

(
− dl

σ2
l

)

restricted to σ2
l > max

i, t

[
(y∗itl − µ∗

itl)
2

uνl

itl

]

f(uitl|w, I,y∗,u−,β,σ,ν,π) ∝ exp
(
−uitl

2

)
restricted to uitl >

(
y∗itl − µ∗

itl

σl

)2/νl
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f(νl|w, I,y∗,u,β,σ,ν−,π) ∝
[
Γ
(νl

2
+ 1
)

2
νl
2

]− mP
i=1

niIil

restricted to νl > max
i,t

ln
(

y∗

itl
−µ∗

itl

σl

)2

ln uitl

f(I i|w, I−,y∗,u,β,σ,ν,π) ∝
G∏

l=1





πl

ni∏
t=1

exp

„
− e

y∗
itl

a
t−1
itl

−
uitl
2

«„
e
y∗
itl

a
t−1
itl

«wit

σlΓ(
νl
2

+1)2
νl
2

G∑
l′=1


πl′

ni∏
t=1

exp

 
− e

y∗
itl′

a
t−1
itl′

−
u

itl′

2

! 
e
y∗
itl′

a
t−1
itl′

!wit

σl′Γ(
ν
l′

2
+1)2

ν
l′
2








Iil

=
G∏

i=1

π′ Iil

il = Multinomial(1, π′
i1, . . . , π

′
iG)

f(πl|w, I,y∗,u,β,σ,ν,π−) ∝ π

mP
i=1

Iil+αl−1

l

where β−,y∗−,u−,σ−,ν−,π− and I− and are vectors of β,y∗,u,σ,ν,π

and I excluding βjkl, y
∗
itl, uitl, σl, νl, πl and I i = (Ii1, . . . , IiG)T respec-

tively. The MCMC algorithms can be derived for the RMPGP-t model in

a similar way. Nevertheless, the MCMC algorithms are implemented using

the user-friendly software WinBUGS where the sampling scheme based on

the conditional posterior densities is outlined in this Section and the Gibbs

sampling procedures are described in Section 1.4.3.

3.3.3. Model selection criterion. For the simulation experiment in Sec-

tion 3.4 and data analysis in Section 3.5, we adopt the deviance information

criterion (DIC), originated by Spiegelhalter et al. (2002), as the model se-

lection criterion. Deviance information criterion (DIC) is a sum of the

posterior mean deviance D(θ) measuring the model fit and the effective
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dimension pD which accounts for the model complexity. For the RMPGP

model, the DIC is defined as

DIC = D(θ) + pD

= − 4

M

M∑

j=1

m∑

i=1

G∑

l=1

I
′(j)
il

[
lnπ

(j)
l +

ni∑

t=1

ln
{
fP (wit| y∗(j)itl ,β

(j)
al )fD(y

∗(j)
itl |β(j)

µl , σ
(j)
l , ν

(j)
l )
}]

+2
m∑

i=1

G∑

l=1

Ī ′il

[
ln π̄l +

ni∑

t=1

ln
{
fP (wit| ȳ∗itl, β̄al)fD(ȳ∗itl| β̄µl, σ̄l, ν̄l)

}
]

(3.19)

where M is the number of realizations in the MCMC sampling algorithms,

fD(·), D = T or EP are densities given by (3.4) and (3.6) for the RMPGP-

t and RMPGP-EP models respectively, βal = (βa0l, ..., βaqal)
T , βµl =

(βµ0l, ..., βµqµl)
T , and θ(j) and θ̄ represent the jth posterior sample and pos-

terior mean of parameter θ respectively,

I
′(j)
il =

π
(j)
l

ni∏
t=1

{
fP (wit| y∗(j)itl ,β

(j)
al )fD(y

∗(j)
itl |β(j)

µl , σ
(j)
l , ν

(j)
l )
}

G∑
l′=1

π
(j)
l′

ni∏
t=1

{
fP (wit| y∗(j)itl′ ,β

(j)
al′ )fD(y

∗(j)
itl′ |β

(j)
µl′ , σ

(j)
l′ , ν

(j)
l′ )
} ,

and Ī ′il is defined in a similar way by replacing y∗(j)itl and θ(j) with ȳ∗itl and

θ̄. The rule of thumb is that the smaller the DIC, the better is the model.

3.3.4. Test for serial correlation. Parameter interpretation and predic-

tion are made based on the best model. After investigating the trend, cluster

and covariate effects, the remaining unexplained variation is used to test for

serial correlation. In order to calculate the Pearson’s residuals, the marginal

mean and variance of the outcome Wit are needed. Denote the conditional

mean and variance on the group being analyzed by El(Wit) and V arl(Wit)
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respectively which are estimated using the approximated pmfs from the MC

integration in (3.5) with the group-specific model parameters, the marginal

predicted mean Ê(Wit) and variance V̂ ar(Wit) are given by

Ê(Wit) =
G∑

l=1

ĪilEl(Wit)

V̂ ar(Wit) =
G∑

l=1

Īil [V arl(Wit) + El(Wit)] −
[

G∑

l=1

ĪilEl(Wit)

]2

where Īil is the posterior mean of the group l membership indicator Iil for

subject i. The Pearson residual is then defined as

εit =
wit − Ê(Wit)√
V̂ ar(Wit)

.

The test statistic TL under the null hypothesis that the Pearson residuals are

not autocorrelated up to lag L is given by

TL =
L∑

k=1

m∑

i=1

ni




ni∑
t=k+1

εitεi,t−k

ni∑
t=1

ε2it




2

and is asymptotically distributed as chi-square χ2(mL) with degrees of free-

dom mL. See Brännäs & Johansson (1996) for more details.

If significant serial correlation is detected up to lag L, an appropri-

ate autocorrelation structure is introduced in the model. To accomplish

the autocorrelation, a L-order autoregressive structure (AR(L)) structure

will be introduced to the model by adding L autoregressive (AR) terms

(Wt−1, . . . ,Wt−L) as covariates into the mean function µ∗
itl in (3.8) and the

chosen model will be refitted. The performance of the resultant model will
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be evaluated based on the significance of the model parameters in the AR

structure and the model selection criterion DIC .

3.4. Simulation study

To investigate the properties of the RPGP-t and RPGP-EP models, we

conducted a simulation study in which h = 100 data sets are simulated from

each of the RPGP models based on a set of true parameters. For simplicity,

we set G = 1, qµ = qa = 1 and each data set contains m = 80 time series

of length ni = 8 from m0 = 40 subjects in the control group (b = 0) and

another m1 = 40 subjects in the treatment group (b = 1) with zµ1it = b

in the mean function in (3.2). The degrees of freedom ν is set to include

heavy (ν = 2.5) and light (ν = 50) tails for Student’s t-distribution and

platykurtic (ν = 0.1) and leptokurtic (ν = 1.8) shapes for EP distribution.

The parameter βa1 in the ratio function in (3.3) with za1it = t is also set

to include different trend patterns by varying the sign and magnitude of the

true value.

Afterwards both models are fitted to each data set using the Bayesian ap-

proach implemented by WinBUGS and R2WinBUGSwhich are described in

Section 1.4.3. For the hyperparameters in the prior distributions (dropping

the subscript ‘l’ sinceG = 1), we assign τ 2
jk = 1000 in (3.13), c = d = 0.01

in (3.14) and e = 150 in (3.15). The parameter estimate θ̂ is given by the

average of h = 100 posterior medians θ̂j . To examine the precision of the

MCMC algorithms, the standard deviation (SD) of θ̂j over h = 100 sim-

ulated data sets for each parameter θ is reported. In addition, to assess the
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accuracy of parameter estimates when the data set is simulated and fitted

to the same model, we calculate the mean squared error (MSE) for each

parameter θ which is defined as:

MSE =
1

h

h∑

j=1

(θ̂j − θ)2.

For model selection, the averageDIC and average squared error (ASE)

proposed by Wegman (1972) are used to assess the quality of the density

estimator on the true pmf. Denote the true pmf of the RMPGP model by

fbt(w) at time t with covariate b, the ASE is used to compare the perfor-

mance of the two models fitted to the same simulated data set and is defined

as

ASE =
∑

b=0,1

ψb

ni∑

t=1

h∑

j=1

∞∑

w=0

{
f̂

(j)
bt (w) − fbt(w)

}2

where f̂ (j)
bt (w) is the pmf estimator of (3.1) using MC integration described

in (3.5) for counts w in the jth simulated set at time t with treatment effect b

and ψb =
mb

m
is the weight associated with the control (b = 0) or treatment

group (b = 1). Clearly, the smaller the ASE, the closer is the estimated

pmf to the true one and thus the better is the model performance.

Table 3.3 in Appendix 3.2 summarizes the results of the four sets of sim-

ulation experiments with the first two data sets simulated from the RPGP-t

model and the next two simulated from the RPGP-EP model. In general, the

MCMC algorithms give unbiased and precise estimates as both MSE and

SD of most parameters are reasonably small. Moreover, the values of the

shape parameter ν of the two models match with each other in terms of the
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tailedness. For example, the small ν̂ = 5.286 in the Student’s t-distribution

in data set 1 agrees with ν̂ = 1.8234 which is close to 2 in the EP distri-

bution. However, it is noticed that ν of the RPGP-t model has relatively

lower precision and higher bias reflecting the higher level of difficulty in

estimating the tailedness of the heavy-tailed Student’s t-distribution.

==================================

Table 3.3 about here

==================================

In model comparison, although the RPGP-t model has a slightly smaller

ASE (0.04504 versus 0.04817 averaged over the four simulated data sets),

the RPGP-EP model outperforms the RPGP-t model with smaller DIC

(1968.4 versus 1979.48). All in all, these simulation experiments show that

the performance of the MCMC algorithms for the two models is satisfactory

and the estimated pmfs f̂ (j)
bt (w) approximate the true pmfs fbt(w) reason-

ably well. While EP distribution can be platykurtic or leptokurtic with a

kink and Student’s t-distribution can give a very heavy tail when the outly-

ing effect is tremendous, the two RPGP models are suitable under different

circumstances.

3.5. Real data analysis

3.5.1. Data and model fitting. We illustrate the usefulness of our pro-

posed models through the epilepsy data which can be found in Thall & Vail

(1990) and given in Appendix 3.1. The data were collected from a clinical

trial of 59 epileptics by Leppik et al. (1985). In the randomized controlled
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trial, m = 59 patients suffering from simple or complex partial seizures

were assigned to either the antiepileptic drug progabide (zµ1i = 1) or the

placebo (zµ1i = 0) with no intrinsic therapeutic value. The seizure counts

were recorded at a two-week interval for an eight-week period (ni = 4)

with no dropout or missing cases. As shown in Table 3.4 in Appendix 3.2,

the seizure counts exhibit a prominent extra-Poisson variation with large

variance to mean ratios at all time t due to some outlying observations

as displayed in Figures 3.4(a) and 3.4(b) in Appendix 3.3. To assess the

overdispersion in the data, we fitted a simple Poisson regression model us-

ing a mean link function ηit = exp(β0 + β1zµ1i + β2t) and a simplified

PGP model in Wan (2006) using a mean function µit = exp(βµ0 + βµ1zµ1i)

and a ratio function ait = exp(βa0 + βa1t). The mean and variance under

both models are equivalent (indicated by ‘*’ in Table 3.4) and are given by

ηit and
µit

at−1
it

respectively. Obviously, neither of the two simple models, as

restricted by their equidispersed property, can capture the overdispersion.

Besides, the higher mean seizure counts of the placebo group indicate that

‘treatment group’ is a feasible covariate. Moreover, the gradually decreas-

ing seizure counts over time for both placebo and progabide groups suggest

that time t maybe a possible time-evolving covariate. In addition, popu-

lation heterogeneity in terms of trend pattern and count level is detected

intuitively. In consideration of these and the clinical interest of examining

the trend patterns, we adopt the RMPGP models to analyze the epilepsy

data.
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====================================

Figures 3.4(a) and 3.4(b) and Table 3.4 about here

====================================

Referring to the MCMC algorithms detailed in Section 3.3.2, our prior

specifications are mostly non-informative except for νl in the RMPGP-t

model. In both RMPGP models, we assign τ 2
jkl = 1000 in (3.13), cl =

dl = 0.001 in (3.14) and αl = 1/G in (3.17) for a G-group (G ≥ 2) model.

For νl in the RMPGP-t model, we take el = 20 since there is a high degree

of overdispersion in the seizure counts. After implementing the MCMC

algorithms in WinBUGS, the posterior sample means are adopted as param-

eter estimates since the posterior densities of most model parameters are

highly symmetric such that the posterior sample mean is close to the poste-

rior sample median.

We first fitted a simple RPGP model with treatment group (zµ1it = 0, 1)

as the covariate in the mean function µitl in (3.8) and two-week interval

(za1it = t = 1, 2, 3, 4) as the time-evolving effect in the ratio function

aitl in (3.9). The insignificant βµ1’s in both RPGP models indicate that

the progabide treatment effect is insignificant (95% CIs for βµ1 in RPGP-t

model and RPGP-EP model include zero). However, within the treatment

group, it is explicit that some of these patients have abnormally high seizure

counts. Simply fitting a simple RPGP model may fail to allow for the cluster

effect among patients receiving the same treatment. We therefore fitted

the 2-group and 3-group RMPGP models using both Student’s t- and EP
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distributions but the results indicate that one of the groups in the 3-group

RMPGP models degenerated and hence the models are discarded. Table 3.5

in Appendix 3.2 summarizes the parameter estimates, standard errors (SE)

and model selection criterion DIC of the 1-group and 2-group RMPGP

models.

==================================

Table 3.5 about here

==================================

3.5.2. Results. Not surprisingly, both RMPGP models give parallel re-

sults as they share some common model properties except the shape of the

distribution of y∗itl. In the RMPGP-t model, two distinct groups of patients

are identified with the first group of patients having generally higher seizure

counts and is named as the high-level group (l = 1). Within this group, 54%

of the patients are receiving progabide and they have lower seizure counts in

general (β̂µ11 < 0) than those receiving placebo. However, the difference is

insignificant since the 95% CI for βµ11 is [−0.7197, 0.0426] which includes

zero. Whereas in the low-level (l = 2) group, 49% of the patients belong

to the progabide group and again they generally have less epileptic seizures

during the studying period (β̂µ12 < 0, 95% CI:[−0.5992,−0.0921]). More-

over, the ratio function ait1 in (3.9) reveals that there is a slightly decreasing

trend in the seizure counts in the high-level group while ait2 indicates that

no obvious trend is detected in the low-level group. In addition, comparing

with the low-level group, the relatively smaller ν̂1 shows that the high-level
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group has a higher degree of overdispersion in the seizure counts due to

the existence of some abnormally large observations as revealed in Figures

3.4(a) and 3.4(b).

As expected, the RMPGP-EP model gives consistent results in terms

of trend pattern and treatment effect. Moreover, the group membership

of the patients has a close affinity with that of RMPGP-t model and two

diverse groups, high-level and low-level groups, are recognized as well. But

for the high-level group, despite the comparable mean level, the difference

between the two treatment effects becomes significant (95% CI for βµ11:

[−0.5992,−0.0921]). Furthermore, the ratio function ait1 shows that the

seizure count increases until the second 2-week interval (t = 2) before it

drops in the next two 2-week intervals. Consistently, the estimate ν̂1 = 1.49

(leptokurtic shape in the EP distribution) agrees with the small ν̂1 = 7.21

(heavier-than-normal tail in the Student’s t-distribution) in the RMPGP-t

model indicating that the distribution of the seizure counts in the high-level

group has a heavier tail to account for the higher degree of overdispersion.

On the other hand, the smaller ν̂2 = 0.24 (platykurtic in the EP distribution)

indicates the model distribution is more uniform in the low-level group.

For model selection, the smallerDIC given by (3.19) as shown in Table

3.5 for the RMPGP-EP model manifests its better model fit on the epilep-

tic seizure counts after accounting for the model complexity. A plausible

explanation is that the EP distribution has a more flexible tail behaviour

and thus provides a better fit to the data. To further investigate this, their
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observed and fitted pmfs for the low-level group are illustrated in Figures

3.5(a) to 3.5(d) in Appendix 3.3 at different time points in Appendix 3.3.

The observed pmf ftl(w) for group l at time t is generally given by

ftl(w) =
∑

b=0,1

ψb





m∑
i=1

ĪilI(Wit = w)I(zµ1i = b)

∞∑
w′=0

m∑
i=1

ĪilI(Wit = w′)I(zµ1i = b)




, w = 0, 1, 2, . . . (3.20)

where I(Wit = w) is an indicator which returns 1 whenWit = w for patient

i at time t in group l and 0 otherwise, I(zµ1i = b) indicates the treatment

group b of patient i, Īil is the posterior mean of the group membership indi-

cator and ψb is the weight associated with the placebo (b = 0) or progabide

group (b = 1). On the other hand, the fitted pmf f̂tl(w) is obtained similarly

by

ftl(w) =
∑

b=0,1

ψbf̂btl(w), w = 0, 1, 2, . . .

where f̂btl(w) is approximated by MC integration in (3.5) based on the pa-

rameter estimates θl = (βT
µl,β

T
al, σl, νl)

T . According to Figures 3.5(a) to

3.5(d), both models imitate the observed pmfs reasonably well. However,

the predicted trend in the low-level group cannot accommodate the upsurge

in the observation w = 4 at t = 2 resulting in a discrepancy between the

observed and fitted pmfs as shown in Figure 3.5(b). It is not surprising to

find that the two RMPGP models give similar pmfs as both have the ca-

pability of modelling highly overdispersed data. Nevertheless, despite the

affinity, the slightly heavier tail in the distribution of the RMPGP-EP model

possibly gives rise to the lower DIC.
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In the best model (RMPGP-EP model), extra variation is added to the

mean of the Poisson distribution through the mixing distribution. Therefore,

the variances of the estimated pmf f̂tl(w) of each treatment group given by

(2.19) and the overall variances which comprises the variance of expectation

and the expectation of variance conditional on the mixture group given by

(2.18) show a dramatic improvement. For example, when t = 1, the overall

variance of the RMPGP-EP model (137.23) is closer to the observed vari-

ance (220.08) than that of the PGP model (8.8729). These two variances

are reported in Table 3.4 in Appendix 3.2.

==================================

Figures 3.5(a) to 3.5(d) about here

==================================

Advantageously, implementing the model using Bayesian approach en-

ables us to study the latent stochastic process {y∗itl} and the mixing pa-

rameters uitl. These unobserved parameters can be output by using the

Convergence Diagnostic and Output Analysis (CODA) software in WinBUGS.

The CODA is a menu-driven set of S-Plus functions which produces an

output file storing the posterior samples of all model parameters with their

corresponding iteration numbers. For the RMPGP-EP model, to examine

the density of the unobserved y∗itl which are simulated from an EP distribu-

tion with location parameter µ∗
itl, scale parameter σl and shape parameter

νl, we compare the densities of the posterior samples of y∗itl with the normal
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distribution which has the same mean and standard deviation as the pos-

terior samples and the EP distribution also with same mean and standard

deviation and a shape parameter ν̂l. Four selected y∗itl from each mixture

group l and treatment group zµ1i = b = 0, 1 are illustrated in Figure 3.6 in

Appendix 3.3. Obviously, the y∗it1’s have a leptokurtic shape whereas y∗it2’s

appear to be more uniform than the normal distribution. These agree with

the results in Table 3.5 that the shape parameter of the high-level group is

larger than that of the low-level group (ν̂1 > ν̂2) and explain how the EP

distribution can downweigh the outlying effect.

==================================

Figure 3.6 about here

==================================

Furthermore, the outlier diagnosis is performed using the mixing pa-

rameter estimates ûitl in the RMPGP-EP model. An unusually large ûitl in-

dicates that the observation wit is possibly an outlier under group l. For fair

comparison, we calculate the standardized observations w′
itl =

|wit − ŵitl|
σ̂witl

for patient i where ŵitl and σ̂witl
are respectively the mean and standard de-

viation of the observed pmf ftl(w) in (3.20) at time t under group l. Both

mixing parameters uitl and standardized seizure counts w′
itl are sorted by

groups (l = 1, 2) for better visualization and are then plotted in Figure 3.7

in Appendix 3.3.
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==================================

Figure 3.7 about here

==================================

Clearly, all the top 10 (5%) outlying counts with the first 10 largest uitl

locate in the high-level group (l = 1) due to the presence of some extreme

observations. They are highlighted in Figure 3.7 with the corresponding

rank and observation wit in parentheses. Not surprisingly, the correlation

between uit1 and w′
it1 is high (ruw = 0.9731) which signifies the appro-

priateness of using the mixing parameters in outlier diagnosis. While the

outlying effect is not substantial in the low-level group (l = 2), uit2 appears

to be relatively smaller.

The top four outlying values come from the same patient with ID 49

who has abnormally high seizure counts at each 2-week interval. Besides,

two large observations are identified from patients with ID 8 (w8,1 = 40)

and 25 (w25,3 = 76) in Figure 3.7. In spite of large observation, four small

seizure counts are also classified as outlier from patients with ID 10, 24,

39 and 56. Knowing which patients are associated with abnormal seizure

counts, specialists can pay more attention to their abnormalities and alter-

native treatments may be considered accordingly. Besides the detection of

outliers using the mixing parameters, the RMPGP-EP model also down-

weighs the outlying effect and thus the general trend pattern is not distorted

by the extreme observations.
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Last but not least, we tested for the serial correlation in the best model

by using the procedures described in Section 3.3.4. Starting from some

lower lags, the large p-values of the chi-square tests for autocorrelation up

to lag 1 (0.837) and lag 2 (0.999) affirm that there is no evidence of the

presence of autocorrelation up to lag 2. Hence the tests for higher lags are

not considered and the RMPGP-EP model is validated.

3.6. Discussion

In this Chapter, we extend the Poisson geometric process (PGP) model

in Wan (2006) to allow for extra-Poisson variation when extreme observa-

tions appear in the data. Ignoring the outlying effects may lead to over-

estimated mean and variance resulting in invalid interpretation and predic-

tion. As remedies, two methods are suggested to account for overdispersion

which include adopting a heavy-tailed distribution and incorporating mix-

ture effect. The latter can handle cluster effect in the data and overdispersion

arisen from that may also be captured.

As a new direction to account for extreme observations leading to overdis-

persion and population heterogeneity, we apply the heavy-tailed distribu-

tions in the modelling of longitudinal count data and pioneer the robust

Poisson geometric process (RPGP) model. This model allows the mean Xit

of the Poisson distribution to follow a GP and the logarithm of the underly-

ing stochastic process {Yit = at−1
it Xit} follows a heavy-tailed distribution.

The resultant model is called the RPGP model. By varying a set of model

parameters, the moments of the RPGP models are reported in Tables 3.1 and
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3.2 in Appendix 3.2 and their pmfs are revealed in Figures 3.1 and 3.2 in

Appendix 3.3. Although the marginal pmfs do not have closed-form, Monte

Carlo (MC) integration in (3.5) can be used to approximate the pmfs, and

hence the mean as well as the variance. Tables 3.1 and 3.2 in Appendix

3.2 show that the model can accommodate both equidispersed and overdis-

persed data with varying kurtoses.

The RPGP models and the RMPGP models which can allow for clus-

ter effects are implemented using a Bayesian approach. Expressing the

heavy-tailed distribution in a scale mixtures form facilitates the model im-

plementation using MCMC algorithms and the mixing parameter enables

us to perform outlier diagnosis as shown in the real data analysis. Here,

the Student’s t-distribution in scale mixtures of normals (SMN) and expo-

nential power (EP) distribution in scale mixtures of uniforms (SMU) are

adopted. Regarding serial correlation, a test is described in Section 3.3.4

for detecting an up-to-lag-L autocorrelation and some lagged observations

can be easily incorporated into the mean function µ∗
itl in (3.8) as covari-

ates if needed. The resultant models can be efficiently implemented via the

user-friendly software, WinBUGS.

