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Abstract

Time series is one of the main subjects in Statistics. It can apply

to any kind of fields, such as finance, engineering, medical science, en-

vironmental science and even astronomy. A time series which exhibits

a monotonic increasing or decreasing trend pattern is very common.

Lam (1988) first proposed modelling directly a monotonic trend by a

monotone process called the Geometric Process (GP). The definition

is: Let X1, X2, . . . be a set of positive random variables. If there exists

a positive real number a, such that {Yt = at−1Xt, t = 1, 2, . . . } forms a

renewal process (RP) (Feller, 1949) with mean E(Yt) = µ and variance

V ar(Yt) = σ2, then {Xt, t = 1, 2, . . . } is called a Geometric Process

(GP), and the real number a is called the ratio of the GP. If a > 1,

a GP is stochastically decreasing; if 0 < a < 1, it is stochastically

increasing; and if a = 1, it is stationary.

A financial time series often includes trend, and exhibits jump dif-

fusion and volatility change. While most existing models can capture

these features, they are complicated in the modelling approach and im-

plementation. We propose GP model as a simple modelling alternative

in modelling these features of a financial time series and in forecasting.

To address these features, we first propose an autoregressive geometric

process (ARGP) model in which an autoregressive (AR) term is added

to the mean of the latent RP, in order to account for the autocorrelation

of the series. Moreover, the ratio a of the GP model describes trend
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movement, and allows volatility changes in the time series. Then the

model is further extended to the conditional autoregressive geometric

process (CARGP) range model by adopting a conditional autoregres-

sive range (CARR)-type (Chou, 2005) mean function. This extended

model captures the dynamics of the serial correlation better, and is eas-

ily applied in forecasting. Besides, by assigning the log-t distribution,

expressed in scale mixtures form to the RP, the model is more robust

for heavy-tailed time series data. Lastly, to capture the jumps that

occur in many financial time series, we add the threshold and jump

components to the mean function, and the advanced models are called

CARGP threshold (CARGPT) and CARGP jump (CARGPJ) models,

respectively. We show that the advanced models are the generalisation

of the mean reverting jump diffusion (MRJD) model of Rambharat et

al. (2005), and can implement easily and accurately in price forecasts.

The statistical inference of the ARGP model can be carried out

easily by the least square error (LSE) method and maximum likeli-

hood (ML) method. Due to the complicated likelihood functions when

the mean of the data distribution adopts a CARR-type mean func-

tion, we implement the CARGP, CARGPT and CARGPJ models using

Bayesian inference.
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Chapter 1

Introduction

1.1. Background

We all live in a world of information. A time series presents the

information of a certain event over time. Depending on the nature of

the event, such time series may exhibit a wide range of characteristics

from the monotonic trend movement to the heteroskedasticity. In the

past decades, much research attention has been directed to investigate

the many unique features in a financial time series. The remaining

section is devoted to give an account of these features in a time series.

Data with increasing or decreasing trend patterns are common. In

engineering, data of the successive operating times of a repairable sys-

tem after repairs are monotonically decreasing because of the accumu-

lated wears. On the other hand, due to the ageing effects, the failure

rate of a medical treatment for a patient exhibits a monotonic increas-

ing trend. In finance, the stock price may follow a monotonic increasing

or decreasing trend over a certain period of time. The price of a cer-

tain commodity, such as electricity, is another example in our daily life,

which exhibits monotonic increasing trend. A time series model which

1



2 1. Introduction

fails to allow for the dynamics of the trend movement will not provide

accurate forecast.

Another common feature of a time series is the cyclical behaviour

or seasonal variation. Seasonality is presented in a time series when

the outcome follows a cyclical pattern usually induced by some sea-

sonal characteristics, and repeats itself again over a period of time,

such as a year. If the seasonality is of secondary importance, it is usu-

ally removed from the data by a procedure called seasonal adjustment

(Wallis, 1974). On the other hand, if forecasting is the major objective,

a separate component is usually added to the mean function to allow

for seasonality (Zekkberm, 1979).

Many linear models are governed by the intrinsic dynamics that

small causes lead to small effect. However, such linearity is often vi-

olated in the course of time. A regime switching model is one of the

models that allows for nonlinearity. In the model, a structural break or

a model shift may occur when a time threshold or a threshold level for

a certain risk variable is exceeded. See for example the threshold time

model of Chan et al. (2006) and the threshold heteroskedastic models

of Chen et al. (2008).