In addition, the simulation study shows that the performances of the two

RPGP models are comparable and satisfactory. In the case of data with a

very long tail, the RMPGP-t model seems to fit better since the tail of the

Student’s t-distribution is much heavier than that of the normal distribution.

On the other hand, the RMPGP-EP model gives a better fit in the analysis
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of epilepsy data with more diverse degrees of overdispersion across mixture

groups as EP distribution has a more flexible shape which can be either

leptokurtic or platykurtic.

Lastly, one pitfall of the RMPGP model is that taking log-transformation

of the latent stochastic process {Yit} inevitably causes those data associated

with close-to-zero means being identified as outliers. Hence when zero

is dominant in the data, the proposed RMPGP models can be extended to

include a zero-altered component as in the zero-altered MPGP model intro-

duced in Chapter 2.
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Appendix 3.1

Successive two-week seizure counts Wit for 59 epileptics
in two treatment groups (0=placebo, 1=progabide)

patient wi1 wi2 wi3 wi4 treatment

1 5 3 3 3 0
2 3 5 3 3 0
3 2 4 0 5 0
4 4 4 1 4 0
5 7 18 9 21 0
6 5 2 8 7 0
7 6 4 0 2 0
8 40 20 23 12 0
9 5 6 6 5 0

10 14 13 6 0 0
11 26 12 6 22 0
12 12 6 8 5 0
13 4 4 6 2 0
14 7 9 12 14 0
15 16 24 10 9 0
16 11 0 0 5 0
17 0 0 3 3 0
18 37 29 28 29 0
19 3 5 2 5 0
20 3 0 6 7 0
21 3 4 3 4 0
22 3 4 3 4 0
23 2 3 3 5 0
24 8 12 2 8 0
25 18 24 76 25 0
26 2 1 2 1 0
27 3 1 4 2 0
28 13 15 13 12 0
29 11 14 9 8 1
30 8 7 9 4 1
31 0 4 3 0 1
32 3 6 1 3 1
33 2 6 7 4 1
34 4 3 1 3 1
35 22 17 19 16 1
36 5 4 7 4 1
37 2 4 0 4 1
38 3 7 7 7 1
39 4 18 2 5 1
40 2 1 1 0 1
41 0 2 4 0 1
42 5 4 0 3 1
43 11 14 25 15 1
44 10 5 3 8 1
45 19 7 6 7 1
46 1 1 2 4 1
47 6 10 8 8 1
48 2 1 0 0 1
49 102 65 72 63 1
50 4 3 2 4 1
51 8 6 5 7 1
52 1 3 1 5 1
53 18 11 28 13 1
54 6 3 4 0 1
55 3 5 4 3 1
56 1 23 19 8 1
57 2 3 0 1 1
58 0 0 0 0 1
59 1 4 3 2 1
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Appendix 3.2

Tables

Table 3.1: Moments of marginal pmfs for RPGP-t model under a set of

floating parameters with fixed values of ν = 10, σ = 0.5, βµ0 = 3, βµ1 =

−0.2, βa0 = 0.5, βa1 = −0.1

floating floating
parameter mean variance kurtosis parameter mean variance kurtosis

ν = 1 15.082 152.634 1.0017 σ = 0.1 12.279 14.110 0.1209

ν = 2 14.381 110.855 1.0036 σ = 0.5 14.041 81.182 0.5579

ν = 5 14.616 103.899 0.6568 σ = 1.0 16.143 230.454 0.9817

ν = 50 13.985 69.826 0.3827 σ = 2.0 15.511 349.030 0.9832

βµ0 = 1.0 1.057 1.643 0.0411 βa0 = −0.5 34.452 262.605 0.9605

βµ0 = 2.0 2.891 6.827 0.2277 βa0 = −0.01 23.015 175.040 0.8652

βµ0 = 3.0 7.832 32.123 0.7399 βa0 = 0.5 14.460 95.392 0.7662

βµ0 = 4.0 20.814 153.217 1.1929 βa0 = 1.5 5.344 16.972 0.2819

Table 3.2: Moments of marginal pmfs for RPGP-EP model under a set of

floating parameters with fixed values of ν = 1, σ = 0.5, βµ0 = 3, βµ1 =

−0.5, βa0 = 0.5, βa1 = −0.1

floating floating
parameter mean variance kurtosis parameter mean variance kurtosis

ν = 0.1 9.379 16.987 0.0925 σ = 0.1 9.048 9.871 0.0782

ν = 0.5 9.629 20.468 0.1312 σ = 0.5 10.331 42.865 0.2938

ν = 1.0 10.174 39.574 0.3281 σ = 1.0 13.891 197.640 0.9747

ν = 2.0 12.592 192.360 0.9835 σ = 2.0 14.627 327.645 0.9840

βµ0 = 1.0 1.382 1.956 0.0388 βa0 = −0.5 26.592 198.533 0.9605

βµ0 = 2.0 3.771 7.695 0.0982 βa0 = −0.01 16.845 104.392 0.8652

βµ0 = 3.0 10.386 46.856 0.3061 βa0 = 0.5 10.216 46.338 0.7662

βµ0 = 4.0 27.046 199.776 0.7261 βa0 = 1.5 3.788 10.512 0.2819
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Table 3.3: Parameter estimates, SD, MSE, DIC and ASE in different
RPGP models under 4 simulated data sets based on 4 sets of true parameters
from different models

data model parameter true estimate SD MSE DIC ASE

1 RPGP-t βa0 -2.0 -1.9320 0.0379 0.0060 2315.55 0.0371
βa1 0.2 0.1960 0.0056 0.0000
βµ0 -1.5 -1.6016 0.0307 0.0113
βµ1 -0.5 -0.3232 0.0381 0.0327
ν 2.5 5.2860 1.3266 9.5040
σ 0.1 0.4244 0.0377 0.1066

RPGP-EP βa0 -1.8844 0.0382 2357.72 0.0592
βa1 0.1892 0.0052
βµ0 -1.5034 0.0254
βµ1 -0.3433 0.0416
ν 1.8234 0.1532
σ 0.1052 0.0132

2 RPGP-t βa0 -1.0 -0.8651 0.0546 0.0211 1834.54 0.0367
βa1 0.2 0.1820 0.0110 0.0004
βµ0 1.0 0.9794 0.0236 0.0010
βµ1 -0.5 -0.4528 0.0329 0.0033
ν 50.0 50.9375 10.6352 112.86
σ 0.02 0.0203 0.0004 0.0000

RPGP-EP βa0 -0.8523 0.0540 1816.94 0.0377
βa1 0.1803 0.0108
βµ0 0.9907 0.0178
βµ1 -0.4541 0.0389
ν 1.0469 0.2979
σ 0.1014 0.0128

3 RPGP-t βa0 -0.4852 0.0795 1883.96 0.0543
βa1 0.0987 0.0110
βµ0 0.7384 0.0920
βµ1 -0.2350 0.0454
ν 73.6282 18.1843
σ 0.3152 0.0654

RPGP-EP βa0 -0.5 -0.4289 0.0729 0.0103 1860.39 0.0550
βa1 0.1 0.0926 0.0105 0.0002
βµ0 1.0 0.8287 0.0769 0.0352
βµ1 -0.5 -0.2812 0.0656 0.0521
ν 0.1 0.2005 0.1178 0.0238
σ 0.5 0.6272 0.0701 0.0210

4 RPGP-t βa0 0.9938 0.0694 1883.86 0.0521
βa1 -0.0996 0.0088
βµ0 1.7407 0.0784
βµ1 -0.2256 0.0549
ν 2.2267 1.1224
σ 0.1682 0.0028

RPGP-EP βa0 1.0 1.1048 0.0663 0.0153 1838.56 0.0407
βa1 -0.1 -0.1110 0.0087 0.0002
βµ0 2.0 1.9388 0.0502 0.0062
βµ1 -0.5 -0.3768 0.0743 0.0207
ν 1.8 1.8430 0.1174 0.0155
σ 0.2 0.1945 0.0225 0.0005
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Table 3.4: Mean and variance for the observed epilepsy data and of two

simple fitted and RMPGP-EP models

time average
model t = 1 t = 2 t = 3 t = 4 over time

placebo
mean observed 9.3571 8.2857 8.7857 8.0000 8.6071

Poisson* 9.3658 8.8385 8.3410 7.8714 8.6042

PGP* 9.2073 8.9707 8.4645 7.7348 8.5943

RMPGP-EP 10.047 10.4001 9.9565 8.7905 9.7984

variance observed 102.76 66.656 215.29 57.926 107.93

RMPGP-EP 187.19 214.02 198.25 141.92 185.34

progabide
mean observed 8.5806 8.4194 8.1290 6.7419 7.9677

Poisson* 8.6700 8.1819 7.7214 7.2867 7.9557

PGP* 8.5212 8.3023 7.8337 7.1584 7.9539

RMPGP-EP 6.8235 7.2885 6.9278 5.9980 6.7595

variance observed 332.72 140.65 193.05 126.66 193.97

RMPGP-EP 92.114 124.37 107.44 77.371 100.32

overall
mean observed 8.9492 8.3559 8.4407 7.3390 8.2712

Poisson* 8.9940 8.4920 8.0179 7.5704 8.2686

PGP* 8.8729 8.6469 8.1573 7.4495 8.2816

RMPGP-EP 8.3531 8.7652 8.3652 7.3233 8.2017

variance observed 220.08 103.78 200.18 92.883 152.61

RMPGP-EP 137.23 166.92 150.54 108.00 140.67

* indicates mean and variance are equivalent.
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Table 3.5: Parameter estimates with SE and DIC in different RMPGP

models for the epilepsy data

RMPGP-t model RMPGP-EP model
parameter estimate SE DIC estimate SE DIC

G = 1 βa0 -0.6435 0.1464 1923.08 0.0073 0.2780 1945.40

βa1 0.1218 0.0456 0.0089 0.0675

βµ0 1.2970 0.1132 1.7460 0.1582

βµ1 -0.2177 0.1393 -0.2637 0.1699

ν 73.2100 41.9200 1.1920 0.1883

σ 0.9826 0.0669 0.9036 0.1616

G = 2 βa01 -0.0241 0.4366 1700.90 -0.2410 0.3122 1660.66
βa11 0.0192 0.1062 0.0739 0.0738

βµ01 2.7070 0.1993 2.6700 0.1569

high-level βµ11 -0.3544 0.1922 -0.3727 0.1342

(l = 1) ν1 7.2110 4.7430 1.4860 0.2559

σ1 0.5965 0.1029 0.4841 0.1304

π1 0.4055 0.0738 0.4069 0.0688

βa02 0.2058 0.2378 0.2169 0.2271

βa12 -0.0464 0.0589 -0.0474 0.0581

low-level βµ02 1.2750 0.1252 1.2750 0.0982

(l = 2) βµ12 -0.3587 0.1656 -0.4193 0.1477

ν2 10.9300 5.2690 0.2424 0.1813

σ2 0.3286 0.1148 0.7327 0.1058
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Appendix 3.3

Figures

Figure 3.1: The pmfs of RPGP-t model with varying parameters
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Figure 3.2: The pmfs of RPGP-EP model with varying parameters
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Figure 3.3: pmf of 2-group RMPGP-EP model at t = 1
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Figure 3.4: Dotplots of seizure counts across treatment group and time

(a) t = 1 and t = 2
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Figure 3.5: The pmfs of low-level group for RMPGP models at different

times

(a) t = 1

Observed and fitted pmfs of low-level group at t=1

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

seizure count

p
ro

b
ab

ili
ty

t-observed EP-observed t-fitted EP-fitted

(b) t = 2

Observed and fitted pmfs of low-level group at t=1

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

seizure count

p
ro

b
ab

ili
ty

t-observed EP-observed t-fitted EP-fitted

Observed and fitted pmfs of low-level group at t=2

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

seizure count

p
ro

b
ab

ili
ty

t-observed EP-observed t-fitted EP-fitted

(c) t = 3

Observed and fitted pmfs of low-level group at t=1

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

seizure count

p
ro

b
ab

ili
ty

t-observed EP-observed t-fitted EP-fitted

Observed and fitted pmfs of low-level group at t=2

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

seizure count

p
ro

b
ab

ili
ty

t-observed EP-observed t-fitted EP-fitted

Observed and fitted pmfs of low-level group at t=3

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

seizure count

p
ro

b
ab

ili
ty

t-observed EP-observed t-fitted EP-fitted

(d) t = 4

Observed and fitted pmfs of low-level group at t=4

0

0.05

0.1

0.15

0.2

0.25

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

seizure count

p
ro

b
ab

ili
ty

t-observed EP-observed t-fitted EP-fitted



3.6. DISCUSSION 113

Figure 3.6: Comparison of densities of yitl’s with normal and EP distribu-

tions
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Figure 3.7: Outlier diagnosis using uitl in the RMPGP-EP model
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CHAPTER 4

Generalized Poisson geometric process model

PGP model has been extended to allow for overdispersion that is caused,

in particular, by zero-inflation in Chapter 2 and extreme observations in

Chapter 3. This Chapter extends the PGP model in (1.4) to fit longitudinal

count data with more flexible degrees of dispersion ranging from underdis-

persion to overdispersion.

4.1. Background

Owing to the deficiency of the Poisson distribution that it can only han-

dle equidispersed count data, our primary objective is to develop a unified

model that can accommodate both overdispersion and underdispersion in

longitudinal and panel count data. Besides considering the degree of dis-

persion, our proposed model should also take into account the trend move-

ments, serial correlation between successive observations which is promi-

nent in time series of counts and cluster effects which are often detected

in repeated measures design. Throughout the history of count data mod-

elling, since most count data exhibits overdispersion due to outliers, excess

zero observations and population heterogeneity, enormous literature can be

found to deal with overdispersion by using different methods to introduce

extra-variation to the Poisson distribution.

115
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One historic approach is to use the Poisson mixed distribution which

assumes that the mean of the Poisson distribution follows a suitable mixing

distribution. This mixed model approach was first considered by Green-

wood & Yule (1920) which adopted a gamma distribution as the mixing

distribution and resulted in the well-known negative binomial distribution.

Since then, a large number of mixing distributions are considered and some

benchmarking models include the Poisson-inverse Gaussian mixed model

(Holla, 1966), Poisson-lognormal mixed model (Blumer, 1974) and Poisson-

generalized gamma mixed model (Albrecht, 1984). See Karlis & Meligkot-

sidou (2005) for a detailed review.

Concerning overdispersion particularly due to zero-inflation, two strands

of models, namely the hurdle model and the zero-inflated model prevail in

the literature. The former class proposed by Mullahy (1986) first deter-

mines whether the outcome is zero or positive by a logistic model and then

conditional on positive outcome, models the positive counts by a truncated

discrete distribution, such as truncated Poisson or truncated negative bino-

mial distribution. On the contrary, the latter class introduced by Lambert

(1992) is regarded as a mixture of zero-truncated Poisson distribution and a

component that degenerates at zero. These models, which are designed for

cross-sectional count data, were later extended to fit longitudinal count data.

Adopting the hurdle model, Dobbie & Welsh (2001) incorporated a serial

dependence structure via a generalized estimating approach so that the mar-

ginal model structure can be preserved. On the other hand, Yau et al. (2003)
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extended the zero-inflated Poisson model to zero-inflated negative binomial

mixed regression model by introducing random effects to account for serial

dependence between successive observations. Nevertheless, all these mod-

els have a component that adds extra variation to the Poisson distribution

and therefore fail to deal with underdispersion.

Compared to overdispersion, the analogous problem of underdispersion

relative to Poisson distribution has not received too much attention as it is

less frequently observed in longitudinal and panel count data. But ignoring

this problem will result in an overestimated variance and a misleading inter-

pretation on the volatility of the data. Amongst the limited literature, Faddy

(1997) proposed the birth process model based on a generalization of the

Poisson process and stated that the rate of process (birth rate) at any time

point is a function of time and depends on the current number of events.

In the birth process model, overdispersion/underdispersion is attained when

the rate of process is monotone increasing/decreasing with time. Besides

the birth process model, other alternative distributions that can allow un-

derdispersion include the Conway-Maxwell-Poisson distribution (Conway

& Maxwell, 1962), generalized Poisson distribution Consul & Jain (1973),

double Poisson distribution (Efron, 1986) and weighted Poisson distribution

Ridout & Besbeas (2004).

Amongst all the aforementioned distributions for underdispersion, the

generalized Poisson distribution (GPD) pioneered by Consul & Jain (1973)

received considerably more attention. Relative to Poisson distribution, the
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two-parameter GPD contains an additional parameter to control the shape

of the distribution. The variance can be greater than, equal to or smaller

than the mean when the parameter is positive, zero or negative respectively.

Some extensions of the GPD distribution on cross-sectional count data in-

clude the generalized Poisson regression model (Consul & Famoye, 1992)

to incorporate covariate effect, the zero-inflated generalized Poisson regres-

sion model (Angers & Biswas, 2003) to deal with excess zeros and the

k-inflated generalized Poisson regression model (Bae et al., 2005) to han-

dle excessive k-valued observations. Until very recently, Xie et al. (2009)

extended the zero-inflated generalized Poisson regression model to analyze

correlated panel count data by incorporating a latent random effect to ac-

count for the serial dependence.

So far, the extension of the PGP models in the previous Chapters fo-

cuses only on overdispersion due to excess zeros in Chapter 2 and extreme

observations in Chapter 3. To relax such restriction, we extend in this Chap-

ter the PGP model to a more comprehensive model to handle longitudinal

and panel count data with different degrees of dispersion by replacing the

Poisson data distribution with GPD. The resultant model is named as the

generalized Poisson geometric process (GPGP) model. Moreover, regard-

ing our secondary objective, the GPGP model is further extended to the

mixture generalized Poisson geometric process (GMPGP) model to incor-

porate cluster effects and serial dependence.



4.2. MODEL SPECIFICATION 119

To demonstrate the model properties and applicability, the remainder of

this Chapter is presented as follows. First, the GPGP and GMPGP models

will be specified in Section 4.2 with a study of the model distribution. Next,

Section 4.3 will discuss the implementation of the GMPGP model using

MCMC algorithms followed by the introduction of the model assessment

criterion. After that, the properties and practicability of the GMPGP model

will be demonstrated through some simulation studies and real data analysis

in Sections 4.4 and 4.5 respectively with comparison to the RMPGP-EP

model (best model in Chapter 3). Lastly, Section 4.6 will give a summary

of all the important findings.

4.2. Model specification

This Section first presents the GPD. Then, the GPGP model is intro-

duced with a detailed examination of the model distribution.

4.2.1. Generalized Poisson distribution. The generalized Poisson dis-

tribution (GPD) was introduced by Consul & Jain (1973) and was investi-

gated in detail by Consul (1989). If a random variable W has a GPD, then

its probability mass function (pmf) denoted by fGPD(w|λ1, λ2) is given by:

fGPD(w|λ1, λ2) =





λ1(λ1 + λ2w)w−1 exp[−(λ1 + λ2w)]

w!
, w = 0, 1, . . . ;

0, w > s when λ2 < 0
(4.1)

where λ1, |λ2| < 1 and s ≥ 4 is the largest natural number such that λ1 +

λ2s > 0 when λ2 < 0. The two parameters λ1 and λ2 are subject to the

following constraints:
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1. λ1 ≥ 0

2. max{−1,−λ1

s
} < λ2 < 1.

For the GPD, the mean and variance are given by:

E(W ) =
λ1

1 − λ2

and V ar(W ) =
λ1

(1 − λ2)3
=

E(W )

(1 − λ2)2
.

Obviously, the shape of the GPD is controlled by the parameter λ2. A nega-

tive λ2 indicates underdispersion, the mean is less than the variance, whilst

a positive λ2 indicates overdispersion. The GPD reduces to the equidis-

persed Poisson distribution when λ2 = 0. Moreover, the variance increases

or decreases at a faster rate than the mean when λ2 varies. Relative to the

Poisson distribution, this two-parameter GPD demonstrates a wider range

of shapes and thus can fit data with different degrees of dispersion.

4.2.2. Generalized Poisson geometric process model. Let Wit de-

notes the count for subject i at time t, i = 1, . . . ,m, t = 1, . . . , ni and

n =
m∑

i=1

ni. Under the PGP framework, instead of using the Poisson distri-

bution, we assume that the count Wit follows GPD with mean E(Wit) =

Xit =
λ1it

(1 − λ2)
. Without loss of generality, {Xit =

Yit

at−1
, t = 1, . . . , ni}

forms a latent GP and Yit follows gamma distribution fG(yit| r, r
µi

) with

mean µi and variance
µ2

i

r
. So, conditional on λ2 > 0, the marginal pmf for

Wit becomes

f(wit) =

∫ ∞

0

fGPD(wit|λ1it, λ2)fG

(
yit

∣∣∣∣ r,
r

µi

)
dyit

=

∫ ∞

0

(1 − λ2)r
ryr

it

[
(1−λ2)yit

at−1 + λ2wit

]wit−1

exp
{
−
[

(1−λ2)yit

at−1 + λ2wit + ryit

µi

]}

at−1µr
i Γ(r)wit!

dyit (4.2)
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where λ1it =
(1 − λ2)yit

at−1
. When λ2 < 0, the marginal pmf for Wit is

given by (4.2) when wit = 0, 1, . . . , sit and 0 when wit > sit. The resultant

model is named as generalized Poisson geometric process (GPGP) model.

Although there is no apparent simplification of the integral, its moment can

be easily derived through conditional expectation and the law of total vari-

ance. In particular, the unconditional mean E(Wit) and variance V ar(Wit)

of the GPGP model are given by:

E(Wit) = Ex[Ew(Wit|Xit)] = Ex(Xit) = Ey

(
Yit

at−1

)
=

µi

at−1
(4.3)

V ar(Wit) = Ex[V arw(Wit|Xit)] + V arx[Ew(Wit|Xit)]

= Ex

[
Xit

(1 − λ2)2

]
+ V arx(Xit)

=
µi

at−1(1 − λ2)2
+

µ2
i

a2(t−1)r
=

µi

at−1

[
1

(1 − λ2)2
+

µi

at−1r

]
(4.4)

Clearly, µi and a control both the mean and variance while r and λ2 act as

the dispersion parameters as they only control the variance. Based on (4.4),

the larger the r and the more negative the λ2, the more underdispersed is the

distribution of the GPGP model. Hence, by varying the model parameters,

the GPGP model can be fitted to both overdispersed and underdispersed

data.

4.2.3. Incorporation of mixture effects. Despite different degrees of

dispersion, an adequate model for panel count data should account for pop-

ulation heterogeneity which often arises in repeated measures design, ac-

commodate time-evolving covariate effects and address trend movements
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which are usually detected in time series of counts. In light of these, we

first extend the GPGP model to the mixture GPGP (GMPGP) model as fol-

lows.

To account for population heterogeneity, we postulate that there are G

groups of subjects which have distinct trend patterns and each subject has a

probability πl of coming from group l, l = 1, . . . , G. The resultant GMPGP

model is essentially a mixture of G GPGP models in which each model is

associated with a probability πl. Secondly, concerning the covariate effects

and trend movements, let βjl = (βj0l, βj1l, . . . , βjqj l)
T to be a vector of

regression parameters βjkl, j = µ, a; k = 0, . . . , qj; l = 1, . . . , G. The

mean µi and constant ratio a are extended to the mean function µitl and

ratio function aitl function respectively which can be log-linked to some

time-evolving covariates zjkit, i = 1, . . . ,m; t = 1, . . . , ni and they are

given by:

µitl = exp(βµ0l + βµ1lzµ1it + · · · + βµqµlzµqµit) (4.5)

aitl = exp(βa0l + βa1lza1it + · · · + βaqalzaqait). (4.6)

Then conditional on group l, the marginal pmf of the GMPGP model can

be extended from (4.2) when λ2l > 0 and becomes:

fl(wit) =

∫ ∞

0

(1 − λ2l)r
rl

l y
rl

itl

[
(1−λ2l)yitl

at−1
itl

+ λ2lwit

]wit−1

exp
{
−
[

(1−λ2l)yitl

at−1
itl

+ λ2lwit + rlyitl

µitl

]}

at−1
itl µ

rl

itl Γ(rl)wit!
dyitl. (4.7)
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When λ2l < 0, the marginal pmf for Wit is given by (4.7) for wit =

0, 1, . . . , sit and 0 for wit > sit. Based on (4.3) and (4.4), the mean El(Wit)

and variance V arl(Wit) conditional on group l become

El(Wit) =
µitl

at−1
itl

and V arl(Wit) =
µitl

at−1
itl (1 − λ2l)2

+
µ2

itl

a
2(t−1)
itl rl

. (4.8)

4.2.4. Incorporation of serial correlation. As the outcomeWit in lon-

gitudinal and panel data is often serially correlated, an adequate count model

should be able to incorporate a flexible serial dependence structure. To

identify an appropriate serial dependence structure, we first fit a prelimi-

nary model and obtain the predicted value based on (4.8). Then the Pearson

residuals and test statistic are derived in a similar way to the RMPGP mod-

els mentioned in Section 3.3.4 by using El(Wit) and V arl(Wit) in (4.8).

If the residuals are serially correlated up to lag L, Dobbie & Welsh

(2001) and Yau et al. (2003) adopted the PD approach, which is known as

marginal model approach in Zeger et al. (1988), to incorporate serial de-

pendence by adding random effects into the model. However we adopt the

OD approach described in Section 1.2.1 by adding L lagged observations

as autoregressive (AR) terms in the mean function µitl in (4.5). The model

parameters will be re-estimated and the appropriateness of the assumed AR

structure is evaluated through the significance of the parameters for the AR

terms and the model selection criterion discussed in Section 4.3.2.

4.2.5. Approximation of distribution. Since the pmf in (4.7) does not

have a closed-form, we approximate it using Monte Carlo (MC) integration
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as described below. We hereafter drop the subscript i in the mean function

µitl since only treatment-specific covariates are considered in the forthcom-

ing simulation experiments and real data analysis. Conditional on covari-

ates zjkt = zjkit and time t, the pmf estimator f̂tl(w) with mean function µtl

and ratio function atl can be obtained by:

f̂tl(w) =
Ms∑

j=1

fGPD

(
w

∣∣∣∣∣
ŷ

(j)
tl

at−1
tl

, λ2l

)

=
Ms∑

j=1

(1 − λ2l)ŷ
(j)
tl

[
(1−λ2l)ŷ

(j)
tl

at−1
tl

+ λ2lw

]w−1

exp

{
−
[

(1−λ2l)ŷ
(j)
tl

at−1
tl

+ λ2lw

]}

at−1
tl w!

, w = 0, 1, ...,∞;

ŷ
(j)
tl ∼ fG

(
y

(j)
tl

∣∣∣∣µtl,
rl

µtl

)
, j = 1, . . . ,Ms (4.9)

where Ms is the number of simulations and the latent ŷ(j)
tl are simulated

from gamma distribution given the shape parameter rl. The mean Êl(Wt)

and variance V̂ arl(Wt) of the approximated pmf f̂tl(w) for group l and time

t are calculated by:

Êl(Wt) =
∞∑

w=0

wf̂tl(w) and V̂ arl(Wt) =

[
∞∑

w=0

w2f̂tl(w)

]
− [Êl(Wt)]

2 (4.10)

and are compared with the values obtained in (4.8) to assess the perfor-

mance of the MC integration.

To study the pmfs of the proposed GPGP model, we assume G = 1,

m = 1, qµ = qa = 1, zµ1t = b = 0, 1 as the covariate effect in (4.5) and

za1t = t as the time-evolving covariate effect in (4.6). Hence dropping the

subscript l in (4.9) since G = 1, the mean function is µt = exp(βµ0 + βµ1b)

and the ratio function is at = exp(βa0 + βa1t). Fixing b = 1 and t = 2,
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we change the values of one of the model parameters at one time while

keeping the other parameters constant and approximate the pmf in (4.2)

using MC integration described in (4.9) with Ms = 10000. The marginal

pmfs are displayed in Figures 4.1(a) to 4.1(d) in Appendix 4.3 with their

means and variances summarized in Table 4.1 in Appendix 4.2. The mean

and variance of the approximated pmf f̂t(w) are calculated using (4.10)

(dropping the subscript l) and are compared to the true values obtained from

(4.3)-(4.4). Note that since different pmfs are drawn on the same graph for

comparison, we use curves instead of bars to represent the marginal pmfs

for better visualization.

====================================

Figures 4.1(a) to 4.1(d) and Table 4.1 about here

====================================

The close affinity between E(Wt) & Ê(Wt) and V ar(Wt) & V̂ ar(Wt)

in Table 4.1 confirms that the MC integration gives a satisfactory approxi-

mation of the pmfs for the GPGP model in (4.2). Based on the Figures and

results in Table 4.1, the parameters βµ0 and βa0 control both the location and

degree of dispersion of the distribution. A larger βµ0 and a smaller βa0 lead

to larger mean and variance of the resultant distribution. On the other hand,

r serves as a dispersion parameter. Without altering the mean, a smaller

r contributes to a larger variance for the distribution. Moreover, λ2 is an-

other important dispersion parameter which determines whether the distri-

bution shows an underdispersion, equidispersion or overdispersion. Note



4.3. BAYESIAN INFERENCE 126

that since the gamma distribution of the underlying stochastic process {Yt}

introduces extra variation to the GPD, a negative λ2 does not necessarily

reveal an underdispersion as shown in Table 4.1. For example, overdisper-

sion (E(Wt) < V ar(Wt)) is retained even when λ2 = −0.2. But in fact,

the variance is controlled by the factor
1

(1 − λ2)2
+

µt

at−1
t r

based on (4.4).

In general, the more negative the λ2, the more underdispersed is the dis-

tribution. In summary, by varying the model parameters, the GPGP model

can fit count data with different degrees of dispersion, ranging from under-

dispersion due to the concentration of observations over a small range of

values to overdispersion due to some outlying observations.

4.3. Bayesian inference

For the statistical inference of generalized Poisson regression model,

maximum likelihood (ML) method (Bae et al., 2005) or moment method

(Consul & Jain, 1973) are used since the model has tractable likelihood

function. In the case when latent random effects are incorporated in the

model, Yau et al. (2003) adopted the expectation-maximization (EM) method.

However, since the likelihood function of the GMPGP model involves high-

dimensional integration, we avoid the numerical difficulties in maximiz-

ing the intractable likelihood function by using the Bayesian approach via

Markov chain Monte Carlo (MCMC) algorithms. Again, the MCMC al-

gorithms are implemented using WinBUGS. The next Section derives the

posterior distribution and univariate full conditional distributions followed

by a description of the model selection criterion.
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4.3.1. MCMC algorithms. Before implementing the MCMC algorithms,

we outline the hierarchical structure of the GMPGP model under the Bayesian

framework as follows:

wit ∼ Ii1fGPD

(
yit1

at−1
it1

, λ21

)
+ · · · + IiGfGPD

(
yitG

at−1
itG

, λ2G

)

yitl ∼ fG

(
rl,

rl

µitl

)

where µitl and aitl are given by (4.5) and (4.6) and Iil is the group member-

ship indicator for subject i such that Iil = 1 if he/she comes from group l

and zero otherwise. In order to construct the posterior density, some non-

informative prior distributions are assigned to the model parameters as fol-

lows:

βjkl ∼ N(0, τ 2
jkl), (4.11)

j = µ, a; k = 0, 1, . . . , qj; l = 1, . . . , G

rl ∼ Gamma(cl, dl) (4.12)

λ2l ∼ Uniform(−1, 1) (4.13)

(Ii1, . . . , IiG)T ∼ Multinomial(1, π1, . . . , πG) (4.14)

(π1, . . . , πG)T ∼ Dir(α1, . . . , αG) (4.15)

where cl, dl are some positive constants and Dir(α) represents a Dirich-

let distribution, a conjugate to multinomial distribution, with parameters

α = (α1, . . . , αG). Without prior information, we assign τ 2
jkl = 1000 in

(4.11), cl = dl = 0.01 in (4.12) and αl = 1/G in (4.15) for a G-group
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(G ≥ 2) model unless otherwise specified. In particular, for a 2-group

(G = 2) GMPGP model, (4.14) is simplified to Ii1 ∼ Bernoulli(π1) with

Ii2 = 1 − Ii1 and (4.15) becomes π1 ∼ Uniform(0, 1) with π2 = 1 − π1.

With the posterior means Īil of the group membership indicators Iil, patient

i is classified to group l′ if Īil′ = max
l
Īil.

According to Bayes’ theorem, the posterior density is proportional to

the joint densities of complete data likelihood and prior probability distri-

butions. For the GMPGP model, the complete data likelihood functionL(θ)

for the observed data wit and missing data {yitl, Iil} is derived as:

L(θ) =
m∏

i=1

G∏

l=1

{
πl

ni∏

t=1

fGPD(wit|βal, λ2l, yitl)fG(yitl|βµl, rl)

}Iil

.(4.16)

The vector of model parameters θ = (βT ,λT
2 , r

T ,πT )T where β = (βT
µ1, ...,

βT
µG,β

T
a1, ...,β

T
aG)T = (βµ01, ..., βµqµG, βa01, ..., βaqaG)T , λ2 = (λ21, ..., λ2G)T ,

r = (r1, ..., rG)T and π = (π1, ..., πG)T .

Treating {yitl, Iil} as missing observations, the joint posterior density of

the GMPGP model is expressed as follows:

f(β,λ2, r,π|w, I,y) ∝ L(θ)

(∏

j=µ,a

qj∏

k=0

G∏

l=1

fN(βjkl| 0, τ 2
jkl)

)(
G∏

l=1

fG(rl| cl, dl)

)

(
G∏

l=1

fU(λ2l| − 1, 1)

)
fDir(π|α)

where w = (w11, w12, ..., wmnm
)T , I = (I11, I12, ..., ImG)T and y = (y111, y121, ..., ymnmG)T .

The complete data likelihood L(θ) of the GMPGP model is given by (4.16)

and the priors are given by (4.11)-(4.15). In Gibbs sampling, the unknown
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parameters are simulated iteratively from their univariate conditional pos-

terior distributions which are proportional to the joint posterior density of

complete data likelihood and prior densities.

The univariate full conditional posterior densities for each of the un-

known model parameters θ and missing observations y and I are given by:

f(βµkl|w, I,y,β−,λ2, r,π) ∝ exp

[
−

m∑

i=1

Iil

ni∑

t=1

(
rlβµklzµkit +

rlyitl

µitl

)
−

β2
µkl

2τ 2
µkl

]

f(βakl|w, I,y,β−,λ2, r,π) ∝
m∏

i=1

ni∏

t=1

{[
yitl(1 − λ2l)

at−1
itl

+ λ2lwit

]wit−1

exp

[
−yitl(1 − λ2l)

at−1
itl

− βaklzakit(t− 1)

]}Iil

exp

(
− β2

akl

2τ 2
akl

)

restricted to at−1
itl < −yitl(1 − λ2l)

sitλ2l

if λ2l < 0

f(yitl|w, I,y−,β,λ2l, r,π) ∝
{
yrl

itl

[
yitl(1 − λ2l)

at−1
itl

+ λ2lwit

]wit−1

exp

[
−yitl(1 − λ2l)

at−1
itl

− rlyitl

µitl

]}Iil

restricted to yitl > −sitλ2la
t−1
itl

1 − λ2l

if λ2l < 0

f(λ2l|w, I,y,β,λ−
2l, r,π) ∝

m∏

i=1

ni∏

t=1

{
(1 − λ2l)

[
yitl(1 − λ2l)

at−1
itl

+ λ2lwit

]wit−1

exp

[
−yitl(1 − λ2l)

at−1
itl

− λ2lwit

]}Iil

restricted to

(
1 − sita

t−1
itl

yitl

)−1

< λ2l < 1

f(rl|w, I,y,β,λ2, r
−,π) ∝

m∏

i=1

ni∏

t=1

[
rrl

l y
rl

itl

µrl

itlΓ(rl)
exp

(
−rlyitl

µitl

)]Iil

rcl−1
l exp(−rl dl)

f(πl|w, I,y,β,λ2, r,π
−) ∝ π

mP
i=1

Iil+αl−1

l
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f(I i|w, I−,y,β,λ2, r,π) ∝

G∏

l=1




πl

ni∏
t=1

(rlyitl)
rl (1−λ2l)

µ
rl
itl

Γ(rl)a
t−1
itl

[
yitl(1−λ2l)

at−1
itl

+ λ2lwit

]wit−1

e
−

„
yitl(1−λ2l)

a
t−1
itl

+λ2lwit+
rlyitl
µitl

«

G∑
l′=1



πl′

ni∏
t=1

(rl′yitl′ )
r
l′ (1−λ2l′ )

µ
r
l′

itl′
Γ(rl′)a

t−1
itl′

[
yitl′ (1−λ2l′ )

at−1
itl′

+ λ2l′wit

]wit−1

e
−

 
y
itl′

(1−λ2l′
)

a
t−1
itl′

+λ2l′wit+
r
l′

y
itl′

µ
itl′

!






Iil

=
G∏

i=1

π′ Iil

il = Multinomial(1, π′
i1, . . . , π

′
iG)

where β−,y−,λ−
2 , r

−,π− and I− are vectors of β,y,λ2, r,π and I ex-

cluding βjkl, yitl, λ2l, rl, πl and I i = (Ii1, . . . , IiG)T respectively. Neverthe-

less, the MCMC algorithms are implemented using the user-friendly soft-

ware WinBUGSwhere the sampling scheme based on the conditional poste-

rior densities is outlined in this Section and the Gibbs sampling procedures

are described in Section 1.4.3 and the posterior sample medians are adopted

as parameter estimates.

4.3.2. Model selection criterion. In this analysis, we adopt the de-

viance information criterion (DIC), originated by Spiegelhalter et al. (2002),

as the model selection criterion. For the GPGP model, the DIC is defined

as

DIC = D(θ) + pD

= − 4

M

M∑

j=1

m∑

i=1

G∑

l=1

I
′(j)
il

{
lnπ

(j)
l +

ni∑

t=1

ln
[
fGPD(wit| y(j)

itl ,β
(j)
al , λ

(j)
2l )fG(y

(j)
itl |β

(j)
µl , r

(j)
l )
]}

+2
m∑

i=1

G∑

l=1

Ī ′il

{
ln π̄l +

ni∑

t=1

ln
[
fGPD(wit| ȳitl, β̄al, λ̄2l)fG(ȳitl| β̄µl, r̄l)

]
}

(4.17)
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where θ(j) and θ̄ represent the jth posterior sample and posterior mean of

parameter θ respectively,

I
′(j)
il =

π
(j)
l

ni∏
t=1

{
fGPD(wit| y(j)

itl ,β
(j)
al , λ

(j)
2l )fG(y

(j)
itl |β

(j)
µl , r

(j)
l )
}

G∑
l′=1

π
(j)
l′

ni∏
t=1

[
fGPD(wit| y(j)

itl′ ,β
(j)
al′ , λ

(j)
2l′ , )fG(y

(j)
itl′ |β

(j)
µl′ , r

(j)
l′ )
] ,

and Ī ′il is defined in a similar way by replacing y(j)
itl and θ(j) with ȳitl and θ̄.

For model selection, the best model should give the smallest DIC indicat-

ing it has the best fit after accounting for the model complexity.

4.4. Simulation studies

The objectives of the simulation studies are twofold: (1) to compare

the similarities and differences in the properties of the GPGP model and

the RPGP-EP model introduced in Chapter 3 and (2) to assess the compe-

tence of the two models under different levels of dispersion. Regarding the

first objective, we performed a ‘cross’ simulation study. For the second ob-

jective, the two models were fitted to some data with different degrees of

dispersion. The procedures and results of these studies are discussed in the

next two Sections.

4.4.1. Comparisons between GPGP and RPGP models. We conducted

some cross simulations in which data simulated from one model is ‘cross’-

fitted by both models. By setting G = 1 and qµ = qa = 1, h = 100 data sets

are simulated from each of the GPGP model in (4.7) or RPGP-EP model in

(3.12) with the true parameters given in Table 4.2 in Appendix 4.2, and they

are fitted using both GPGP and RPGP-EP models. Each data set contains
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m = 80 time series of length ni = 8 from m0 = 40 subjects in the control

group (b = 0) and another m1 = 40 subjects in the treatment group (b = 1).

In both GPGP and RPGP-EP models (dropping subscript l since G = 1),

the treatment effect zµ1it = b is adopted in the mean functions in (4.5) and

(3.2) and time (za1it = t) is incorporated as the time-evolving effect in and

the ratio functions in (4.6) and (3.3). In addition, different values are as-

signed to βµk and βak, k = 0, 1 to give different trend patterns and baseline

levels. Moreover, the dispersion parameter ν of the RPGP-EP model is set

to be 0.1 to attain overdispersion in data set 1 and λ2 of the GPGP model is

set to be -0.99 to acquire underdispersion in data set 2.

Implemented using WinBUGS and R2WinBUGS with non-informative

priors as described in Section 4.3.1 for the GPGP model and Section 3.4 for

the RPGP-EP model, the parameter estimate θ̂ is calculated as the average of

h = 100 posterior medians θ̂(j) in the jth data set. To examine the precision

of the MCMC sampling algorithms, the standard deviation (SD) of θ̂(j) over

h = 100 simulated data sets for each parameter θ is evaluated. To assess

the accuracy of parameter estimates when the data set is simulated from and

fitted by the same model, we calculate the mean squared error (MSE) for

each parameter θ which is given by:

MSE =
1

h

h∑

j=1

(θ̂(j) − θ)2.

For model assessment, the average DIC is used to measure the goodness-

of-fit of the model while taking into account the model complexity. For
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the GPGP model, DIC is computed using (4.17) while that of the RPGP-

EP model is calculated by (3.19). Table 4.2 summarizes the results of this

cross simulation study including the true parameters under different models

and various model assessment criteria such as the SD, MSE and DIC.

The reasonably small SD and MSE for all the parameters reflect that the

MCMC algorithms give precise and unbiased estimates except for r which

has a larger MSE due to its relatively larger magnitude of the estimate.

To demonstrate the level of dispersion in each data set, we approximated

the pmfs f̂t(w) based on the sets of true parameters (true model) and fitted

parameters (GPGP and RPGP-EP models) using MC integration described

in (4.9) for the GPGP model and in (3.5) for the RPGP-EP model. Based

on f̂t(w), the mean and variance of the true models, GPGP and RPGP-EP

models are calculated and reported in Table 4.3 in Appendix 4.2. Note that

unlike the GPGP model, the unconditional mean and variance of the RPGP-

EP model cannot be expressed explicitly as in (4.3) and (4.4) because {Yit}

follows log-uniform distribution. For fair comparison we therefore evaluate

the mean Ê(Wt) and variance V̂ ar(Wt) using (4.10) based on the approxi-

mated pmfs f̂t(w) in the MC integration for both models in the sequel.

As indicated in Table 4.3, for data set 1, the overall variance of the true

pmfs is 2.53 which is larger than the overall mean 2.05 showing overdis-

persion. Based on the estimates of βa and βµ, the true mean shows a

gradually increasing trend till t = 3 and a substantially decreasing trend

afterwards. This non-monotone trend is well captured by the GPGP and
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RPGP-EP models. Besides, the two models give similar mean and variance

across time and are comparable to those of the true model. These results re-

veal that both models can cope with overdispersed count data and therefore

they have similar average DIC with the GPGP model slightly outperform-

ing the RPGP-EP model (1828.3 versus 1860.4) in Table 4.2.

==================================

Tables 4.2 and 4.3 about here

==================================

On the other hand, in data set 2, the overall variance (1.31) of the true

pmfs is less than the overall mean (3.5) showing underdispersion. This

time the trend is generally increasing but turns downwards after t = 5.

Although both models can describe the non-monotone trend pattern, the

RPGP-EP model which cannot accommodate underdispersed data shows

a poor model fit with a substantially larger average DIC than the GPGP

model (1756.6 versus 2178.7) in Table 4.2. In addition, the variance of the

RPGP-EP model is inevitably larger than that of the true model as the fur-

thest degree of dispersion this model can attain is only equidispersion. This

explains why the mean of the RPGP-EP model is underestimated across

time. On the contrary, the GPGP model shows an overwhelming advantage

over the RPGP-EP model in fitting underdispersed data as supported evi-

dently by the affinity in the variance between the GPGP and true models in

Table 4.3.
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This simulation study highlights the fact that while the two models

are competitive in dealing with overdispersed data, only the GPGP model

which has a more flexible dispersion structure is suitable for analyzing un-

derdispersed data.

4.4.2. Assessment of level of dispersion. In the second part of the sim-

ulation studies, one data set was selected from the data set 2 which is sim-

ulated from the GPGP model in the cross simulation study as described in

the previous Section with true parameters given in Table 4.2. This data set

which exhibits an underdispersion across time as revealed by the mean and

variance in Table 4.4 in Appendix 4.2 was fitted to both GPGP and RPGP-

EP models. Results in Table 4.5 show that the GPGP model consistently

gives a better model fit since it can allow for underdispersion while the

RPGP-EP model fails to do so.

Two more data sets were then generated by adding some outliers in

order to make the data distribution become equidispersed and overdispered

(see Table 4.4). More specifically, we add a constant to all observations of

the last subject in both control group (i = 40) and treatment group (i =

80) to study the responses of model parameters to the presence of outlying

values. Without altering the overall trend and with a slight increase in the

overall mean across time, the data distribution becomes equidispersed by

adding a constant nine and overdispersed by adding a constant fifteen.
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In the case of equidispersion, for the RPGP-EP model, the parameters

of the mean and ratio functions do not alter too much since the trend move-

ment remains unchanged and the level of time series only increases slightly.

As expected, the shape parameter ν for {Y ∗
it = lnYit} has changed sharply

from 0.15 to 0.88 and the scale parameter σ has increased moderately.

These imply that the distribution of the underlying latent stochastic pro-

cess {Y ∗
it} becomes more heavy-tailed and overdispersed to accommodate

the outlying observations. While for the GPGP model, again the parame-

ters in the mean and ratio functions remain nearly stagnant except for the

shape parameter r of {Yit} which drops abruptly to allow for the inflated

variance due to the enlarged observations. The dispersion parameter λ2 in

the GPGP model however does not increase but instead becomes slightly

more negative, due to the fact that the variance of the distribution is con-

trolled by the factor
1

(1 − λ2)2
+

µt

at−1
t r

, which involves both λ2 and r as

shown in (4.4). This reveals that the shape parameter r of the gamma dis-

tribution for {Yit} has a stronger effect than the dispersion parameter λ2

in the GPD for the outcome {Wit} on the level of dispersion and the de-

crease in r ‘absorbs’ the outlying effect by increasing the tailedness of the

model distribution. On the contrary, the RPGP-EP model downweighs the

outlying effect by increasing the shape parameter ν of the EP distribution

for {Y ∗
it}. Comparing the model fit with the first case of underdispersion,

the DIC shows a substantially larger percentage change for the RPGP-EP
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model (2.6% versus 10.4%) indicating that the GPGP model still performs

better in the situation of equidispersion.

In the case of overdispersion, the parameters show similar movements

with a dramatic increase in ν in the RPGP-EP model (0.88 to 1.98) and a fur-

ther decrease in r in the GPGP model (6.11 to 4.09). However this time the

percentage increase in the DIC compared with the situation of equidisper-

sion for both models becomes closer because they both can handle overdis-

persed data by increasing the tailedness of the model distribution, in dif-

ferent ways. In the RPGP-EP model, the outlying effect is downweighed

by widening the interval of the uniform distribution of the underlying latent

stochastic process {Y ∗
it} whereas in the GPGP model, it is accommodated

by magnifying the variance of {Yit}.