For some financial time series, Black (1976) revealed that a drop

in price or return was associated with a rise in volatility. This phe-

nomenon is known as the leverage effect, and is modelled by either in-

troducing a correlation between the distribution of the log-return and
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log-volatility in the stochastic volatility modelling framework, or simply

adding a term of the lag-1 price in the volatility function. These two

approaches are called parameter driven and observation driven models,

respectively.

Apart from the seasonality, nonlinearity and leverage effects, an-

other prominent feature for a time series is the serial/auto/lagged corre-

lation (Box and Jenkins, 1976). Autocorrelation describes the similar-

ity between observations, as a function of the time separation between

them. The dynamics of autocorrelation may be induced by season-

ality, leverage effects and many others. Many researches have been

conducted to model the dynamics of serial correlation. See for exam-

ple, the conditional autoregressive range model of Chou (2005) and the

autoregressive moving average (ARMA) model of Box, Jenkins and

Reinsel (1994).

Volatility clustering is visible in many financial time series. Volatil-

ity clustering refers to the phenomenon, as noted by Mandelbrot (1963),

that large changes in observations tend to be followed by large changes,

of either sign in volatility, and small changes tend to be followed by
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small changes. An implication is that, while the observations them-

selves are uncorrelated, their absolute values or squares display a posi-

tive and significant autocorrelation function (ACF) that suggest the ob-

servations are dependent. The autoregressive conditional heteroskedas-

tic (ARCH) (Engle, 1982) and generalised ARCH (GARCH) (Boller-

slev, 1986) models are derived to describe the phenomenon of volatility

clustering and related effects such as kurtosis.

Lastly, other financial time series such as the electricity market

prices are highly volatile and often have spikes. They are caused by

the low elasticity of supply and strong seasonality. To provide a robust

inference that downweights the effect of spikes, some heavy-tailed or

leptokurtic error distribution should be adopted. A common choice of

these distributions is the log-t distribution for its lognormal counter-

part. Alternatively, the jump-diffusion model of Merton (1973) models

the spikes by two stochastic processes separately, for the jump and the

diffusion. Moreover, the price for the non-storable commodity such as

electricity may exhibit strong mean-reversion over a short time period,

that would be inconsistent with the price of a storable good in an ef-

ficient market. In light of this, some mean reversion jump diffusion

(MRJD) models are proposed. See for example the MRJD model of

Rambharat et al. (2005) in electricity application.

It is challenging to derive models to address all these features in

a time series, particularly a financial time series, which is the focus of



1.2. Overview of finanical time series model 5

this thesis. The next section lists some important models that cater for

the different features in a time series, to facilitate accurate modelling

and forecasting.

1.2. Overview of finanical time series model

This section summarise briefly a few benchmark financial time series

models that are developed and modified to address the various distinct

characteristics of a financial time series. We begin with the autore-

gressive moving average (ARMA) model (Box, Jenkins and Reinsel,

1994) which allows for serial correlation in a stationary time series.

It is a model combining two basic time series models, autoregressive

(AR) model and moving average (MA) model, in order to describe the

dynamic structure of time series adequately. Then, a more appropriate

model for modelling non-stationary time series is its generalisation, the

autoregressive integrated moving average (ARIMA) model. However,

many time series exhibit nonlinear characteristics: the bilinear model

(Granger and Anderson, 1978), the autoregressive model with random

coefficients (Robinson, 1978) and the threshold models (Tong and Lim,

1980) are three important classes of nonlinear models. There are also

the mean reverting jump diffusion (MRJD) models of Barz and John-

son (1998), Cartea and Figueroa (2005) and Rambharat et al. (2005),

especially designed to model the spikes and mean reversions for high
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frequency data. The jump and mean reversion components in the mean

account partially the heteroskedasticity in a financial time series.

However, while the ARIMA and other nonlinear models study the

dynamic of the mean of a time series, they do not allow for the time-

varying nature of the volatility. Some models are constructed to in-

clude the modelling of the unobserved volatility of the series. They in-

clude the ARCH model of Engle (1982), the GARCH model of Boller-

slev (1986) and stochastic volatility (SV) models of Hull and White

(1987), Melino and Turnbull (1990) and Taylor (1994). The ARCH and

GARCH models aim to describe the phenomenon of volatility cluster-

ing and related effects such as kurtosis more accurately. In the model,

volatility is dependent upon past realisations of the price and volatility

process.

The GARCHmodels determines the conditional volatility by a func-

tion of lagged squared residuals and lagged conditional variance while

the SV models allow the conditional volatility to be modelled by an

unobservable stochastic process. These approaches are sophisticated,

adaptive and flexible but the model implementations are quite compu-

tationally demanding. This research proposes the Geometric Process

(GP) model as a simple modelling alternative to model simultaneously

the dynamics of the mean and variance.