Lastly we also investigate the case of zero-inflation, a common source

of overdispersion. To compare the performance of the two models in mod-

elling zero-inflated data with a high proportion of zeros, we simulated a

data set with the same structure mentioned at the beginning of Section 4.4.1

from the zero-inflated GPGP model with the following pmf:

fz(wit) =





φ+ (1 − φ)f(wit), when wit = 0

(1 − φ)f(wit), when wit > 0

where f(wit) is given by (4.2), φ = 0.5, βµ0 = 2.0, βµ1 = −0.5, βa0 =

0.8, βa1 = −0.1, λ2 = 0.2 and r = 1.0. The data set simulated from

the zero-inflated GPGP model has a high percentage of zeros observations

(78%) which leads to overdispersion and a U-shaped trend pattern as shown
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in Table 4.4. Not surprisingly, since both models can cope with overdis-

persed data, the model fits of the two models indicated in Table 4.5 are

close with the GPGP model marginally outperforms the RPGP-EP model.

The dispersion parameter λ̂2 = 0.39 in the GPGP model and the shape pa-

rameter ν̂ = 1.95 in the RPGP-EP model also agree with each other and

confirm overdispersion.

==================================

Tables 4.4 and 4.5 about here

==================================

In sum, the two simulation studies manifest the pitfall of RPGP-EP

model in modelling underdispersed data. On the contrary, GPGP model

is more comprehensive as it can fit data with different degrees of disper-

sion by varying the two model parameters λ2 and r. As the two simulation

studies have revealed the satisfactory performance of the GPGP model, its

practicability will be demonstrated in the following real data analysis.

4.5. Real data analysis

In this Section, the applicability of the GMPGP model is illustrated via

a panel data analysis of the arrest for cannabis use in New South Wales

(NSW), Australia. The background and the properties of the data are first

described. Then the results of the analysis and model comparison are inter-

preted in detail.
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4.5.1. Overview. Cannabis is a recreational drug with few toxic acute

effects compared to other illicit drugs. The prevalence of canabbis use

is high as it gives users a sense of mild euphoria and relaxation but also

has some short-term side effects such as drowsiness and loss of coordina-

tion. An overdose of cannabis will exert deleterious effect on motor skills

and reaction time causing road traumas (Jones et al., 2005). Besides, the

cannabis abusers and quitters will experience paranoia and other withdrawal

symptoms which make them feel irritated or make them become aggressive.

These may result in violent behaviours and assaults and consequently lead

to mounting crime rates.

Unfortunately, the arrest of cannabis use was not effective as recognized

by the NSW Drug Summit. To alleviate this problem, the NSW Police and

Drug and Alcohol Coordination initiated the Cannabis Cautioning Scheme

in April 2000 to assist offenders to consider the legal and health ramifica-

tions of their cannabis use and seek treatment and support (Baker & Goh,

2004). Under this scheme, first- and second-time offenders who are caught

using or possessing of not more than 15g of dried cannabis would receive a

formal police caution rather than facing criminal charges and court proceed-

ings. The caution includes information about the consequence of cannabis

use and access to treatment and support services. It was expected that the

scheme could reduce the number of cannabis users throughout the state but

this effect still remained skeptical (Baker & Goh, 2004).
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The objective of this data analysis is to evaluate the effectiveness of

the policy through the study of trend movement of the number of arrests for

dealing and trafficking of cannabis in NSW during 2001 to 2008. The data is

available on the official website of the NSW Bureau of Crime Statistics and

Research (http://www.bocsar.nsw.gov.au/lawlink/bocsar/ll_bocsar.nsf/pages/

bocsar_onlinequeries) and is described as follows.

4.5.2. Data and model fitting. The data set contains 344 yearly num-

ber Wit of arrests for cannabis dealing and trafficking from 2001 to 2008

in 43 local government areas (LGAs) within Sydney, the metropolitan re-

gion of NSW with the highest prevalence of drug dealing and trafficking

amongst all NSW divisions. This results in m = 43 time series in which

each consists of eight yearly counts (ni = 8) as reported in Appendix 4.1.

Clearly, the data exhibits cluster effects and overdispersion due to the

fact that some LGAs like Sydney, Bankstown, Blacktown, Campbelltown,

have significantly higher number of arrests for cannabis dealing and traf-

ficking throughout the studying period. Therefore, we incorporate mixture

effects into the model as described in Section 4.2.3. We postulate that there

exists G groups of LGAs in which each of the groups has distinct level of

arrests and trend pattern. Without any prior information about the num-

ber of groups that can be classified from the data, we fit the model with

G = 1, 2, . . . ,m group(s) and determine the value of G by assessing the

DIC and the significance of the model parameters. Moreover, the time se-

ries generally shows a decreasing trend during 2001 to 2004, stabilizes in



4.5. REAL DATA ANALYSIS 141

2004-2005 followed by a further drop in 2005-2007 but rebounds slightly

in 2008. In view of these characteristics and the desire to examine the com-

petence of the GMPGP model in handling overdispersed data by comparing

with the RMPGP-EP model, we fitted both GMPGP and RMPGP-EP mod-

els to the data taken into account the non-monotone trend patterns, overdis-

persion and population heterogeneity.

Considering the non-monotone trends, we incorporate a time evolving

effect za1it = ln t in the ratio function aitl in (4.6). Since there is no measure

of covariate effect on the trend level in the data, we simply set the mean

function µitl = βµ0l. Regarding the cluster effects, as we have no prior

information about the number of groups in the panel data, we fitted the

GMPGP models with G = 1, 2, 3, . . . ,m group(s) respectively using the

MCMC algorithms described in Section 4.3.1. For the priors, we specify

cl = 0.1, d1 = 0.05 and d2 = 0.1 in (4.12) while other hyperparameters

are specified as described in Section 4.3.1. The results of the analysis are

elaborated in the following Section.

4.5.3. Results. The 1-group GMPGP model (G = 1) fails to explain

the population heterogeneity leaving a large deviation between the observed

and predicted counts for some LGAs with high occurrences of cannabis

dealing and trafficking. This poor fit is revealed from the larger DIC

(3788.36) of the 1-group GMPGP model when compared to that of the 2-

group GMPGP model (DIC = 3751.78). However, a 3-group GMPGP

model (G = 3) overfits the data with one cluster actually degenerating.
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Therefore we stop the model fitting process at G = 3 and confirm that

the 2-group GMPGP model (G = 2) is the most appropriate one to fit the

data and further fit a 2-group RMPGP-EP model for model comparison. In

addition, we find that the parameters βa1l, l = 1, 2 in the ratio functions

are insignificant (95% CI for βa1l contains zero) for both models indicating

that the trends are indeed monotone in both groups. Hence we drop the re-

dundant time-evolving covariate ln t in the ratio functions and they become

aitl = exp(βa0l). In Appendix 4.2, Table 4.6 summarizes the parameter

estimates, standard errors (SE) and model selection criterion DIC for the

GMPGP and RMPGP-EP models.

==================================

Table 4.6 about here

==================================

In the two fitted models, two distinct groups of LGAs are identified,

namely the high-level (l = 1) and low-level (l = 2) groups since the ini-

tial trend of the former group is higher across time (β̂µ01 > β̂µ02). For

the GMPGP model, the high-level group (l = 1) demonstrates a station-

ary trend since βa01 is not significantly different from zero (95% CI for

βa01:[−0.0062, 0.1033]) while the trend low-level group (l = 2) shows

a monotone declining trend (95% CI for βa02:[0.0326, 0.1493]). For the

RMPGP-EP model, both high-level and low-level groups exhibit a mono-

tone decreasing trend as the two parameters βa01 (95% CI:[0.0095, 0.1344])

and βa02 (95% CI:[0.0401, 0.1528]) are significantly greater than zero.
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Concerning the classification, the LGA i is classified to group l, l =

1, 2 if the posterior mean Īil = max
l′

Īil′ . With respect to the GMPGP

model, 15 LGAs are categorized to the high-level group (l = 1) with

Īi1 = max
l′

Īil′ and as expected Sydney which is the central business district

with a high concentration of pubs and night clubs belongs to this group.

Most of the LGAs classified in this group, including Bankstown, Canter-

bury, Fairfield, Liverpool, Parramatta, Holroyd, Penrith and Blacktown, are

located in the central or outer west of Sydney. While a few of them like

Baulkham Hills, Gosford and Wyong are situated in northern Sydney, only

two LGAs, Hurstville and Sutherland Shire are located in the south and one

LGA, Campbelltown in the southwest. The categorization implies that the

arrests for cannabis dealing and trafficking are concentrated in the inner and

western part of Sydney. These results concur with the findings in Baker &

Goh (2004) that the number of charges laid for minor cannabis use in April

2001 to March 2003 were significantly higher in the inner metropolitan area

like Sydney and some western local area commands like Bankstown, Par-

ramatta, Holroyd, Penrith and Blacktown.

The classification of the LGAs in the RMPGP-EP model are nearly

identical except that 2 more LGAs, Marrickville in the inner Sydney area

and Waverley in the eastern Sydney area are categorized in the high-level

group. The affinity of the classification may possibly be due to the similar

way that the two models capture the population heterogeneity by incor-

porating mixture effects. Since the LGAs with outlying observations are
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classified into the high-level group (l = 1), this group thus exhibits a higher

degree of overdispersion in contrast to the low-level group (l = 2) which

comprises of LGAs with low incidence counts. To verify this, we compare

the mean and variance over time of the two groups for both GMPGP and

RMPGP-EP models. To begin with, we evaluate the approximated pmfs

f̂tl(w) of the two groups using MC integration described in (4.9) for the

GMPGP model with atl = exp(βa0l) and µtl = exp(βµ0l). For the RMPGP-

EP model, f̂tl(w) is obtained by

f̂tl(w) =
Ms∑

j=1
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w
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tl |µ∗

tl, σl, νl), j = 1, . . . ,Ms

where fEP (·) is given by (3.6) and µ∗
tl = βµ0l. Then we compute the ob-

served pmfs under the two models at different time t by:

ftl(w) =

m∑
i=1

ĪilI(Wit = w)

∞∑
w′=0

m∑
i=1

ĪilIitl(Wit = w′)
, w = 0, 1, . . .

where I(Wit = w) = 1 if Wit = w and 0 otherwise and Īil is the posterior

mean of the membership indicator Iil for LGA i in group l. For both mod-

els, the predicted mean Êl(Wt) and variance V̂ arl(Wt) are calculated using

(4.10). Similarly, the observed mean El(Wt) and variance V arl(Wt) are

computed by replacing f̂tl(w) with ftl(w). These means and variances are

reported in Table 4.7 in Appendix 4.2. Noticeably, the degree of overdis-

persion is substantially higher in the high-level group since some extreme
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observations (w4,1 = 155, w4,2 = 114) in Sydney, one of the LGAs in this

group, inflate the variability of the counts dramatically. However, as both

GMPGP and RMPGP-EP models are robust to outliers and can downweigh

its influence in parameter estimation, the predicted variances of the high-

level group are underestimated in the first two years but are getting close to

the observed variances in the next six years for both models.

==================================

Table 4.7 about here

==================================

To investigate the trend movements, the distinct patterns for the two

groups are illustrated in Figure 4.2 in Appendix 4.3 by plotting the ob-

served mean El(Wt) and predicted mean Êl(Wt) under different models.

The Figure shows a declining trend in both high-level and low-level groups

with a relatively slower rate in the latter group. Moreover, the closeness

between the observed and predicted trends justify the adequacy of the mod-

els to fit the panel data. Overall, these results give statistical evidence that

the Cannabis Caution Scheme is associated with the drop in the number of

arrests for cannabis dealing and trafficking in NSW. In other words, our re-

sults imply that the Cannabis Caution Scheme is effective in reducing the

number of cannabis users within the Sydney metro area. This finding also

agrees with the 2007 National Drug Strategy Household Survey (Australian

Institute of Health and Welfare, 2008) that the proportion of the population

aged 14 years and over who had used cannabis in the last 12 months has
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fallen from 15.8% in 2001 to 14.4% in 2004 and further reduced to 11.6%

in 2007.

====================================

Figure 4.2 about here

====================================

In the model comparison, after accounting for the model complexity, the

GMPGP model with a smaller DIC outperforms the RMPGP-EP model

and gives a better fit to the data. To explain this, we investigate the dif-

ference in model performance by comparing the observed pmf ftl(w) and

fitted pmf f̂tl(w) under the two models. Figures 4.3(a) and 4.3(b) in Ap-

pendix 4.3 display the observed and fitted pmfs of the high-level group in

both models at two chosen times t = 1 and t = 5. They clearly show that

the distribution of the GMPGP model has a heavier tail to accommodate

the outlying observations. The case is similar for the low-level group as

shown in Figures 4.4(a) and 4.4(b) in Appendix 4.3. Because of the heavier

tail, relative to the RMPGP-EP model, the GMPGP model generally gives

higher predicted counts and lower variances for both groups as revealed in

Table 4.7.

======================================

Figures 4.3(a), 4.3(b), 4.4(a) and 4.4(b) about here

======================================
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Lastly, for the GMPGP model, the best model, according to the DIC,

we tested for the serial correlation using the procedures described in Sec-

tion 4.2.4. Starting from some lower lags, the p-values of the chi-square test

for autocorrelation up to lag 1,2 and 3 are 0.005, 0.015 and 0.124 respec-

tively. These results confirm the presence of serial correlation in the data

and therefore we refit the GMPGP model by including the AR(1) and AR(2)

terms into the mean function µitl. However, the AR(2) term in the high-level

group and all the AR terms in the low-level group are insignificant and thus

are discarded. The final model is the 2-group GMPGP model with an AR(1)

term incorporated into the mean function µit1 = exp(βµ01 + βµ11wi,t−1) for

the high-level group. The parameter estimates with SE for the final model

abbreviated as GMPGP-AR(1) model are reported in Table 4.7. Not sur-

prisingly, the parameter estimates are comparable to those of the GMPGP

model and the GMPGP-AR(1) model has a better DIC indicating that the

model fit has improved. Moreover, the significant positive βµ11 = 0.0198

implies that the current observation is positively correlated with the previ-

ous observation in the high-level group.

Last but not least, to illustrate their distinct trend movements and the

categorization of the LGAs in the GMPGP-AR(1) model, we plot the pre-

dicted individual and group trends for both high-level (l = 1) and low-level

(l = 2) groups in Figures 4.5(a) and 4.5(b) in Appendix 4.3. The predicted

number of arrest for cannabis dealing and trafficking for an individual LGA

i at time t is given by Ŵit = Īi1Ê1(Wit) + Īi2Ê2(Wit) where El(Wit) is
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given by (4.8) and Īil is the posterior mean of the membership indicator

for group l, while that for the predicted group trend is simply given by a

weighted average of El(Wit) given by (4.10) with weight Īil for group l,

that is,

∑
i ĪilEl(Wit)∑

i Īil
. Note that for clearer visualization, Figure 4.5(b)

does not include the outlying predicted trend for the LGA, Sydney.

====================================

Figures 4.5(a) and 4.5(b) about here

====================================

Figure 4.5(a) vividly reveals that the LGA Sydney, though has a remark-

ably high number of arrests for cannabis dealing and trafficking, shows the

greatest drop throughout the entire studying period. While compared to

Sydney, other LGAs generally show a downward trend with a much slower

decreasing rate. Furthermore, Figure 4.5(b) shows the clear classification of

the LGAs by incorporating mixture effects into the model and the predicted

group trend in the high-level group demonstrates the ‘invulnerability’ of the

GMPGP-AR(1) model to extreme observations. In summary, the findings

with respect to the trend movements certainly provide useful information

for the allocation of police force to bring down the cannabis use especially

in those LGAs with higher number of arrests for cannabis dealing and traf-

ficking.
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4.6. Discussion

In this Chapter, we propose the generalized Poisson geometric process

(GPGP) model which relaxes the restriction of overdispersion in the previ-

ous PGP-Ga and RPGP models. The GPGP model adopts a more general

data distribution, the generalized Poisson distribution (GPD), to account for

both underdispersed and overdispersed data. Moreover, similar to RPGP

models, it can accommodate non-monotone trends, serial correlation, co-

variate and cluster effects. By varying different model parameters, the mean

and variance of the GPGP model are reported in Table 4.1 and their pmfs

are illustrated in Figures 4.1(a) to 4.1(d). Although the marginal pmf of the

GPGP model does not have a closed-form, Monte Carlo (MC) integration

in (4.9) can be used to approximate the pmf, and hence the mean as well as

the variance. Results in Table 4.1 show that the model can accommodate

data with trends and different degrees of dispersion.

The GPGP model can be implemented through MCMC algorithms us-

ing WinBUGS. In order to assess the comprehensiveness of the proposed

model, we perform a model comparison with the RPGP-EP model pro-

posed in Chapter 3 because it can fit data ranging from equidispersion to

heavy overdispersion. We investigate the suitability and performances of

the two models by conducting two simulation studies. The first study is

a cross simulation which assesses the similarities and differences of their

model properties. The second study compares their competence under four

situations: (1) underdispersion; (2) equidispersion; (3) overdispersion; and



4.6. DISCUSSION 150

(4) zero-inflation. Our findings highlight that while the performances of the

two models are comparable and satisfactory in the case of overdispersion,

the GPGP model has a much better performance in handling underdispersed

data in which the RPGP-EP model falls short to do so.

Lastly, the analysis of cannabis data demonstrates the applicability of

the GMPGP model to account for cluster effects, trend movements and se-

rial correlation as well as compares its competence in handling overdisper-

sion with the RMPGP-EP model. Results show that even the data is overdis-

persed, the GMPGP model still outperforms the RMPGP-EP model as it can

accommodate outliers by the heavier tail of the model distribution. On the

other hand, in the presence of outliers, the RMPGP-EP model downweighs

the detrimental effect of outliers by allowing a leptokurtic distribution for

the stochastic process {Y ∗
it}. Nevertheless, the different degrees of empha-

sis on outlyling observations make the two models appropriate under panel

studies with different objectives.
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Appendix 4.1

Number of arrests for cannabis dealing and trafficking in Sydney during 2001-2008
Statistical year

Subdivision LGA 2001 2002 2003 2004 2005 2006 2007 2008

Inner Sydney Botany Bay 6 2 4 2 3 1 1 2
Leichhardt 2 1 1 2 0 1 1 2

Marrickville 7 5 6 4 7 8 5 5
Sydney 143 114 88 85 69 44 46 57

Eastern Suburbs Randwick 8 3 6 8 8 2 4 1
Waverley 4 7 13 6 12 1 2 3
Woollahra 2 0 0 1 0 0 0 4

St George-Sutherland Hurstville 4 8 10 3 2 3 5 13
Kogarah 4 2 5 4 4 3 2 1
Rockdale 5 4 6 6 5 3 2 5

Sutherland Shire 7 8 11 16 9 9 3 9
Canterbury-Bankstown Bankstown 22 17 12 20 22 13 19 15

Canterbury 18 9 13 16 17 22 17 26
Fairfield-Liverpool Fairfield 18 13 5 17 24 12 9 6

Liverpool 47 9 13 15 17 8 14 5
Outer South Western Sydney Camden 1 2 2 2 1 2 1 3

Campbelltown 18 22 13 16 34 35 5 16
Wollondilly 5 3 0 2 1 0 0 1

Inner Western Sydney Ashfield 4 5 6 2 2 1 1 2
Burwood 1 2 2 5 2 1 2 4

Canada Bay 3 2 0 5 1 0 2 2
Strathfield 6 3 0 3 1 0 1 1

Central Western Sydney Auburn 2 0 3 2 7 5 3 6
Holroyd 6 11 3 9 5 9 3 7

Parramatta 22 15 9 18 15 12 8 7
Outer Western Sydney Blue Mountains 3 5 3 4 0 2 6 2

Hawkesbury 9 6 4 2 7 3 2 3
Penrith 30 5 13 10 18 5 3 8

Blacktown Blacktown 30 25 26 19 14 16 13 5
Lower Northern Sydney Hunters Hill 0 0 2 0 1 0 0 0

Lane Cove 0 0 0 0 0 0 0 1
Mosman 2 0 1 0 4 1 0 0

North Sydney 4 5 1 2 2 2 1 1
Ryde 10 11 3 3 1 4 0 1

Willoughby 3 0 1 2 2 0 1 0
Central Northern Sydney Baulkham Hills 11 2 2 2 5 14 12 3

Hornsby 8 6 7 6 4 4 0 3
Ku-ring-gai 2 0 3 0 2 3 1 0

Northern Beaches Manly 3 0 1 3 1 4 0 5
Pittwater 1 1 6 0 1 1 0 1

Warringah 5 10 2 3 4 2 2 7
Gosford-Wyong Gosford 9 11 7 26 6 5 3 4

Wyong 5 4 21 5 13 7 6 4

mean 11.63 8.33 7.77 8.28 8.21 6.23 4.79 5.84
variance 512.9 306.9 190.2 187.7 148.2 81.4 63.7 88.9
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Appendix 4.2

Tables

Table 4.1: Moments of marginal pmfs for GPGP model under a set of float-
ing parameters with fixed values of λ2 = 0.2, r = 30, βµ0 = 3, βµ1 =
−0.5, βa0 = −0.5, βa1 = 0.2

floating Using (4.10) Using (4.3)&(4.4) floating Using (4.10) Using (4.3)&(4.4)
parameter Ê(Wt) V̂ ar(Wt) E(Wt) V ar(Wt) parameter Ê(Wt) V̂ ar(Wt) E(Wt) V ar(Wt)

λ2 = −0.5 13.413 11.924 13.464 12.026 r = 1.2 13.328 172.493 13.464 172.097
λ2 = −0.2 13.468 15.544 13.464 15.392 r = 2.0 13.437 105.519 13.464 111.673
λ2 = 0.2 13.476 27.207 13.464 27.079 r = 8.0 13.427 44.339 13.464 43.696
λ2 = 0.5 13.476 60.041 13.464 59.897 r = 40.0 13.415 25.402 13.464 25.569
βµ0 = 0.7 1.361 2.191 1.350 2.170 βa0 = −1.0 22.013 50.025 22.198 51.109
βµ0 = 1.5 3.012 5.030 3.004 4.995 βa0 = −0.4 12.081 23.584 12.182 23.982
βµ0 = 2.0 4.968 8.611 4.953 8.557 βa0 = 0.2 6.630 11.777 6.686 11.937
βµ0 = 3.0 13.460 26.895 13.464 27.079 βa0 = 0.8 3.639 6.113 3.669 6.182

Table 4.2: Parameter estimates, SD, MSE andDIC for GPGP and RPGP-
EP models in cross simulation (Study 1)

data model parameter true estimate SD MSE DIC

1 GPGP βa0 -0.4948 0.0817 1828.30
βa1 0.0997 0.0114
βµ0 0.7838 0.0872
βµ1 -0.2379 0.0466
λ2 -0.0386 0.0432
r 6.2626 1.1012

RPGP-EP βa0 -0.5 -0.4289 0.0729 0.0103 1860.39
βa1 0.1 0.0926 0.0105 0.0002
βµ0 1.0 0.8287 0.0769 0.0352
βµ1 -0.5 -0.2812 0.0656 0.0521
ν 0.1 0.2005 0.1178 0.0238
σ 0.5 0.6272 0.0701 0.0210

2 GPGP βa0 -0.05 -0.0523 0.0334 0.0011 1756.63
βa1 0.005 0.0053 0.0040 0.00002
βµ0 -2.0 -2.0857 0.3033 0.0984
βµ1 -0.5 -0.2589 0.0225 0.0586
λ2 -0.99 -0.7616 0.1207 0.0713
r 30 26.7556 8.2767 78.3453

RPGP-EP βa0 -0.1281 0.0400 2178.65
βa1 0.0128 0.0045
βµ0 0.9573 0.0652
βµ1 -0.1952 0.0464
ν 0.0875 0.0248
σ 0.3653 0.0286
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Table 4.3: Mean and variance of the true, GPGP and RPGP-EP models in
cross simulation (Study 1)

time average
data model 1 2 3 4 5 6 7 8 over time

1 true mean 2.255 3.104 3.356 3.056 2.278 1.379 0.678 0.279 2.048
GPGP 1.966 2.631 2.899 2.605 1.935 1.165 0.578 0.235 1.752

RPGP-EP 2.177 2.739 2.923 2.557 1.900 1.137 0.573 0.243 1.781

true variance 2.731 3.964 4.362 3.924 2.737 1.550 0.719 0.285 2.534
GPGP 2.439 3.548 4.032 3.519 2.389 1.307 0.590 0.227 2.256

RPGP-EP 2.861 3.791 4.150 3.495 2.408 1.322 0.620 0.252 2.363

2 true mean 3.262 3.391 3.499 3.571 3.610 3.606 3.566 3.495 3.500
GPGP 2.943 3.066 3.168 3.235 3.271 3.265 3.229 3.160 3.167

RPGP-EP 2.430 2.688 2.902 3.055 3.138 3.133 3.058 2.900 2.913

true variance 1.199 1.262 1.315 1.339 1.361 1.361 1.340 1.312 1.311
GPGP 1.281 1.352 1.405 1.432 1.456 1.458 1.436 1.403 1.403

RPGP-EP 2.695 3.024 3.289 3.487 3.584 3.579 3.485 3.282 3.303

Table 4.4: Mean and variance of four simulated data sets under different
situations (Study 2)

time average
data 1 2 3 4 5 6 7 8 over time

underdispersion mean 2.750 3.088 3.013 3.213 3.300 3.175 3.075 3.075 3.086
equidispersion 2.975 3.313 3.238 3.438 3.525 3.400 3.300 3.300 3.311
overdispersion 3.125 3.463 3.388 3.588 3.675 3.550 3.450 3.450 3.461
zero-inflation 3.025 1.425 0.613 0.238 0.713 0.525 1.350 2.138 1.253

underdispersion variance 1.658 1.777 1.354 1.258 1.428 1.437 1.665 1.412 1.499
equidispersion 3.772 3.509 3.120 3.616 3.063 3.585 3.630 2.922 3.402
overdispersion 7.402 6.885 6.519 7.410 6.374 7.238 7.162 6.149 6.892
zero-inflation 26.860 5.463 2.620 0.639 2.992 1.822 8.306 14.171 7.859
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Table 4.5: Parameter estimates, SE andDIC in GPGP and RPGP-EP mod-
els under different degrees of dispersion (Study 2)

model para- underdispersion equidispersion overdispersion zero-inflation*
meter estimate SE estimate SE estimate SE estimate SE

GPGP βa0 -0.0669 0.0194 -0.0389 0.0513 -0.0733 0.0283 1.1370 0.2042
βa1 0.0070 0.0024 0.0040 0.0062 0.0080 0.0033 -0.1398 0.0243
βµ0 1.1430 0.0368 1.2255 0.0606 1.2365 0.0516 1.1405 0.2459
βµ1 -0.2212 0.0312 -0.2037 0.0413 -0.1915 0.0451 -0.0919 0.1932
λ2 -0.8792 0.1019 -0.9651 0.0432 -0.9701 0.0422 0.3874 0.0644
r 19.3500 8.4734 6.1110 0.4832 4.0845 0.2801 0.3012 0.0397

DIC 1893.60 1943.31 (+2.6%) 1966.24 (+1.2%) 1312.66 NA

RPGP βa0 -0.1809 0.0254 -0.1111 0.0228 -0.1244 0.0368 1.5320 0.1179
-EP βa1 0.0188 0.0038 0.0115 0.0032 0.0127 0.0053 -0.1798 0.0162

βµ0 1.0380 0.0064 1.0950 0.0125 1.0880 0.0093 0.6003 0.0220
βµ1 -0.4143 0.0157 -0.1672 0.0242 -0.2892 0.0175 -0.6094 0.1260
ν 0.1462 0.0731 0.8775 0.1264 1.9810 0.0161 1.9510 0.0344
σ 0.1090 0.0059 0.2005 0.0067 0.1189 0.0039 0.6763 0.0679

DIC 2206.33 2435.34 (+10.4%) 2449.17 (+0.6%) 1317.85 NA
* A new data set is simulated.

Table 4.6: Parameter estimates, SE and DIC in 2-group GMPGP and
RMPGP-EP models for the cannabis data

RMPGP-EP model GMPGP model GMPGP-AR(1) model
group parameter estimate SE parameter estimate SE estimate SE

l = 1 βa01 0.0798 0.0304 βa01 0.0455 0.0273 0.0529 0.0268
high-level βµ01 2.6200 0.1183 βµ01 2.9600 0.1378 2.4350 0.1433

βµ11 0.0198 0.0022
σ1 0.5512 0.0707 λ21 0.7238 0.0260 0.6221 0.0327
ν1 1.4060 0.1617 r1 29.600 21.340 25.280 18.840
π1 0.4034 0.0812 π1 0.3530 0.0822 0.4694 0.0923

l = 2 βa02 0.1039 0.0287 βa02 0.0915 0.0296 0.0966 0.03272
low-level βµ02 1.0750 0.1308 βµ02 1.2910 0.1273 1.084 0.1885

σ2 0.5208 0.0851 λ22 0.1098 0.1581 0.0773 0.1459
ν2 1.1640 0.2368 r2 2.7030 2.7870 3.0580 4.2560

DIC 3812.77 DIC 3751.78 3644.21
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Table 4.7: Observed and predicted means and variances of GMPGP and

RMPGP-EP models for the cannabis data

time average
model cluster 2001 2002 2003 2004 2005 2006 2007 2008 over time

mean

GMPGP high-level observed 25.685 17.966 16.464 18.333 18.168 13.934 10.786 11.967 16.663

predicted 19.280 18.408 17.599 16.829 16.084 15.365 14.681 14.020 16.533

low-level observed 3.940 3.053 3.011 2.780 2.763 2.021 1.512 2.484 2.695

predicted 3.620 3.311 3.025 2.768 2.514 2.300 2.101 1.932 2.696

RMPGP high-level observed 23.621 16.665 15.404 16.893 16.896 13.053 10.103 11.237 15.484

-EP predicted 18.094 16.791 15.816 14.735 13.807 12.804 11.844 10.807 14.337

low-level observed 3.751 2.848 2.752 2.621 2.504 1.753 1.301 2.291 2.478

predicted 3.548 3.200 2.900 2.595 2.326 2.102 1.881 1.704 2.532

variance

GMPGP high-level observed 1097.8 686.88 394.73 354.11 243.30 124.71 114.44 178.24 399.28

predicted 261.81 249.78 238.44 227.64 217.18 207.27 197.79 188.86 223.60

low-level observed 7.302 9.459 7.484 4.392 6.897 4.566 3.306 5.119 6.066

predicted 9.490 8.278 7.180 6.309 5.498 4.897 4.303 3.799 6.219

RMPGP high-level observed 1014.8 627.35 362.67 333.49 231.26 119.45 106.95 164.64 370.07

-EP predicted 281.01 259.66 230.47 216.08 200.66 170.60 148.89 149.79 207.14

low-level observed 6.938 8.997 6.120 3.942 5.785 2.605 2.197 4.076 5.083

predicted 9.247 8.115 6.921 5.727 4.899 4.197 3.536 3.008 5.706
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Appendix 4.3

Figures

Figure 4.1: The pmfs of GPGP model with varying parameters
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Figure 4.2: Observed and predicted trends of GMPGP and RMPGP-EP

models
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Figure 4.3: The pmfs of high-level group for GMPGP and RMPGP-EP

models at different t
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(b) t = 5
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Figure 4.4: The pmfs of low-level group for GMPGP and RMPGP-EP mod-

els at different t
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Figure 4.5: Predicted individual and group trends of GMPGP-AR(1) model
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Individual and group trends (with Sydney)

0

20

40

60

80

100

120

140

160

180

200

2001 2002 2003 2004 2005 2006 2007 2008
year

n
u

m
b

er
 o

f 
ar

re
st

s

high-level (indiv) high-level (group) low-level (indiv) low-level (group)
Series3 Series5 Series6 Series7
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CHAPTER 5

Multivariate generalized Poisson log-t geometric process

model

Chapters 2 to 4 extend the PGP models to analyze univariate longi-

tudinal and panel count data with various characteristics (including zero-

inflation, overdispersion and underdispersion while allowing for the serial

correlation and cluster effects). This Chapter extends the generalized Pois-

son geometric process (GPGP) model described in (4.2) described in the

previous Chapter to study multivariate longitudinal count data.

5.1. Background

The modelling of multivariate time series of counts has drawn atten-

tion increasingly as its application ranges widely in different areas. Data

such as sales, crimes, car accidents, occupational injuries, industrial control

and diseases are often measured in a multivariate manner with more than

one outcome associated with the same subject and the outcomes are usually

correlated. Let Wit be the count at time t from the ith time series. The

objective of this Chapter is to innovate an adequate count model for mul-

tivariate longitudinal count data in a geometric process (GP) framework to

address the trend movements, covariate effects, serial correlation between

observations (Wit,Wi,t−L) in individual time series and cross correlation

160
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(Wit,Wi′,t−L) and contemporaneous correlation (Wit,Wi′t) between time

series where L,L = 1, . . . , n− 1 denotes the lag of the observations.

While the literature for the multivariate distribution is extensive for con-

tinuous data, researches for discrete multivariate counts are relatively lim-

ited due to the computational difficulties in implementation. The multivari-

ate normal distribution is commonly used as an alternative choice to model

discrete data (Karlis, 2003). Unfortunately, it fails particularly when the

count data is skewed due to the prevalence of small or zero observations.

In the multivariate time series of counts, different time series usually

possess different properties such as dispersion, trend movement and serial

correlation between observations. Moreover, cross correlation and contem-

poraneous correlation may exist between pairs of time series. This Chapter

proposes a new model namely multivariate generalized Poisson log-t geo-

metric process (MGPLTGP) model to allow for all these properties. The

model is shown to have several advantages over some existing models in

the literature.

The development of multivariate models starts from the consideration of

cross-sectional count data. Amongst all the available multivariate models,

models with the bivariate Poisson distribution proposed by Kocherlakota

& Kocherlakota (1992) and the multivariate Poisson (MP) distribution by

Johnson et al. (1997) are the most straightforward extensions of the uni-

variate Poisson model. It is because they have closed-form joint probability
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mass function (pmf). Each random variable of the MP distribution is ex-

pressed as a sum of two independent univariate Poisson random variables

in which one variable is common in all the sums. In this way, the mar-

ginal distribution is essentially the simple Poisson distribution with mean

equals to variance and the covariance between all pairs of variables would

be the mean of the common Poisson variable (Refer to Section 5.2.1 for

more details). However, the equal and positive correlation between all pairs

of Poisson variables is very restrictive and the model is only applicable to

equidispersed data.

Thereafter, Karlis & Meligkotsidou (2005) extended the covariance struc-

ture in the basic MP distribution by allowing a different covariance for each

pair of variables. Nevertheless, the restriction on positive correlation and

equidispersion still remained unsolved. Throughout the past decade, a num-

ber of researches have considered using a mixed model approach to deal

with the overdispersed multivariate counts with negative correlation. A list

of the mixed models can be found in Karlis & Xekalaki (2005). These MP

mixed models can be classified into two types. The first type is generally

a composite of MP distribution with a univariate mixing distribution as it

assumes that the means of the MP random variables are proportional to a

random variable following a univariate mixing distribution. Properties of

this type of models are described in Kocherlakota (1988). Despite that the
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mixing component adds extra variation to the resultant distribution to ac-

count for data with overdispersion, this model can apply only to positively

correlated multivariate counts as the covariance function is always positive.

As a generalization of the first type, the second type imposes a multi-

variate mixing distribution on the mean vector of the MP distribution. Using

this approach, the covariances of the unconditional MP variables are sim-

ply expressed in terms of the covariances of the mixing parameters. In this

way, the unconditional variables may exhibit negative correlation as well

as overdispersion. Nonetheless, the MP mixed model of the second type,

though is suitable for modelling overdispersed count data with negative cor-

relation, cannot cope with underdispersed data. Moreover, the resulting dis-

tribution is very complicated and in practice most models consider a special

case in which the MP variables are assumed to be independent. See Karlis

& Xekalaki (2005) for more details of the two types of mixed MP distribu-

tions.

In the context of time series analysis, some applications of these afore-

mentioned models include Karlis (2003), Wang et al. (2003) and Lee et al.

(2005). For instances, Karlis (2003) applied the MP model to analyze the

number of road accidents on 24 central roads of Athens during 1987-1991.

In the analysis, the time effect is investigated through the correlation struc-

ture which assumes all pairs of time series have equal and positive corre-

lation. Wang et al. (2003) adopted a bivariate zero-inflated Poisson regres-

sion model to study the monthly musculoskeletal and non-musculoskeletal
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injuries from November 1992 to October 1995. Their model belongs to the

family of MP mixed models of the second kind and treats time as the expo-

sure without taking into account the serial correlation. Later on, Lee et al.

(2005) extended this model by incorporating multivariate normal random

effects with an autoregressive (AR) structure to account for serial correla-

tion for each individual time series but has not taken into account the cross

correlation between time series. Nonetheless, all these applications have

not addressed the trend movement and are limited to overdispersed data.

To simplify the modelling of covariances between pairs of time series

while allowing for different degrees of dispersion, this Chapter adopts the

approach in the MP mixed model of the second type but replaces the Pois-

son distribution with generalized Poisson distribution (GPD) for the out-

comes to result in a multivariate generalized Poisson mixed model. To

be specific, we extend the generalized Poisson geometric process (GPGP)

model described in Chapter 4 which is so far the most comprehensive model

amongst all existing PGP models to multivariate count data. In essence, this

model with the multivariate mixing distribution not only can allow a flex-

ible degree of dispersion, but also accommodate various contemporaneous

correlation structures by adopting different covariance matrices. Moreover,

as non-stationarity, serial and cross correlation are often prominent in time

series, our proposed model describes the trend movement explicitly while

taking into account the autocorrelation structure in individual time series

and across time series.
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In our proposed model, assume that the observed multivariate counts

follow independent GPDs, the means of the GPDs after discounting ge-

ometrically (t − 1) times become stationary and form a latent stochastic

process. We then assign the multivariate log-t (MLT) distribution as the

mixing distribution to the latent variables such that its mean and covariance

matrix can accommodate covariate effects and different correlation struc-

tures respectively. The MLT distribution is preferred to multivariate lognor-

mal (MLN) distribution which was adopted by Aitchinson & Ho (1989) and

Ma et al. (2008) as it provides more flexibility in the tail behavior for han-

dling outlying observations. Besides, if appropriate, some serial and cross

correlation structures can be accommodated by incorporating some lagged

observations as time-evolving covariates into the log-linked mean function

in individual time series or across time series. The resultant model is essen-

tially a multivariate version of the RPGP model and GPGP models which

have been investigated in Chapter 3 and 4 respectively.

For model implementation, the MP model and the MP mixed model

adopt the expectation-maximization (EM) algorithm in the likelihood ap-

proach (Karlis, 2003; Karlis & Meligkotsidou, 2007). However such method

becomes computational intensive due to the complexity of the joint pmf as

the number of dimension increases. This shortcoming makes the model less

favorable in real-life applications. On the other hand, Karlis & Xekalaki

(2005) adopted a Bayesian approach for model implementation. In a Bayesian
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perspective, the evaluation of the complex joint pmf can be avoided by con-

structing a simple Gibbs sampler to simulate the parameters from their full

conditional posterior distributions. Similar to the approach in the RPGP

model, the MLT distribution in our proposed model is expressed in scale

mixtures of MLNs. Under the scale mixtures representation, the parameter

estimation can be simplified by sampling from multivariate normal distri-

bution using Markov chain Monte Carlo (MCMC) algorithms and the addi-

tional mixing parameters in the scale mixtures of MLNs help to identify the

extreme observations in the outlier diagnosis. Refer to Chapter 3 for more

details.

The rest of the Chapter is organized as follows. Section 5.2 will briefly

review the well-established MP models and MP mixed models. Section 5.3

will introduce the proposed multivariate generalized Poisson log-t geomet-

ric process (MGPLTGP) model using scale mixtures of MLNs. In Section

5.4, we will discuss the implementation of MGPLTGP model using MCMC

algorithms followed by the introduction of the model assessment criterion.

After that, a real data analysis of the MGPLTGP model with model com-

parison will be given in Section 5.5. Lastly Section 5.6 will give some

concluding remarks with plausible future extensions.

5.2. A review of multivariate Poisson models

5.2.1. Multivariate Poisson model. The multivariate Poisson (MP) model

is derived through the multivariate reduction (Mardia, 1971). Suppose that

Vi, i = 0, . . . ,m are independent Poisson random variables with mean ηi.
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Then the random variables Wi = Vi + V0, i = 1, . . . ,m follow jointly a

multivariate Poisson (MP) distribution where m represents the dimension

of the distribution. The joint pmf fMP (w|η) is given by

fMP (w|η) = f(w1, w2, . . . , wm| η0, η1, . . . , ηm)

= exp

(
−

m∑

i=0

ηi

)
m∏

i=1

ηwi

i

wi!

ξ∑

i=0




m∏

j=1




wj

i


 (i!)m−1




η0
m∏

k=1

ηk




i


where w = {w1, w2, . . . , wm} and ξ = min(w1, w2, . . . , wm). Marginally,

each Wi follows a Poisson distribution and its mean, variance and covari-

ance are given by

E(Wi) = V ar(Wi) = ηi + η0 and Cov(Wi,Wj) = η0 for all i 6= j.

If η0 = 0, then the joint distribution reduces to a product of m independent

Poisson distributions. However, the use of the MP model is rather restricted

due to the unrealistic assumption that all pairs of variables have the same

covariance. See Johnson et al. (1997) for more details.

To allow a more flexible covariance structure, Karlis & Meligkotsidou

(2005) proposed using a two-way covariance structure to improve the prac-

ticability of the MP model. Assume that Wi =
i∑

k=1

Vki +
m∑

k=i+1

Vik for

i = 1, . . . ,m − 1 and Wm =
m∑

k=1

Vkm, where Vik, i ≤ k ≤ m are inde-

pendent Poisson random variables with mean ηik, then the mean, variance

and covariance become
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E(Wi) = V ar(Wi) =





i∑
k=1

ηki +
m∑

k=i+1

ηik, for i < m

m∑
k=1

ηkm, for i = m

Cov(Wi,Wj) = ηij, for i < j. (5.1)

In addition, the applicability of the MP model can be enhanced by log-

linking ηik with some covariates such that ln ηik = zT
ik βik for i ≤ k ≤ m,

where zik = {z0ik, z1ik, . . . , zqikik}T and βik = {β0ik, β1ik, . . . , βqikik}T

are (qik + 1) × 1 vectors of covariates and regression coefficients respec-

tively. Refer to Karlis & Meligkotsidou (2005) for more details. In the

remainder of this Chapter, we will denote by fMP (w|η) the joint pmf

of the MP model with two-way covariance structure and parameter vector

η = {η11, η12, . . . , ηm−1,m, ηmm}T .

Although the extension enables the MP model to accommodate covari-

ate effects and a more flexible covariance structure as it allows varying co-

variances across pairs of (Wi,Wj) in (5.1), clearly the MP model still fails

to fit overdispered or negative correlated data which are commonly found in

real life. Hence, the mixed model approach is considered to remedy these

limitations.

5.2.2. Multivariate Poisson mixed model. A majority of the multi-

variate Poisson mixed models can be classified into two categories. Without

loss of generality, assume that Wi follows a MP distribution with its mean
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proportional to a univariate random variable α where α has a mixing den-

sity g(α|µ, σ2) with mean µ and variance σ2. The probability function of

the MP mixed distribution can be expressed as

fMPM1(w|µ, σ2) =

∫

α

fMP (w|αη) g(α|µ, σ2) dα.

Examples for the mixing densities include gamma and generalized inverse

Gaussian distributions. The mean, variance and covariance of the first type

of MP mixed model are given by

E(Wi) = Eα[Ew(Wi|αη1i, . . . , αηii, αηi,i+1, . . . , αηim)]

=





Eα

[
α(

i∑
k=1

ηki +
m∑

k=i+1

ηik)

]
= µ

(
i∑

k=1

ηki +
m∑

k=i+1

ηik

)
, for i < m

Eα

[
α(

m∑
k=1

ηkm)

]
= µ

(
m∑

k=1

ηkm

)
, for i = m

V ar(Wi) = Eα[V arW (Wi|αη1i, . . . , αηii, αηi,i+1, . . . , αηim)] +

V arα[Ew(Wi|αη1i, . . . , αηii, αηi,i+1, . . . , αηim)]

=





µ

(
i∑

k=1

ηki +
m∑

k=i+1

ηik

)
+ σ2

(
i∑

k=1

ηki +
m∑

k=i+1

ηik

)2

, for i < m

µ

(
m∑

k=1

ηkm

)
+ σ2

(
m∑

k=1

ηkm

)2

, for i = m

Cov(Wi,Wj) = Eα[Covw(Wi,Wj|αη1i, .., αηii, αηi,i+1, .., αηim, αη1j, .., αηjj , αηj,j+1, .., αηjm)]

+Covα[Ew(Wi|αη1i, .., αηii, αηi,i+1, .., αηim)

Ew(Wj|αη1j, .., αηjj , αηj,j+1, .., αηjm)]

= Eα(αηij) + Covα

[
α

(
i∑

k=1

ηki +
m∑

k=i+1

ηik

)
, α

(
j∑

k=1

ηkj +
m∑

k=j+1

ηjk

)]
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=





µηij + σ2

(
i∑

k=1

ηki +
m∑

k=i+1

ηik

)(
j∑

k=1

ηkj +
m∑

k=j+1

ηjk

)
, for i < m

µηij + σ2

(
m∑

k=1

ηik

)(
m∑

k=1

ηjk

)
, for i = m.

By mixing the MP distribution with different mixing densities, the MP

mixed model can now account for overdispersion in the data as the mix-

ing distribution g(α) adds extra variation to the model. This mixed model

however only allows positive correlation between any pair of the multivari-

ate Poisson random variables which constrains its applicability.

The second type of the MP mixed model acts as a remedial model and is

a generalization of the first type. It imposes a multivariate mixing distribu-

tion g(η|µ,Σ) on the parameter vector η = {η11, η12, . . . , ηm−1,m, ηmm}T

of the MP distribution. A model of this type is highly complicated and

the implementation is computationally intensive. In practice, most models

assume ηij = 0 for i < j which implies that the model starts with m in-

dependent Poisson distributions with mean ηii. Hence the joint pmf can be

expressed as

fMPM2(w|µ,Σ) =

∫

η

[
m∏

i=1

fP (wi| ηii)

]
g(η|µ,Σ) dη

where fP (wi| ηii) is a univariate Poisson distribution with mean ηii, and the

mean vector and covariance matrix of the multivariate mixing distribution

are respectively
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µ =




µ1

µ2

...

µm




and Σ =




σ2
1 σ12 . . . σ1m

... σ2
2 . . . σ2m

...
...

. . .
...

σm1 σm2 . . . σ2
m




.

Hence, the mean, variance and covariance of the second type of MP mixed

model are written as

E(Wi) = Eη[Ew(Wi| ηii)] = µi

V ar(Wi) = Eη[V arW (Wi| ηii)] + V arη[Ew(Wi| ηii)] = µi + σ2
i

Cov(Wi,Wj) = Eη[Covw(Wi,Wj| ηii, ηjj)] + Covη[Ew(Wi| ηii)Ew(Wj| ηjj)]

= Covη(ηii, ηjj) = σij. (5.2)

Explicitly, the covariances of the pairs of multivariate Poisson random vari-

ables are simply the covariances of the mixing distribution, thus this mixed

model of the second type can fit multivariate count data with negative cor-

relation if σij < 0 as well as overdispersion as its variance is greater than its

mean. Amongst all the multivariate mixed distribution, the multivariate log-

normal distribution has been adopted most (Aitchinson & Ho, 1989; Karlis

& Meligkotsidou, 2007; Ma et al., 2008) due to its well-defined moments

and well-established properties. References for the MP mixed models can

be found in Karlis & Xekalaki (2005).

Despite the progressive extensions of the MP mixed models, they still

lack the ability to model underdispersed multivariate count data and so this
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motivates us to replace the Poisson distribution with the generalized Poisson

distribution which can handle both underdispersed and overdispersed data.

Using the MP mixed model approach of the second kind, we pioneer a new

model called multivariate generalized Poisson log-t (MGPLTGP) model

by extending the Poisson distribution to generalized Poisson distribution

(GPD) within the GP modelling framework. In addition, we adopt multi-

variate log-t (MLT) distribution instead of multivariate lognormal (MLN)

distribution in Aitchinson & Ho (1989) as the mixing distribution for the

latent stochastic process (SP) of the GP as the former distribution has an

adjustable heavier-than-normal tail to downweigh the effect of outliers on

the parameter estimation. The MGPLTGP model is introduced in the fol-

lowing Section.

5.3. Multivariate generalized Poisson log-t geometric process model

Previous developments of GP model were confined to univariate data.

In light of the need to study multivariate data which arises in various disci-

plines, we consider a multivariate extension of the PGP model combining

the modelling approach of both GPGP and RPGP models as follows.

5.3.1. Model specification. Denote the vector of counts by W t =

{W1t, . . . ,Wmt}T at time t, t = 1, . . . , n. Assume that Wit follows an

independent GPD with mean Xit, then each Xit =
Yit

at−1
i

=
λ1it

1 − λ2i

, t =

1, . . . , n forms a latent GP where {Yit} is a latent SP and ai is the ratio of

the GP that describes the progression of the trend for Wit. Similar to the
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RPGP model, we further assume that Y ∗
t = ln Y t = {Y ∗

1t, . . . , Y
∗
mt}T fol-

lows a multivariate Student’s t- (MT) distribution fMT (y∗
t |µ∗,Σ, ν) with

mean vector and covariance matrix given respectively by

µ =




µ∗
1

µ∗
2

...

µ∗
m




and Σ =




σ2
1 σ12 . . . σ1m

... σ2
2 . . . σ2m

...
...

. . .
...

σm1 σm2 . . . σ2
m




and degrees of freedom ν. The joint pmf f
GPMT

(wt) can be written as

f
GPMT

(wt) =

∫

Rm

[
m∏

i=1

fGPD(wit|λ1it, λ2i)

]
fMT (y∗

t |µ∗,Σ, ν) dy∗
t (5.3)

where R
m denotes the set of all real vectors in a m-dimensional space,

fGPD(·|λ1it, λ2i) is the pmf of GPD given by (4.1) with mean
λ1it

1 − λ2i

and

variance
λ1it

(1 − λ2i)3
, λ1it =

exp(y∗it)(1 − λ2i)

at−1
i

and fMT (y∗
t |µ∗,Σ, ν) which

acts as the mixing density is given by

fMT (y∗
t |µ∗,Σ, ν) =

Γ(ν+m
2

)

Γ(ν
2
)ν

m
2 π

m
2 |Σ| 12

[
1 +

1

ν
(y∗

t − µ∗)T
Σ

−1(y∗
t − µ∗)

]− ν+m
2

.(5.4)

The MGPLTGP model examines the trend effect before investigating the

correlation between the pair of time series. Since the resultant MGPLTGP

model does not have a closed-form joint pmf in (5.3), the parameter esti-

mation can be undertaken via MCMC algorithms. Following the idea of the

RPGP in Chapter 3, to enhance the efficiency of the sampling algorithms,

Wakefield et al. (1994) proposed expressing the MT distribution in scale
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mixtures of multivariate normals, so (5.4) becomes:

fMT (y∗
t |µ∗,Σ, ν) =

∫ ∞

0

fMN

(
y∗

t

∣∣∣∣µ∗,
Σ

ut

)
fG

(
ut

∣∣∣ ν
2
,
ν

2

)
dut (5.5)

where fMN

(
y∗

t

∣∣∣µ∗, Σ
ut

)
is a multivariate normal distribution with mean

vector µ∗ and covariance matrix
Σ

ut

, and fG

(
ut

∣∣∣ ν
2
,
ν

2

)
is a gamma dis-

tribution with mean 1 and variance
2

ν
. Hence, the joint pmf in (5.3) using

scale mixtures representation in (5.5) is rewritten as

f
GPMT

(wt) =

∫

Rm

∫ ∞

0

[
m∏

i=1

fGPD(wit|λ1it, λ2i)

]
fMN

(
y∗

t

∣∣∣∣µ∗,
Σ

ut

)
fG

(
ut

∣∣∣ ν
2
,
ν

2

)
dut dy

∗
t

where λ1it =
exp(y∗it)(1 − λ2i)

at−1
it

.

Using scale mixtures representation simplifies the full conditional distri-

butions and thus facilitates the MCMC algorithms such as Gibbs sampling.

Another advantage of using scale mixtures representation is that the result-

ing density contains an extra mixing parameter ut which helps to identify

extreme observations in outlier diagnosis. The smaller the ut, the more

outlying is the vector of observations wt.

5.3.2. Covariate and period effects. To extend the practicability of

the model, we accommodate some time-evolving or exogenous covariate

effects into the mean µ∗
i and ratio ai. Denote the covariates by zklit and

regression parameters by βjki, j = µ, a; k = 1, . . . , qj; i = 1, . . . ,m; t =

1, . . . , n for the mean µ∗
it and ratio ait functions respectively, where qj, j =
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µ, a represents the number of covariates in µ∗
it and ait correspondingly, then

µ∗
it = βµ0i + βµ1izµ1it + · · · + βµqµizµqµit (5.6)

ln ait = βa0i + βa1iza1it + · · · + βaqaizaqait. (5.7)

In addition, we assume that there are some piecewise constant time-

varying effects called period effects which change the mean described βjki

and/or the shape of the distribution described by the dispersion parameter

λ2i, covariance matrix Σ and degrees of freedom ν across the intervention

periods. Denote the pth intervention period which starts at Tp and ends at

Tp+1 − 1 by {t, Tp ≤ t ≤ Tp+1 − 1} where P is the total number of periods.

Then

λ2it =
P∑

p=1

λ2ip I(Tp ≤ t ≤ Tp+1 − 1) (5.8)

νt =
P∑

p=1

νp I(Tp ≤ t ≤ Tp+1 − 1) (5.9)

Σt =
P∑

p=1

Σp I(Tp ≤ t ≤ Tp+1 − 1) (5.10)

where I(E) is an indicator function of the event E and λ2ip, νp and

Σp =




σ2
1p σ12p . . . σ1mp

... σ2
2p . . . σ2mp

...
...

. . .
...

σm1p σm2p . . . σ2
mp




represent the dispersion parameter, degrees of freedom and covariance ma-

trix in period p respectively. Note that period effects can be incorporated in
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the mean µ∗
it and ratio ait functions as covariates using indicator variables

and interaction of indicator variables.

Hence, the joint pmf in (5.6) becomes

f
GPMT

(wt) =

∫

Rm

∫ ∞

0

[
m∏

i=1

fGPD(wit|λ1it, λ2it)

]
fMN

(
y∗

t

∣∣∣∣µ∗
t ,

Σt

ut

)
fG

(
ut

∣∣∣ νt

2
,
νt

2

)
dut dy

∗
t (5.11)

where λ1it =
exp(y∗it)(1 − λ2it)

at−1
it

and the mean, variance and covariance for

Wit conditional on period p are derived as follows:

E(Wit) = Ex[Ew(Wit|Xit)] = Ex(Xit) =
Ey(Yit)

at−1
it

=
Eu[Ey(Yit|Ut)]

at−1
it

=
Eu[exp(µ∗

it +
σ2

it

2Ut
)]

at−1
it

=
exp(µ∗

it)

at−1
it

Eu

[
exp

(
σ2

it

2Ut

)]

V ar(Wit) = Ex[V arw(Wit|Xit)] + V arx[Ew(Wit|Xit)] =
Ey(Yit)

at−1
it (1 − λ2it)2

+
V ary(Yit)

a
2(t−1)
it

=
exp(µ∗

it)

at−1
it (1 − λ2it)2

Eu

[
exp

(
σ2

it

2Ut

)]
+
Eu[V ary(Yit|Ut)] + V aru[Ey(Yit|Ut)]

a
2(t−1)
it

=
exp(µ∗

it)

at−1
it (1 − λ2it)2

Eu

[
exp

(
σ2

it

2Ut

)]
+
Eu

[
exp

(
2µ∗

it +
σ2

it

Ut

)
[exp(

σ2
it

Ut
) − 1]

]

a
2(t−1)
it

+
V aru

[
exp

(
µ∗

it +
σ2

it

2Ut

)]

a
2(t−1)
it

=
exp(µ∗

it)

at−1
it (1 − λ2it)2

Eu

[
exp

(
σ2

it

2Ut

)]

+
exp(2µ∗

it)

a
2(t−1)
it

{
Eu

[
exp

(
2σ2

it

Ut

)]
− Eu

[
exp

(
σ2

it

2Ut

)]2
}

Cov(Wit,Wjt) = Covx(Xit, Xjt) =
1

(aitajt)t−1
Covy(Yit, Yjt)



5.3. MULTIVARIATE GENERALIZED POISSON LOG-T GEOMETRIC PROCESS MODEL 177

=
1

(aitajt)t−1

{
Eu[Covy(Yit, Yjt|Ut)] + Eu[Eyi

(Yit|Ut)Eyj
(Yjt|Ut)]

−Eu[Eyi
(Yit|Ut)]Eu[Eyj

(Yjt|Ut)]
}

=
exp(µ∗

it + µ∗
jt)

(aitajt)t−1

{
Eu

[
exp

(
σ2

it + σ2
jt

2Ut

)
[exp

(
σijt

Ut

)
− 1]

]

+Eu

[
exp

(
σ2

it + σ2
jt

2Ut

)]
− Eu

[
exp

(
σ2

it

2Ut

)]
Eu

[
exp

(
σ2

jt

2Ut

)]}
(5.12)

Although the mean and variance cannot be evaluated explicitly, they can be

approximated using Monte Carlo (MC) integration. By simulating u(j)
t , j =

1, . . . ,Ms from fG

(
u

(j)
t

∣∣∣ νt

2
,
νt

2

)
,

E[h(ut)] =

∫ ∞

0

h(ut)fG

(
ut

∣∣∣ νt

2
,
νt

2

)
dut

can be evaluated by
1

Ms

Ms∑

j=1

h(u
(j)
t ) where h(ut) is a function of ut and

Ms = 10000 is the number of simulations.

5.3.3. Approximation of joint probability mass function. To study

the distribution in (5.3), we adopt the MC integration discussed below to

approximate the intractable joint pmf. Given the mean vector µ∗
t , ratio

function ait, covariance matrix Σt, degrees of freedom νt, and dispersion

parameter λ2it, the joint pmf estimator f̂t(w) at time t in general, can be

approximated by:

f̂t(w) =
Ms∑

j=1

[
m∏

i=1

fGPD

(
wi

∣∣∣∣∣
exp(ŷ

∗(j)
it )(1 − λ2it)

at−1
it

, λ2it

)]
,

wi = 0, . . . ,∞; i = 1, . . . ,m and

ŷ
∗(j)
t ∼ fMT (y

∗(j)
t |µ∗

t ,Σt, νt), j = 1, . . . ,Ms (5.13)
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whereMs = 10000 and the latent vector ŷ
∗(j)
t = {y∗(j)1t , . . . , y

∗(j)
mt }T is simu-

lated from the multivariate Student’s t-distribution in (5.4) given the param-

eters µ∗
t , Σt and νt. Then, the marginal mean Ê(Wit), variance V̂ ar(Wit)

and covariance Ĉov(Wit) of the approximated joint pmf f̂t(w) at time t are

obtained by:

Ê(Wit) =
∑

w∈N m
0

wif̂t(w), V̂ ar(Wit) =


 ∑

w∈N m
0

w2
i f̂t(w)


− [Ê(Wit)]

2

and Ĉov(Wit,Wjt) =


 ∑

w∈N m
0

wiwj f̂t(w)


− Ê(Wit)Ê(Wjt) (5.14)

where N
m
0 denotes the set of natural numbers including zero in am-dimensional

space and w = {w1, . . . , wm}T .

To investigate the effects of different parameters on the joint pmf, we

simulated the joint pmf in (5.3) of a bivariate generalized Poisson log-t

geometric process (BGPLTGP) model (m = 2) using MC integration with

Ms = 10000 as described in (5.13). For demonstrative purpose, the period

effect is dropped and thus P = 1. Assuming µ∗
it = βµ0i, ln ait = βa0i and

t = 2, we change the values of one of the model parameters each time while

keeping the other parameters constant. The bivariate distributions are dis-

played in the contour plots in Figures 5.1(a) to 5.1(f) in Appendix 5.2 with

contour lines drawn at the same level for fair comparison. Correspond-

ingly, their means, variances, covariances and correlations are summarized

in Table 5.1 in Appendix 5.2. Note that two set of means, variances, and
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covariances using (5.12) and (5.14) are reported to assess the accuracy of

the MC integration.

====================================

Figures 5.1(a) to 5.1(f) and Table 5.1 about here

====================================

The first four contour plots investigate the effect of the parameters in

the mixing density, the multivariate log-t distribution. Starting with Figures

5.1(a) and 5.1(b), σ12 controls solely the covariance and thus the correlation

of the bivariate counts (W1t,W2t) without altering the variances or means

of the bivariate counts. A negative σ12 leads the major axis of the contour

lines to make a negative angle with the vertical axis and a larger magnitude

corresponds to a larger angle between the major axis and the vertical axis

indicating stronger correlation. In other words, the strength of the correla-

tion increases with the magnitude of σ12 while the direction of correlation

aligns with the sign of σ12 as shown in Table 5.1. Meanwhile, σ2
2 deter-

mines mainly the variance of W2t. The larger the σ2
2 , the more dispersed is

the count W2t indicated by the more scattered pattern in Figure 5.1(b). As

σ2
2 has relatively less effects on the mean of W2t and covariance, they only

increase slightly with σ2
2 .

On the other hand, ν plays a more important role in the variances and

covariance of the bivariate counts but a minor role in the means. The smaller

the ν, the larger are the variances and covariance with a slight increase

in the means. Lastly, Figure 5.1(d) reveals that the parameter βµ02 in the
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mean function µ∗
2t of W2t controls its mean, variance and covariance and in

general they all increase with βµ02 as revealed in Table 5.1.

For the parameters in the GPD, βa02 in the ratio function a02 has similar

effect on the distribution as βµ02. This time the smaller the βa02, the larger

are the mean, variance and covariance of W2t. Therefore, Figure 5.1(e)

looks like an inverted mirror image of Figure 5.1(d). Whereas, another dis-

persion parameter λ22 in the GPD mainly controls the degree of dispersion

of W2t without altering much its mean and covariance as illustrated in Fig-

ure 5.1(f). Note that a negative λ22 does not necessarily reveal that W2t is

underdispersed. For example, in the first row the last section of Table 5.1

while W1t is underdispersed when λ21 = −0.8, W2t is overdispersed when

λ22 = −0.8. But in general, the more negative the λ22, the less overdis-

persed is W2t.

Overall the performance of the MC integration is satisfactory as in-

dicated by the close affinity of the approximated mean, variance and co-

variance using (5.12) and (5.14). To minimize the computational time, we

therefore will adapt (5.12) in the sequel to estimate the three moments for

the MGPLTGP model.

5.3.4. Test for serial and cross correlations. The above Sections have

discussed how the MGPLTGP model can accommodate time-evolving co-

variate effects, trend movements, different degrees of dispersion for each
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time series and the contemporaneous correlation between pair of time se-

ries. To achieve an adequate model, any serial correlation between the ob-

servations in each time series and cross correlation between time series need

to be taken into account. For detecting the presence of serial correlation in

each time series {Wit} or cross correlation between two time seriesWit and

Wjt, we first compute the remaining unexplained variation known as the

Pearson’s residual εit, i = 1, . . . ,m; t = 1, . . . , n using

εit =
wit − Ê(Wit)√
V̂ ar(Wit)

.

Then, the test statistic TijL under the null hypothesis that the Pearson resid-

uals are not autocorrelated (i = j) or cross-correlated (i 6= j) up to lag L is

given by

TijL = n
L∑

k=1




n∑
t=k+1

εitεj,t−k

n∑
t=1

ε2it




2

and is asymptotically distributed as chi-square χ2(L) with degrees of free-

dom L. See Cameron & Trivedi (1998) for more details.

For the test of serial correlation in each time series Wit, t = 1, . . . , n,

if the p-values are significant up to lag L, an AR(L) structure will be intro-

duced by adding L lagged observations (Wi,t−1, . . . ,Wi,t−L) into the mean

function µ∗
it in (5.6). Whereas, for cross correlation between a pair of time

series, L lagged observations (Wi,t−1, . . . ,Wi,t−L) of time series Wit will

be incorporated into the mean function µ∗
jt of time series Wjt, t = 1, . . . , n.

Afterwards the model will be refitted and an appropriate AR structure is
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selected if the resultant model has the smallest DIC with statistically sig-

nificant AR coefficients.

In the next Section, the model implementation and assessment will be

described in details.

5.4. Bayesian inference

For statistical inference, maximum likelihood (ML) method via expec-

tation maximization (EM) algorithm is widely adopted in the MP model

(Karlis, 2003; Wang et al., 2003) or MP mixed model (Karlis & Meligkot-

sidou, 2005, 2007). Despite the pros of using EM algorithm, Karlis &

Meligkotsidou (2005) has pinpointed that as the dimension m of the time

series increases, the computation is more demanding as the complexity of

the model increases. In particular for the MP mixed model, the increasing

number of latent random effects in the mixing distribution will induce a

heavy computational burden and reduce the efficiency of parameter estima-

tion (Karlis & Meligkotsidou, 2007).

To avoid numerical difficulties in maximizing the intractable likelihood

function involving high-dimensional integration, we adopt the Bayesian ap-

proach via Markov chain Monte Carlo (MCMC) algorithms to convert an

optimization problem to a sampling problem. The following Section de-

rives the posterior distribution and univariate full conditional distributions

followed by a discussion of the model assessment measure.
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5.4.1. MCMC algorithms. Before implementing the MCMC algorithms,

we outline the hierarchical structure of the MGPLTGP model under the

Bayesian framework as follows:

wit ∼ fGPD

(
ey∗

it(1 − λ2it)

at−1
it

, λ2it

)
, y∗

t ∼ fMN

(
µ∗

t ,
Σt

ut

)
and ut ∼ fG

(νt

2
,
νt

2

)

where µit, ait, λ2it, νt and Σt are given by (5.6)-(5.10). In order to construct

the posterior density, some non-informative prior distributions are assigned

to the model parameters as follows:

βjki ∼ N(0, τ 2
jki), j = µ, a; k = 0, 1, . . . , qj; i = 1, . . . ,m (5.15)

λ2it ∼ Uniform(−1, 1) (5.16)

Σt ∼ IW (Ψt, rt) (5.17)

νt ∼ Gamma(ct, dt) (5.18)

where

Ψt =
P∑

p=1

Ψp I(Tp ≤ t ≤ Tp+1 − 1), rt =
P∑

p=1

rp I(Tp ≤ t ≤ Tp+1 − 1),

ct =
P∑

p=1

cp I(Tp ≤ t ≤ Tp+1 − 1), dt =
P∑

p=1

dp I(Tp ≤ t ≤ Tp+1 − 1),

τ 2
jki, cp, dp are some positive constants, IW (Ψt, rt) represents an inverse

Wishart distribution fIW (·|Ψ, r) with mean
Ψ

r −m− 1
, Ψ is a real-valued

positive-definite matrix and r > m − 1 is the degrees of freedom. Inverse

Wishart distribution is commonly used as a conjugate prior for the sym-

metric and positive-definite m×m covariance matrix Σ of the multivariate
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normal distribution. Its probability density function fIW (Σ|Ψ, r) is given

by

fIW (Σ|Ψ, r) =
|Ψ| r

2 |Σ|− (r+m+1)
2 exp

[
− tr(ΨΣ−1)

2

]

2
rm
2 Γm( r

2
)

where Γm(·) denotes a multivariate Gamma function with dimension m and

tr(A) is the trace of matrix A.

According to Bayes’ theorem, the posterior density is proportional to

the joint densities of complete data likelihood and prior probability distri-

butions. For the MGPLTGP model, denote w = (wT
1t,w

T
2t, ...,w

T
mt)

T as

the data vector, y∗ = (y∗
1t

T ,y∗
2t

T , ...,y∗
mt

T )T as the latent vector of the sto-

chastic process and u = (u1, u2, ..., un)T as a vector of mixing parameters,

the complete data likelihood function L(θ) for the observed data w and

missing data {y∗,u} is derived as:

L(θ) =
n∏

t=1

{[
m∏

i=1

fGPD

(
ey∗

it

at−1
it

, λ2it

)]
fMN

(
y∗

t

∣∣∣∣µ∗
t ,

Σt

ut

)
fG

(
ut

∣∣∣ νt

2
,
νt

2

)}
(5.19)

where the vector of model parameters θ = (βµ,βa,λ2,Σ,ν)T where βj =

(βj01, ..., βjqj1, ..., βj0m, ..., βjqjm)T , j = µ, a; k = 0, . . . , qj are parameters

in the mean function in (5.6) and ratio function in (5.7), λ2 = (λ211, λ212, . . . , λ2mP )T ,

Σ = (Σ1, . . . ,Σp)
T and ν = (ν1, . . . , νP )T .

Treating y∗it and ut as missing observations, the posterior density of the

MGPLTGP model is derived as:
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f(θ|w,y∗,u) ∝ L(θ)

[
m∏

i=1

∏

j=µ,a

qj∏

k=0

fN(βjki| 0, τ 2
jki)

]
m∏

i=1

P∏

p=1

fU(λ2ip| − 1, 1)

[
P∏

p=1

fIW (Σp|Ψp, rp)fG(νp| cp, dp)

]

where fN(·| c, d) represents a normal distribution with mean c and variance

d, fU(·| c, d) is a uniform distribution on the interval [c, d], the complete

data likelihood L(θ) is given by (5.19) and the priors are given by (5.15)-

(5.18).

Knowing the joint posterior density, we can then formulate the set of

conditional posterior densities for all the unknown model parameters which

is essential for Gibbs sampling. The following shows the full conditional

posterior densities for each of the model parameters in θ = (βµ,βa,λ2,Σ,ν)T

and the two sets of missing observations y∗it and ut:

f(βµki|w,y∗,u,β−,λ2,Σ,ν) ∝
n∏

t=1

exp

[
−(y∗

t − µ∗
t )

T
Σ

−1
t (y∗

t − µ∗
t )

2ut

]
exp

(
−
β2

µki

2τ 2
µki

)

f(βaki|w,y∗,u,β−,λ2,Σ,ν) ∝
n∏

t=1

{[
exp(y∗it)(1 − λ2it)

at−1
it

+ λ2itwit

]wit−1

exp

[
−exp(y∗it)(1 − λ2it)

at−1
it

− βakizakit(t− 1)

]}
exp

(
− β2

aki

2τ 2
aki

)

restricted to at−1
it < −exp(y∗it)(1 − λ2it)

sitλ2it

if λ2it < 0

f(λ2ip|w,y∗,u,β,λ−
2 ,Σ,ν) ∝

n∏

t=1

{
(1 − λ2it)

[
exp(y∗it)(1 − λ2it)

at−1
it

+ λ2itwit

]wit−1

exp

[
−exp(y∗it)(1 − λ2it)

at−1
it

− λ2itwit

]}
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restricted to

[
1 − sita

t−1
it

exp(y∗it)

]−1

< λ2it < 1

f(Σp|w,y∗,u,β,λ2,Σ
−,ν) ∝

n∏

t=1

exp

[
−(y∗

t − µ∗
t )

T
Σ

−1
t (y∗

t − µ∗
t )

2ut

]
|Σp|−

rp+m+2

2 exp

[
−

tr(Ψp Σ
−1
p )

2

]

f(νp |w,y∗,u,β,λ2,Σ,ν
−) ∝

n∏

t=1

m∏

i=1

ν
νt
2

+ct−1
t

(
ut

2

) νt
2 exp

(
−utνt

2
− dtνt

)

Γ
(

νt

2

)

f(y∗
t |w,u,β,λ2,Σ,ν) ∝

m∏

i=1

{[
exp(y∗it)(1 − λ2it)

at−1
it

+ λ2itwit

]wit−1

exp

[
y∗it −

exp(y∗it)(1 − λ2it)

at−1
it

]}

exp

[
−(y∗

t − µ∗
t )

T
Σ

−1
t (y∗

t − µ∗
t )

2ut

]

restricted to y∗it > ln

(
−sitλ2ita

t−1
it

1 − λ2it

)
if λ2it < 0

f(ut|w,y∗,u−,β,λ2,Σ,ν) ∝ exp

[
−(y∗

t − µ∗
t )

T
Σ

−1
t (y∗

t − µ∗
t )

2ut

]
u

νt−1
2

t exp
(
−νtut

2

)

where u−,β−,λ−
2 ,Σ

− and ν− are vectors of u,β,λ2,Σ and ν excluding

ut, βjki, λ2ip,Σp and νp respectively. The MCMC algorithms are imple-

mented using WinBUGS where the sampling scheme based on the condi-

tional posterior densities is outlined in this Section and the Gibbs sampling

procedures are described in Section 1.4.3.

5.4.2. Model selection criterion. Under the Bayesian approach, we

adopt a model comparison criterion namely the deviance information cri-

terion (DIC) originated by Spiegelhalter et al. (2002) which measures the

fit of the data to the model and at the same time account for the model

complexity. DIC is defined as the sum of a classical measure of fit called
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posterior mean devianceD(θ) and twice the effective number of parameters

pD which accounts for the model complexity.

For the MGPLTGP model, the DIC output by WinBUGS is defined as

DIC = D(θ) + pD

= − 4

M

M∑

j=1

n∑

t=1

m∑

i=1

ln

[
fGPD

(
wit

∣∣∣∣∣
exp(y∗it

(j))(1 − λ
(j)
2it)

a
(j)(t−1)
it

, λ
(j)
2it

)]

+2
n∑

t=1

m∑

i=1

ln

[
fGPD

(
wit

∣∣∣∣
exp(ȳ∗it)(1 − λ̄2it)

āt−1
it

, λ̄2it

)]

where M is the number of realizations in the MCMC sampling algorithms,

θ(j) and y∗it
(j) represent the jth posterior sample of parameter θ and y∗it re-

spectively, and θ̄ and ȳ∗it are their posterior means. Model with a smaller

DIC is chosen as the best model since it has a better fit to the data after

accounting for the model complexity.

5.5. Real data Analysis

The practicability of our proposed MGPLTGP model is demonstrated

through the study of the use of amphetamine and narcotics in New South

Wales (NSW), Australia. The overview, data structure, model fitting proce-

dures and lastly the results are discussed as follows.

5.5.1. Overview. Amphetamine is a psychostimulant drug that causes

euphoria and decreased fatigue. An abusive use of this illicit drug makes

user experience drug-induced psychosis which may lead to aggressive and

violent behaviour (McKetin et al., 2006). In the past decade, the prevalence

of amphetamine type substances use in Australia stabilized during 1998 to
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2002 after a substantial rise from 1993 to 1998, but has flared up again in

late 2002 to 2007 as revealed by the figure that the emergency department

admissions of amphetamine type substances use surged by 139% in NSW.

This upsurge is believed to be caused by the heroin shortage in Australia

which started at around late December in 2000 and prompted many heroin

users to switch to amphetamine use (Weatherburn et al., 2003). Elaborately,

heroin shortage was the consequence of the dismantling of a major syndi-

cate in mid-2000 which allegedly had been bringing in large shipments of

heroin to Australia from traditional source countries on a very regular basis.

Thereafter, the increasing risk in smuggling heroin into Australia together

with more active street-level drug law enforcement led to the dramatic fall

in heroin availability and drug purity and subsequently the mounting heroin

price and difficulty in obtain heroin (Degenhardt et al., 2005). Vividly the

reduction in heroin use is ongoing after the onset of heroin shortage, how-

ever whether it is associated to an increase in amphetamine substance use

remains debatable.

Treating use or possession of amphetamine and narcotics as a proxy

of amphetamine type substances use and heroin use respectively in NSW,

Snowball et al. (2008) examined the relationship between the monthly num-

ber of arrests for use or possession of the two illicit drugs during 1995 to

2008 using a tradition multivariate time series model and found no evi-

dence to support the association between heroin shortage and increasing

amphetamine type substances consumption. Their model has allowed for
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the non-stationarity of the two time series yet does not have an explicit

trend component to investigate the trend movement. To obtain a more clear

picture on how heroin shortage affects the trend movement and detect any

serial, contemporaneous and cross correlations in the arrests for use or pos-

session of amphetamines and narcotics, we fitted a bivariate generalized

Poisson log-t geometric process (BGPLTGP) model (m = 2) to the data

described below.

5.5.2. Data and model fitting. The data in Appendix 5.1 consists of a

bivariate time series on the monthly number of arrests for use or possession

of amphetamine (W1t) and narcotics (W2t) in Sydney, one of the 153 local

government areas (LGAs) in NSW from January 1995 to December 2008

(n = 168) and can be assessed on the official website of the NSW Bureau of

Crime Statistics and Research (the link is given at the end of Section 4.5.1).

Instead of using an aggregate number of arrests in a state level, we focus

on the data from Sydney, one of the 153 LGAs in NSW because its trend

pattern does not differ much from that of the aggregate data in the state level

used in Snowball et al. (2008) as Sydney is the metropolis of NSW with the

highest arrest rates of illicit drug use or possession. The bivariate time series

of monthly number of arrests are plotted in Figure 5.2 in Appendix 5.3 with

a vertical reference line indicating the onset of heroin shortage.

====================================

Figure 5.2 about here

====================================



5.5. REAL DATA ANALYSIS 190

In Figure 5.2, the numbers of arrests for use or possession of both drugs

show an upward trend collectively before heroin shortage with the arrests

for narcotics use outnumber that for amphetamine. Noticeably once heroin

shortage began in late December 2000 (t = 72), the trend for narcotics lev-

els off gradually with less variation while that for amphetamine continues

to grow with inflating overdispersion. Besides, there are abrupt changes

in the means of both time series after heroin shortage commenced. The

mean monthly number of arrests surges from 9.31 cases to 24.98 cases for

amphetamine use or possession while that of narcotics slumps from 21.58

cases to 15.28 cases. In addition, the contemporaneous correlation between

the bivariate time series is although insignificant (rw = −0.09, p = 0.243),

the contemporaneous correlation in different periods are significantly pos-

itive (rw1 = 0.370, p = 0.0007; rw2 = 0.269, p = 0.004) with a higher

correlation rw1 prior to heroin shortage.

Taking into account the trend movement in each time series and contem-

poraneous correlations between time series before and during heroin short-

age, we fitted a BGPLTGP model to investigate whether heroin shortage

exacerbates amphetamine use contemporaneously in Sydney. Since heroin

shortage is expected to incur a change in the mean, trend movement and

contemporaneous correlation structure of the bivariate time series, we de-

fine the time before shortage as the control period (p = 1, T1 = 1) and those

months after December 2000 as the intervention period (p = 2, T2 = 73)

and incorporate period effects into the dispersion parameter λ2t, degrees
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of freedom νt and covariance matrix Σt to allow varying contemporaneous

correlation structures and degrees of dispersion in different periods. In ad-

dition, we incorporate the period effect as covariate effect zµ1it = za2it =

b = 0, 1 in the mean function in (5.6) and ratio function in (5.7) to detect

any changes in the mean or trend of the monthly number of arrests for use

or possession of the two illicit drugs due to heroin shortage. Furthermore,

since non-monotone trend is observed in Figure 5.2, we accommodate the

natural logarithm of time t as the time-evolving covariate (za1it = ln t) and

an interaction term of time and heroin shortage (za3it = b ln t = 0, ln t)

in the ratio function to allow a change in trend movement across time and

period. In other words, the mean function µ∗
it, ratio function ait, disper-

sion parameter λ2it in (5.8), degrees of freedom νt in (5.9) and covariance

matrices Σt in (5.10) for i = 1, 2 and t = 1, . . . , 168 are expressed as

µ∗
it = βµ0i + βµ1ib (5.20)

ln ait = βa0i + βa11 ln t+ βa2ib+ βa3ib ln t (5.21)

λ2it = λ2i1 I(1 ≤ t ≤ 72) + λ2i2 I(73 ≤ t ≤ 168)

νt = ν1 I(1 ≤ t ≤ 72) + ν2 I(73 ≤ t ≤ 168)

Σt = Σ1 I(1 ≤ t ≤ 72) + Σ2 I(73 ≤ t ≤ 168) (5.22)

Using the MCMC algorithms described in Section 5.4.1, we use non-

informative priors by setting τ 2
jki = 1000 in (5.15), Ψ1 = Ψ2 =




0.1 0.005

0.005 0.1


,
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r1 = r2 = 2 in (5.17) and c1 = c2 = d1 = d2 = 0.01 in (5.18). After imple-

menting the MCMC algorithms using WinBUGS, the parameter estimates

are given by the posterior medians of the samples.

To assess the competency of our proposed model, two competitive mod-

els are considered for model comparison. The first one is the bivariate Pois-

son (BP) model with two-way covariance structure described in Section

5.2.1 with Wit = Viit + V12t, i = 1, 2. The mean ηiit of Viit in (5.1) is

log-linked to the same set of covariates as in the BGPLTGP model such that

ln ηiit = β0ii + β1iib+ β2ii ln t+ β3ii(ln t)
2 + β4iib ln t+ β5iib(ln t)

2

where i = 1, 2 refers to amphetamine and narcotics respectively and b =

0, 1 indicates the presence of heroin shortage. Besides, the contemporane-

ous correlation η12t between the bivariate time series in (5.1) which is given

by

ln η12t = β012 + β112b (5.23)

detects any change in the contemporaneous correlation structures.

Another competitive model is the bivariate Poisson mixed model of the

second type mentioned in Section 5.2.2. In particular we adopt a multivari-

ate log-normal distribution as the mixing density suggested by Aitchinson

& Ho (1989) and the resultant model is named as BPLN model. In this

model, the log-linked mean function µit in (5.2) is given by

lnµit = β0i + β1ib+ β2i ln t+ β3i(ln t)
2 + β4ib ln t+ β5ib(ln t)

2 (5.24)
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and a period effect is incorporated into the covariance matrix Σt in the

same way as (5.22) in the BGPLTGP model to allow for different contem-

poraneous correlation structures between the bivariate time series in differ-

ent periods. The BP and BPLN models are considered as competitive be-

cause they incorporate the same exogenous effect b, similar time-evolving

covariates ln t and (ln t)2 and their interactions b ln t and b(ln t)2 to allow

for non-linear trend patterns in both time series. These assimilate with the

time-evolving covariates in the ratio function ait in (5.21) of the BGPLTGP

model in which ln at−1
it = (t− 1) ln ait = (t− 1)(βa0i + βa1i ln t+ βa2ib+

βa3ib ln t) where βaki, k = 0, . . . , 3 can allow for a variety of trend patterns

similar to βkii and βki, l = 2, . . . , 5 in (5.23) and (5.24) for the BP and

BPLN models respectively.

Last but not least, we fitted a bivariate Poisson lognormal geometric

process (BGPLNGP) model using bivariate lognormal distribution with the

same mean and ratio functions as in the BGPLTGP model except that the

bivariate Student’s t-distribution is replaced by the bivariate normal distri-

bution with the same covariance matrix Σt given by (5.22) for y∗
t .

Overall, the four models assume Poisson distribution, Poisson distribu-

tion mixed with bivariate lognormal distribution, Poisson GP mixed with

bivariate lognormal distribution and generalized Poisson GP mixed with bi-

variate log-t distribution for the bivariate time series, namely the BP, BPLN,
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BPLNGP and BGPLTGP models. All models have allowed for heroin short-

age effect in the means, non-monotone trends and contemporaneous corre-

lation but in different ways due to different model structures and data distri-

butions. The first three models are compared to the BGPLTGP model to in-

vestigate whether the GP approach versus the multivariate Poisson or mixed

multivariate Poisson approach as well as whether the bivariate log-t mixing

distribution versus bivariate lognormal distribution are more preferable and

provide better model fit in analyzing multivariate longitudinal count data.

The results of the analysis including parameter estimates, standard errors

(SE) and DIC output in WinBUGS are summarized in the following Sec-

tion.

5.5.3. Results. Table 5.2 in Appendix 5.2 reports the estimate and stan-

dard error (SE) of the parameters for the four fitted models. Using the

parameter estimates, the expected value, variance and covariance of the

monthly number of arrests for the two illicit drugs use or possession over

time are calculated. For the BP and BGPLTGP models, (5.1) and (5.12)

are used respectively. For the BPLN model, the mean, variance and covari-

ance of the lognormal distribution are substituted in (5.2). Whereas for the

BPLNGP model, the expected number, variance and covariance are derived

in a similar way as (5.2) and are given by

E(Wit) =
exp(µ∗

it +
σ2

it

2
)

at−1
it

, V ar(Wit) =
exp(µ∗

it +
σ2

it

2
)

at−1
it

+
exp(2µ∗

it + σ2
it)[exp(σ2

it) − 1]

a
2(t−1)
it
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and Cov(Wit,Wjt) =
exp

(
µ∗

it + µ∗
jt +

σ2
it

2
+

σ2
jt

2

)
[exp(σijt) − 1]

(aitajt)t−1

where µ∗
it and ait are defined in (5.20) and (5.21) respectively as in the

BGPLTGP model. To visualize the model performance and facilitate com-

parison, the expected monthly number of arrests for use or possession of

amphetamine and narcotics are illustrated respectively in Figures 5.3(a) and

5.3(b) in Appendix 5.3 for all the models. Similarly, the SE of the monthly

number of arrests for the two illicit drugs use or possession are plotted in

Figures 5.4(a) and 5.4(b) in Appendix 5.3.

===============================================

Table 5.2 and Figures 5.3(a), 5.3(b), 5.4(a) and 5.4(b) about here

===============================================

Figures 5.3(a) and 5.3(b) indicate the consistent increasing trends for

the bivariate time series. After allowing for the trends, the contemporary

correlation between the two time series is still weakly positive but ceases to

be significant both before and during the heroin shortage as shown by the

insignificant covariance parameters (labelled as ‘cov’ in the third column

‘type’ in Table 5.2) in all fitted models (95% credibility intervals include

zero) except for the BP model in Table 5.2. Amongst the four models, BP

model gives the worst fit to the data as it has the largest DIC. The signif-

icant covariance parameters and the largest DIC can be explained by its

inability to account for overdispersion in the bivariate counts as illustrated

in Figures 5.4(a) and 5.4(b) that its SE is substantially lower than the other
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three models. Due to the ability to account for overdispersion, the BPLN

and BPLNGP models give substantially smaller DICs than the BP model

indicating an improvement in the model fit. Not surprisingly, their DICs

are close since the two models have similar model structures except that the

latter adopts a GP approach. Their expected monthly numbers of arrests and

SEs are also comparable as revealed in Figures 5.3 and 5.4. Nevertheless,

the smaller DIC in the BPLNGP model supports the use of a GP approach

with an explicit ratio function for the trend movement in modelling multi-

variate longitudinal count data.

Although both BPLN and BPLNGP models can account for overdis-

persion, the BGPLTGP model in which the GPD for the data and bivari-

ate log-t distribution for the underlying stochastic process {Y ∗
t} provide a

wider range of dispersion, gives the best model fit (smallest DIC in Ta-

ble 5.2) to the data and thus is chosen as the best model. With reference

to Figure 5.3(a) which plots the expected monthly number of arrests for

amphetamine use or possession, the upward trend of the BGPLTGP model

continues throughout the period with a slightly higher rate of increase dur-

ing the period of heroin shortage. On the contrary, as shown in Figure

5.3(b), the expected monthly number of arrests for narcotics use or posses-

sion is higher at the start and rises at a faster rate than that of amphetamine

before heroin shortage. Followed by a rapid drop in the mean, the growth

ceases after the onset of heroin shortage in late December 2000. Besides, as
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revealed in Figures 5.4(a) and 5.4(b), the SE of the monthly number of ar-

rests for amphetamine use or possession inflates with the mean throughout

the entire period. On the other hand, the monthly number of arrests for nar-

cotics use or possession becomes less overdispersed with a minor growth in

variance after the onset of heroin shortage.

Lastly, we performed the tests for serial and cross correlations described

in Section 5.3.4 for the best model, the BGPLTGP model. With respect to

serial correlation, no significant serial correlation is found for amphetamine

since the p-values of the chi-square test described in Section 5.3.4 for test-

ing serial correlation up to lag 1,2,3,4 and 5 are 0.411, 0.509, 0.678, 0.416

and 0.555 respectively. However, significant serial correlations are de-

tected for narcotics up to at least lag 5 with p-values equal to 6.36×10−6,

1.41×10−8, 5.81×10−11, 7.68×10−13 and 2.49×10−13 for lag up to 1, 2,

3, 4 and 5 correspondingly. These suggest that adding some lagged ob-

servations (W2,t−1, . . . ,W2,t−5) into the mean function µ∗
2t in (5.20) may

help to reduce the serial dependency. For cross correlation, the monthly

number of arrests for amphetamine use or possession has significant cross

correlations (up to lag 6) with that for narcotics use or possession. The

p-values for testing whether Corr(W1t,W2,t−L) are significantly different

from zero are 0.07, 0.04, 0.03, 0.02, 0.03, 0.01, 0.02, 0.10, 0.62, 0.37,

0.57 and 0.19 for L = −7, . . . ,−1, 0, 1, . . . , 4 respectively. To take into

account this long-term association, we incorporated some lagged observa-

tions (W1,t−1, . . . ,W1,t−6) from amphetamine into the mean function µ∗
2t
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for narcotics and vice versa. Different AR structures were fitted and the fi-

nal BGPLTGP model with the smallest DIC (1991.23) and significant AR

terms is achieved with the mean functions for the bivariate time series given

by

µ∗
1t = 1.908 + 1.692b+ 0.0106w2,t−1

µ∗
2t = 2.2 + 0.651b+ 0.0142w2,t−1 + 0.01w2,t−2.

where all βµk1, k = 0, 1, 2 and βµk2, k = 0, . . . , 3 in the mean functions are

significant. Besides, all other model parameters are quantitatively similar to

that of the BGPLTGP model without accounting for serial and cross corre-

lations given in the last column of Table 5.2. The parameter estimates, SE

and DIC of the final model are given in Table 5.3 in Appendix 5.2.

====================================

Table 5.3 about here

====================================

Regarding the objective of the study, the insignificant covariance pa-

rameters σ12p, p = 1, 2 in the final model reveal that the weak positive

contemporaneous correlation across the bivariate time series does not give

any evidence of the instantaneous association between the growth in the

monthly number of arrests for amphetamine use or possession and the de-

cline in the monthly number of arrests for narcotics use or possession due to

heroin shortage in Sydney. Unexpectedly, concerning the long-term associ-

ation, the significant parameter β̂µ21 = 0.0106 in the final model (95% CI
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for βµ21:[0.0015, 0.0191]) implies that after the trend movements have been

accounted for, an increase in the number of arrests for use or possession

of narcotics in a certain month is followed by an increase in the number of

arrests for use or possession of amphetamine in the next month (lag 1). Our

finding, though confined to Sydney LGA, on one hand agrees with Snowball

et al. (2008) that the decline in the monthly number of arrests for narcotics

use or possession is not accompanied by the growth in the monthly num-

ber of arrests for amphetamine use or possession at a state level for all 153

LGAs in NSW. On the other hand, another finding that the growth of the

number of arrests for narcotics use or possession in the previous month is

positively associated with the current growth of that for amphetamine dis-

agrees with Snowball et al. (2008) which found no long-term association

between the monthly numbers of arrests for narcotics and amphetamine use

or possession.

5.6. Discussion

In this Chapter, we propose the multivariate generalized Poisson log-t

geometric process (MGPLTGP) model which is essentially a generalized

Poisson mixed model using multivariate log-t distribution as the mixing

density in the GP modelling framework. The model has several outstanding

properties over some traditional multivariate Poisson count models. First, it

can handle negatively correlated multivariate counts which the multivariate
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Poisson (MP) models fail to do so. Secondly, it fits multivariate longitudi-

nal count data with different degree of dispersion ranging from overdisper-

sion to underdispersion which is a shortcoming of the MP mixed models.

Thirdly, the trend movement is analyzed explicitly using a ratio function

that ‘detrends’ the latent GP {Xit, t = 1, . . . , n} geometrically to a station-

ary stochastic process {Yit} which is then fitted by a mixing distribution.

Lastly, the mixing density, the multivariate log-t distribution has a heavier-

than-lognormal tail which can handle serious overdispersion due to outlying

observations.

The model is implemented through MCMC sampling algorithms using

WinBUGS. By expressing the multivariate log-t distribution in scale mix-

tures of multivariate lognormals, the MCMC algorithms are facilitated since

the full conditional distributions of the model parameters are simplified and

the mixing parameters enable outlier diagnosis. The practicability of the

model is demonstrated through the analysis of a bivariate time series of the

monthly number of arrests for two illicit drugs use or possession in Sydney.

Results in Section 5.5.3 indicate that our proposed model gives the best

model fit (smallest DIC) and is more preferable to other three competitive

models including the bivariate Poisson model, bivariate Poisson lognormal

model and bivariate Poisson lognormal geometric process model because

of its nicer properties.

Last but not least, concerning the need in examining the cluster effects

which are often observed in multivariate panel count data, the proposed
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model can be easily extended to incorporate mixture effects and random

effects to allow for heterogeneity in the multiple time series. We believe that

the extended mixture model, which can identify subgroups of multivariate

time series comprising the population, would be worthy of future research.



5.6. DISCUSSION 202

Appendix 5.1

Monthly number of arrests for use or possession of amphetamine W1t
and narcotics W2t in Sydney LGA during January 1995 - December 2008

month t W1t W2t month t W1t W2t month t W1t W2t month t W1t W2t

Jan 1995 1 14 18 Jul 1998 43 14 23 Jan 2002 85 19 12 Jul 2005 127 33 26

Feb 1995 2 6 12 Aug 1998 44 13 24 Feb 2002 86 16 15 Aug 2005 128 20 10

Mar 1995 3 12 19 Sep 1998 45 9 26 Mar 2002 87 15 7 Sep 2005 129 12 12

Apr 1995 4 3 16 Oct 1998 46 14 41 Apr 2002 88 9 10 Oct 2005 130 28 11

May 1995 5 8 19 Nov 1998 47 7 27 May 2002 89 17 12 Nov 2005 131 24 19

Jun 1995 6 8 19 Dec 1998 48 12 38 Jun 2002 90 26 12 Dec 2005 132 14 7

Jul 1995 7 8 11 Jan 1999 49 6 32 Jul 2002 91 14 11 Jan 2006 133 14 9

Aug 1995 8 8 12 Feb 1999 50 11 38 Aug 2002 92 15 11 Feb 2006 134 14 11

Sep 1995 9 11 17 Mar 1999 51 9 39 Sep 2002 93 19 13 Mar 2006 135 29 17

Oct 1995 10 8 19 Apr 1999 52 15 39 Oct 2002 94 14 21 Apr 2006 136 47 9

Nov 1995 11 5 14 May 1999 53 11 48 Nov 2002 95 15 14 May 2006 137 27 11

Dec 1995 12 8 8 Jun 1999 54 11 25 Dec 2002 96 22 11 Jun 2006 138 19 9

Jan 1996 13 6 17 Jul 1999 55 10 32 Jan 2003 97 21 10 Jul 2006 139 41 7

Feb 1996 14 4 16 Aug 1999 56 17 35 Feb 2003 98 16 12 Aug 2006 140 25 9

Mar 1996 15 14 10 Sep 1999 57 15 16 Mar 2003 99 9 10 Sep 2006 141 28 9

Apr 1996 16 9 14 Oct 1999 58 2 24 Apr 2003 100 9 9 Oct 2006 142 27 14

May 1996 17 9 17 Nov 1999 59 10 32 May 2003 101 22 13 Nov 2006 143 20 17

Jun 1996 18 6 13 Dec 1999 60 17 21 Jun 2003 102 22 13 Dec 2006 144 32 17

Jul 1996 19 4 32 Jan 2000 61 19 46 Jul 2003 103 23 8 Jan 2007 145 29 11

Aug 1996 20 4 21 Feb 2000 62 9 37 Aug 2003 104 22 13 Feb 2007 146 32 11

Sep 1996 21 4 16 Mar 2000 63 14 18 Sep 2003 105 21 12 Mar 2007 147 43 13

Oct 1996 22 6 5 Apr 2000 64 8 28 Oct 2003 106 15 22 Apr 2007 148 23 8

Nov 1996 23 3 17 May 2000 65 5 26 Nov 2003 107 24 12 May 2007 149 25 13

Dec 1996 24 5 15 Jun 2000 66 11 19 Dec 2003 108 18 22 Jun 2007 150 22 8

Jan 1997 25 4 18 Jul 2000 67 18 23 Jan 2004 109 29 22 Jul 2007 151 25 16

Feb 1997 26 7 14 Aug 2000 68 13 27 Feb 2004 110 24 12 Aug 2007 152 32 25

Mar 1997 27 9 11 Sep 2000 69 22 21 Mar 2004 111 24 12 Sep 2007 153 33 16

Apr 1997 28 6 14 Oct 2000 70 9 24 Apr 2004 112 24 27 Oct 2007 154 26 19

May 1997 29 6 13 Nov 2000 71 10 35 May 2004 113 21 24 Nov 2007 155 30 34

Jun 1997 30 7 6 Dec 2000 72 12 28 Jun 2004 114 21 21 Dec 2007 156 45 22

Jul 1997 31 0 13 Jan 2001* 73 8 30 Jul 2004 115 24 13 Jan 2008 157 51 29

Aug 1997 32 12 13 Feb 2001 74 14 17 Aug 2004 116 17 16 Feb 2008 158 50 17

Sep 1997 33 4 15 Mar 2001 75 36 10 Sep 2004 117 12 12 Mar 2008 159 27 16

Oct 1997 34 10 13 Apr 2001 76 17 14 Oct 2004 118 28 20 Apr 2008 160 38 24

Nov 1997 35 8 14 May 2001 77 24 16 Nov 2004 119 27 17 May 2008 161 57 13

Dec 1997 36 2 15 Jun 2001 78 36 16 Dec 2004 120 24 14 Jun 2008 162 38 13

Jan 1998 37 18 21 Jul 2001 79 12 13 Jan 2005 121 26 22 Jul 2008 163 40 25

Feb 1998 38 6 17 Aug 2001 80 14 16 Feb 2005 122 25 18 Aug 2008 164 36 14

Mar 1998 39 7 20 Sep 2001 81 21 8 Mar 2005 123 22 24 Sep 2008 165 41 13

Apr 1998 40 10 19 Oct 2001 82 8 15 Apr 2005 124 17 17 Oct 2008 166 22 17

May 1998 41 16 27 Nov 2001 83 18 8 May 2005 125 37 24 Nov 2008 167 45 27

Jun 1998 42 12 22 Dec 2001 84 24 6 Jun 2005 126 41 14 Dec 2008 168 50 23

* heroin shortage commenced
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Appendix 5.2

Tables

Table 5.1: Moments of the joint pmfs for the BGPLTGP model under a set

of floating parameters with fixed values of σ2
1 = 0.07, σ12 = 0.06, σ2

2 =

0.1, ν = 20, βµ01 = 2, βµ02 = 2.5, βa01 = −0.1, βa02 = 0.1, λ21 =

−0.8, λ22 = 0.2

floating Using (5.12)* Using (5.14)*

parameter E(W1t)E(W2t)V (W1t)V (W2t)C(W1t,W2t)ρ(W1t,W2t) bE(W1t) bE(W2t) bV (W1t) bV (W2t) bC(W1t,W2t)bρ(W1t,W2t)

σ12 = −0.08 8.497 11.667 8.687 35.001 -8.605 -0.493 8.482 11.670 8.534 35.399 -8.589 -0.494

σ12 = −0.02 8.486 11.646 8.466 34.340 -2.136 -0.125 8.505 11.729 8.434 34.889 -2.149 -0.125

σ12 = 0.05 8.486 11.646 8.454 34.283 5.672 0.333 8.461 11.570 8.449 34.396 5.711 0.335

σ12 = 0.08 8.496 11.665 8.660 34.918 9.568 0.550 8.514 11.701 8.749 35.224 9.726 0.554

σ22 = 0.06 8.491 11.397 8.551 26.892 6.774 0.447 8.511 11.418 8.524 26.979 6.759 0.446

σ22 = 0.12 8.496 11.798 8.669 39.343 7.201 0.390 8.585 11.987 8.885 40.129 7.435 0.394

σ22 = 0.20 8.484 12.300 8.419 58.233 7.279 0.329 8.491 12.336 8.542 57.470 7.275 0.328

σ22 = 0.25 8.490 12.676 8.536 74.908 7.679 0.304 8.508 12.713 8.410 72.170 7.769 0.315

ν = 5.0 8.609 11.895 12.185 48.056 11.527 0.476 8.637 11.863 13.845 45.922 11.699 0.464

ν = 7.5 8.552 11.778 10.197 40.150 8.981 0.444 8.573 11.805 10.099 39.914 8.868 0.442

ν = 10 8.526 11.726 9.454 37.551 8.059 0.428 8.501 11.684 9.451 37.083 7.884 0.421

ν = 100 8.457 11.589 7.804 32.256 6.070 0.383 8.424 11.585 7.686 32.300 5.925 0.376

βµ02 = 1.6 8.487 4.735 8.463 10.062 2.787 0.302 8.483 4.735 8.470 10.033 2.763 0.300

βµ02 = 2.0 8.486 7.064 8.460 16.962 4.156 0.347 8.483 7.064 8.470 16.901 4.122 0.345

βµ02 = 2.4 8.486 10.538 8.459 29.647 6.199 0.391 8.483 10.539 8.470 29.515 6.150 0.389

βµ02 = 2.8 8.483 15.713 8.403 53.611 9.161 0.432 8.483 15.722 8.470 53.603 9.175 0.431

βa02 = −0.25 8.497 16.556 8.689 59.674 10.110 0.444 8.497 16.487 8.877 59.850 10.303 0.447

βa0 = −0.05 8.499 13.561 8.748 44.076 8.357 0.426 8.497 13.499 8.879 43.969 8.442 0.427

βa0 = 0.3 8.498 9.554 8.721 26.244 5.864 0.388 8.497 9.512 8.879 26.225 5.949 0.390

βa0 = 0.7 8.498 6.405 8.732 15.102 3.938 0.343 8.497 6.376 8.879 15.068 3.988 0.345

λ22 = −0.8 8.485 11.644 8.433 19.619 6.821 0.530 8.494 11.702 8.389 20.179 6.811 0.523

λ22 = −0.2 8.487 11.647 8.478 24.255 6.875 0.479 8.494 11.701 8.386 24.642 6.798 0.473

λ22 = 0.4 8.486 11.646 8.451 48.425 6.841 0.338 8.493 11.698 8.377 48.828 6.757 0.334

λ22 = 0.6 8.482 11.638 8.371 88.581 6.747 0.248 8.493 11.687 8.372 88.502 6.707 0.246

*Note that V (Wit) = V ar(Wit),C(W1t, W2t) = Cov(W1t, W2t) and ρ(W1t, W2t) = Corr(W1t, W2t)
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Table 5.2: Parameter estimates, SE and DIC in four fitted models for the

amphetamine and narcotics data

BP model BPLN model BPLNGP model BGPLTGP model

para- para- para- para-

drug shortage type meter estimate SE meter estimate SE meter estimate SE meter estimate SE

AMP before mean β011 2.6430 0.2231 β01 2.6450 0.3220 βµ01 1.8670 0.1019 βµ01 2.0270 0.1057

i = 1 p = 1 trend β211 -0.7488 0.1708 β21 -0.7165 0.2495 βa01 0.0053 0.0063 βa01 0.0353 0.0050

β311 -0.0180 0.7985 β31 1.0730 0.5498 βa11 -0.0037 0.0014 βa11 -0.0103 0.0010

var σ2
11 0.0658 0.0309 σ2

11 0.0725 0.0333 σ2
11 0.0489 0.0354

cov β012 -2.6490 0.0574 σ121 0.0152 0.0171 σ121 0.0212 0.0171 σ121 0.0141 0.0167

disp λ211 0.1003 0.1933

df ν1 22.99 52.19

during mean β111 -5.8230 2.2460 β11 -2.9910 1.5190 βµ11 0.1899 0.2287 βµ11 2.2450 0.1962

p = 2 trend β411 0.1718 0.0317 β41 0.1628 0.0462 βa21 -0.0124 0.0081 βa21 0.0687 0.0055

β511 0.2338 0.0813 β51 -0.0779 0.0554 βa31 0.0031 0.0015 βa31 -0.0092 0.0010

var σ2
12 0.0661 0.0200 σ2

12 0.0684 0.0197 σ2
12 0.0707 0.0279

cov β112 5.3030 0.0406 σ122 0.0178 0.0132 σ122 0.0153 0.0130 σ122 0.0120 0.0115

disp λ212 0.0611 0.3476

NAR before mean β022 3.0550 0.1677 β02 3.1220 0.2377 βµ02 2.5470 0.0825 βµ02 2.6220 0.1192

i = 2 p = 1 trend β222 -0.5338 0.1218 β22 -0.5991 0.1781 βa02 -0.0089 0.0067 βa02 0.0014 0.0163

β322 -0.7184 0.9006 β32 1.6250 0.5007 βa12 -0.0010 0.0015 βa12 -0.0034 0.0036

var σ2
21 0.0654 0.0159 σ2

21 0.0612 0.0158 σ2
21 0.0469 0.0239

disp λ221 -0.1939 0.3582

df ν2 23.80 56.82

during mean β122 -15.590 3.8330 β12 -3.7140 1.1610 βµ12 -0.1605 0.2123 βµ12 -0.1031 0.4069

p = 2 trend β422 0.1472 0.0219 β42 0.1558 0.0328 βa22 0.0093 0.0074 βa22 0.0083 0.0081

β522 0.6464 0.1518 β52 -0.2270 0.0632 βa32 0.0004 0.0014 βa32 0.0010 0.0010

var σ2
22 0.0713 0.0202 σ2

22 0.0709 0.0207 σ2
22 0.0890 0.0310

disp λ222 -0.4167 0.3643

DIC 2277.19 2073.11 2072.55 1993.92

Remarks: var, cov, disp, df stand for variance, covariance, dispersion and degree of freedom

respectively.
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Table 5.3: Parameter estimates, SE and DIC in BGPLTGP model after

accounting for serial correlation

drug shortage type parameter estimate SE

AMP before mean βµ01 1.9080 0.1145

i = 1 p = 1 AR(1) βµ21 0.0106 0.0044

trend βa01 0.0319 0.0082

βa11 -0.0087 0.0018

var σ2
11 0.0480 0.0362

cov σ121 0.0113 0.0146

disp λ211 0.1104 0.1945

df ν1 15.070 46.020

during mean βµ11 1.6920 0.1771

p = 2 trend βa21 0.0451 0.0062

βa31 -0.0062 0.0014

var σ2
12 0.0353 0.0208

cov σ122 0.0030 0.0099

disp λ212 0.1210 0.2825

NAR before mean βµ02 2.2200 0.1005

i = 2 p = 1 AR(1) βµ22 0.0142 0.0040

AR(2) βµ32 0.0100 0.0039

trend βa02 -0.0176 0.0066

βa12 0.0026 0.0015

var σ2
21 0.0526 0.0227

disp λ221 -0.1709 0.3380

df ν2 30.930 58.450

during mean βµ12 0.6510 0.2010

p = 2 trend βa22 0.0586 0.0054

βa32 -0.0100 0.0011

var σ2
22 0.0739 0.0246

disp λ222 -0.4732 0.3433

DIC 1991.23

Remarks: var, cov, disp, df stand for variance, covariance, dispersion and degree of freedom

respectively.
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Appendix 5.3

Figures

Figure 5.1: The pmfs of BGPLTGP model with varying parameters
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Figure 5.1: The pmfs of BGPLTGP model with varying parameters (con-

tinued)
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w1

w
2

 0.001 

 0.002 

 0
.0

03
 

 0.004 

 0
.0

05
 

0 5 10 15 20 25 30

0
5

15
25

beta_a02=−0.25

w1

w
2

 0.001 

 0.002 

 0
.0

03
 

 0
.0

04
 

 0.005 

0 5 10 15 20 25 30

0
5

15
25

beta_a02=−0.05

w1

w
2

 0.001 

 0.002 

 0
.0

03
 

 0
.0

04
 

 0.005 

 0.01 

0 5 10 15 20 25 30

0
5

15
25

beta_a02=0.3

w1

w
2  0.001 

 0.002 

 0.003 

 0
.0

04
  0.008 

0 5 10 15 20 25 30

0
5

15
25

beta_a02=0.7

(f) λ22

w1

w
2

 0.001 

 0.002 

 0
.0

03
 

 0
.0

04
 

 0
.0

12
 

0 5 10 15 20 25 30
0

5
15

25

lambda22=−0.8

w1

w
2

 0.001 

 0.002 

 0.003 

 0
.0

04
 

 0
.0

05
 

 0
.0

12
 

0 5 10 15 20 25 30

0
5

15
25

lambda22=−0.2

w1

w
2

 0.001 

 0.002 

 0
.0

03
 

 0.004 

 0
.0

05
 

0 5 10 15 20 25 30

0
5

15
25

lambda22=0.4

w1

w
2

 0.001 

 0.002 
 0.003 

 0.004 

 0.005 

0 5 10 15 20 25 30
0

5
15

25

lambda22=0.6



5.6. DISCUSSION 208

Figure 5.2: Monthly number of arrests for amphetamine (AMP) and nar-

cotics (NAR) use/possession in Sydney during January 1995 - December

2008
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Figure 5.3: Trends of the expected monthly number of arrests for use or

possession of two illicit drugs for all fitted models
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Figure 5.4: Trends of the SE of monthly number of arrests for use or pos-

session of two illicit drugs for all fitted models
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CHAPTER 6

Summary

6.1. Overview

Longitudinal and panel count data appear in every aspect of our lives

such as in epidemiology, marketing, engineering and economics. The list of

areas in which time series of count data are analyzed is endless. Some com-

mon characteristics of time series of counts include non-stationarity, non-

monotone trends, time-evolving or time-invariant covariate effects, serial

correlation and overdispersion caused by zero-inflation and extreme out-

liers, and population heterogeneity caused by cluster effects in panel data.

Lastly, multiple measurements are sometimes made to each subject at each

time point.

To take into account these properties, Wan (2006) introduced the Pois-

son geometric process (PGP) model to analyze longitudinal and panel count

data. However, the PGP models developed in Wan (2006) looked specifi-

cally into some aforementioned characteristics and did not address other

problems like the serial correlation between observations, overdispersion

and underdispersion. So far, the PGP model has been solely applied to uni-

variate analysis of time series of counts, the multivariate area yet remains

unexplored.
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In light of these, our objective of this research is to extend the PGP

model to allow for those characteristics that have not been addressed. As re-

viewed in Chapter 1, there exist two major categories of models, namely the

observation-driven (OD) and parameter-driven (PD) models which specif-

ically allow for serial correlation. In the OD models, the mean of the out-

come is expressed explicitly as a function of the past observations in order

to construct an autocorrelation structure for accommodating serial correla-

tion. This approach is appealing due to the straightforward prediction and

derivation of the likelihood function. However, difficulties arise when we

interpret the covariate effects on the outcome. On the contrary, the PD

models introduce serial dependence through a latent variable which evolves

independently of the past observations in the mean function and thus en-

ables a straightforward interpretation of the covariate effects. However, the

parameter estimation of this model is computationally intensive due to the

complicated derivation of the likelihood function which involves integra-

tion over the latent variables and the forecasting is cumbersome since the

model is built on a latent process. Unlike the OD and PD models, the PGP

model belongs to the family of the GLMM model and can be classified as

a state space model with state variable Xt where {Xt, t = 1, . . . , n} is the

latent GP evolving independently of the past outcomes. The main differ-

ence between the PGP model and OD/PD models is that the former focuses

on modelling the trend of the time series whereas the latter concentrates on

investigating the serial correlation structure of the outcomes.
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To combine the merits of these models, we extend the PGP model to

account for serial correlation between observations using the OD model ap-

proach and furthermore to address other characteristics that are prominent

in longitudinal and panel count data. As mentioned before, the mixture

Poisson geometric process (MPGP) model using exponential distribution

as described in Wan (2006) is not adequate to account for excess zeros

and substantial overdispersion. Therefore, firstly in Chapter 2, we propose

two models namely the zero-altered mixture Poisson geometric process

(ZMPGP) model and the mixture Poisson geometric process (MPGP-Ga)

model using gamma distribution to cope with zero-inflation. The ZMPGP

model is essentially a mixture of zero-degenerated model and a zero-truncated

MPGP model via the hurdle approach, while the MPGP-Ga model is a state

space model with state variable E(Wit) = Xit where Xit follows a gamma

distribution. For model comparison, the analysis of bladder cancer data re-

veals that the MPGP-Ga model gives a better model fit than the ZMPGP

model due to the brevity and flexibility of the model distribution. Neverthe-

less, both models are capable of modelling zero-inflated count data but do

so in a different way and therefore are suitable under different situations.

Secondly, concerning another source of overdispersion, the presence

of outlying observations, we pioneer the robust mixture Poisson geometric

process (RMPGP) model in Chapter 3 by replacing the gamma distribution

of the stochastic process {Yit} and assuming the logarithm of the underlying

stochastic process {Y ∗
it = lnYit} follows some heavy-tailed distributions
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including the Student’s t- and exponential power (EP) distributions. The re-

sultant models are namely the RPGP-t and RPGP-EP models. Moreover, by

expressing the two heavy-tailed distributions in scale mixtures (SM) repre-

sentation, the model implementation using MCMC algorithms is facilitated

and the additional parameter known as the mixing parameter enable us to

identify any outliers in the data. For model comparison, the simulation

study shows that the performances of the two RPGP models are comparable

and satisfactory. In case of data with very heavy tail, the RMPGP-t model

seems to fit better since Student’s t-distribution allows a much heavier-than-

normal tail. On the other hand, the RMPGP-EP model allows more diverse

degrees of overdispersion as EP distribution has a more flexible tail which

can be either leptokurtic or platykurtic. Therefore, the latter model gives

a better fit in the analysis of epilepsy data because the two mixture groups

being identified show overdispersion to different extents.

The previous extensions focus on solving the problems related to overdis-

persion, however the analogous problem, underdispersion, has not received

much attention as it is less frequently observed in longitudinal and panel

count data. Nevertheless, a comprehensive count model should contain a

flexible dispersion structure to accommodate different degrees of dispersion

ranging from overdispersion to underdispersion. Therefore, thirdly, we pro-

pose the mixture generalized Poisson geometric process (GMPGP) model

in Chapter 4 which relaxes the restriction of overdispersion in the previ-

ous extended MPGP models. The GMPGP model replaces the Poisson data
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distribution with generalized Poisson distribution (GPD) which contains an

extra parameter to control the dispersion of the distribution. This unified

model is compared with the RPGP-EP model through two simulation ex-

periments and a real data analysis of the cannabis data. The results high-

light that while the performances of the two models are comparable and

satisfactory in the case of overdispersion, the GMPGP model has a much

better performance in handling underdispersed data in which the RMPGP-

EP model falls short to do so. Moreover in the real data analysis where the

data is overdispersed in the presence of outliers, the GMPGP model still

outperforms the RMPGP-EP model as it can accommodate outliers by the

heavier tail of the generalized Poisson-gamma mixed distribution.

Last but not least in Chapter 5, we explore a new area for the PGP

model on multivariate longitudinal count data by integrating the framework

of RMPGP and GMPGP models. The resultant model named as multi-

variate generalized Poisson log-t geometric process (MGPLTGP) model is

essentially a generalized Poisson mixed model within the GP modelling

framework and adopting multivariate log-t distribution as the mixing den-

sity. Through the real data analysis, we show that the MGPLTGP model

has a couple of merits over some traditional multivariate count models in-

cluding its abilities to handle positive or negative serial, contemporaneous

and cross correlations and accommodate different degrees of dispersion, es-

pecially serious overdispersion due to outlying observations in multivariate

longitudinal count data.
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For statistical inference, since the distributions in most of the extended

PGP models do not have a closed-form except the ZMPGP and MPGP-Ga

models, Markov chain Monte Carlo (MCMC) sampling methods are pre-

ferred for parameter estimation to classical approach such as the maximum

likelihood (ML) estimation and the expectation-maximization (EM) algo-

rithm as the former avoids the optimization of high-dimensional likelihood

functions and can be easily implemented using WinBUGS.

In summary, the extended PGP models take into account the serial cor-

relation between observations, overdispersion caused by zero-inflation and

outlying observations, different degrees of dispersion and cross and con-

temporaneous correlations between time series while keeping its old virtue

to accommodate non-stationarity, non-monotone trends, covariate and clus-

ter effects. Accompanied by the straightforward model implementation and

interpretation, these PGP models, which have been applied extensively in

different areas as demonstrated in this research, can undoubtedly compete

with other traditional time series models for count data.

6.2. Further research

In spite of the substantial development of PGP models in this thesis,

there are still many unattended areas that are worthy of further considera-

tion.
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6.2.1. Extension to multivariate panel count data. Since many mul-

tivariate longitudinal data comes from panel studies, the presence of popu-

lation heterogeneity is usually inevitable in the data. Hence, the MGPLTGP

model proposed in Chapter 5 which is designed for modelling multivari-

ate longitudinal count data can be further extended to incorporate mixture

effect or random effects to allow for the cluster or subject-specific effects

amongst multiple time series. We believe that the extended mixture model,

which can identify subgroups comprising the population, is useful for all

practical purposes.

6.2.2. Comparison of serial dependence structure. In this research,

we apply the OD model approach in all extended PGP models to accom-

modate the serial dependency between observations by adding some past

observations as covariates into the mean link function of the stochastic pro-

cess {Yit}. On the other hand, we may consider the PD model approach

by incorporating some latent serially correlated random effects which are

independent of past observations into the mean link function. The model

properties of the two diverse approaches can be investigated and compared

in terms of model interpretation, parameter estimation and practicability.

Moreover, when the time series is long, we can consider some simple but

efficient correlation structures to reduce the number of parameters for the

random effects model.
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6.2.3. Comparison in methodologies of inference. On the whole, we

focus on the extensions of PGP models to account for different data proper-

ties. Another area that is worthwhile to study is the inference methodology.

Though using MCMC algorithm avoids the evaluation of high-dimensional

likelihood function, the computation time for this sampling algorithms is

sometimes massive if the data size is large and the model is highly compli-

cated.

As an alternative to the ML method in the frequentist approach, the EM

method can be considered since the latent variables are evaluated through

the E-step. Besides, large sample properties of the estimators can be stud-

ied by deriving their large sample distributions. Knowing the asymptotic

distributions, we can then construct confidence intervals for and perform

hypothesis tests on the model parameters.

6.2.4. Comparisons with traditional time series count models. Last

but not least, apart from the model comparison within the extended PGP

models, we can compare our proposed models with those benchmarking OD

and PD models to justify the pros and cons of adopting the PGP approach in

modelling longitudinal and panel count data from different areas. Besides,

knowing the shortcomings, the PGP models can be modified accordingly to

increase its competence among all existing models.
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