1.3. Overview of GP model 7

1.3. Overview of GP model

To model the monotonic trend in a time series, the nonhomogeneous

Poisson process and the Cox-Lewis model (Cox and Lewis, 1966) have

been used for a while. Lam (1988) first proposed modelling directly a

monotonic trend by a monotone process called the Geometric Process

(GP).

Definition : Let X1, X2, . . . be a set of positive random variables.

If there exists a positive real number a, such that {Yt = at−1Xt, t =

1, 2, . . . } forms a renewal process (RP) (Feller, 1949), then {Xt, t =

1, 2, . . . } is called a Geometric Process (GP), and the real number a is

called the ratio of the GP.

If we denote the mean and variance for the latent RP {Yt} as

E(Yt) = µ and V ar(Yt) = σ2,

the mean and variance for the observed data {Xt} which form a GP

are given by

(1.1) E(Xt) = µ/at−1 and V ar(Xt) = σ2/a2(t−1),

respectively. If a > 1, a GP is stochastically decreasing; if 0 < a < 1,

it is stochastically increasing; and if a = 1, it is stationary.

The original GP model mainly focused on modellingXt as the inter-

arrival times of a series of events in reliability and maintenance prob-

lem in system engineering (Lam, 2007). In health science, Chan et

al. (2006) first extended the GP model to allow for multiple trends at
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different stages of development for the Severe Acute Respiratory Syn-

drome (SARS) epidemic in Hong Kong in 2003. More studies of the GP

model on Poisson count times series with the applications to clinical

trials can also be found in Wan and Chan (2009, 2011) and Chan et al.

(2011). The GP model was also extended to binary data by Chan and

Leung (2010) with an application to methadone clinic data in clinical

trial.

In statistical inference, Lam (1992) first proposed the non-parametric

least square error (LSE) method. Besides, by adopting some lifetime

distributions to the RP {Yt}, the model can also be implemented by a

parametric approach. Lam and Chan (1998) investigated the statistical

inference and properties of the maximum likelihood (ML) estimators

for the GP models with the lognormal distribution and Chan et al.

(2004) considered gamma distribution.

The GP model provides a new modelling approach for trend data.

Lam et al. (2004) showed that the GP model out-performed the Cox-

Lewis model (Cox and Lewis, 1966), the Weibull process model (Ascher,

1981) and the homogeneous Poisson process model. The original GP

model assumes a constant mean µ and a constant ratio a over time.

These assumptions reduce the flexibility in modelling time series. Chan

et al. (2006) extended the GP model to include threshold effects for

multiple trend data to model, in particular, the growing, stabilising and

declining stages of the SARS epidemic. Wan and Chan (2009, 2011)
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and Chan and Leung (2010) considered covariate effects in both the

mean µt and ratio at functions which change across time t. Under this

assumption, the unobserved {Yt} is no longer a RP but a stochastic

process (SP) in general.

Despite these researches have extended the GP model considerably

in terms of modelling techniques, methods of inference and fields of

applications, few have focused on financial time series. The merit of the

GP model in financial application is two folds: its geometric structure

and a ratio component to model non-stationarity. Firstly, the model

assumes that the observed data at time t form a latent ‘detrended’ SP

after discounted t − 1 times by a ratio parameter and the GP model

focuses on modelling the latent SP. In fact, the latent SP forms the

state parameter of a state space model and hence it can achieve model

robustness by suitably adopting some parametric distributions such

as lognormal, gamma and Weibull distributions. Chan et al. (2011)

has shown the overdispersion property of a Poisson GP model with a

Poisson data distribution.

Secondly, the ratio at measures the direction and strength of a dy-

namic trend movement whereas the mean µt of the SP indicates the

level of the underlying stationary process. By separately modelling

the ratio and the mean of the SP, the model separates the effects on

trend movement from the effects on the underlying SP that generates

the observed GP. This approach is natural and appealing. Moreover,
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equation (1.1) shows that the ratio affects both the mean and variance

of a GP and allows them to change coherently over time.

In summary, the GP model has shown many advantages over some

common time series models, like the GARCH and SV models, as it pro-

vides a simple modelling approach to model simultaneously the trend

movement and heteroskedasticity in a financial time series. It is def-

initely worthy of investigation in the developments of GP model for

financial time series.

1.4. Objective and structure of thesis

This thesis extends the GP model to capture the additional fea-

tures including autocorrelation, jump diffusion and heavy-tailed data

distribution, etc, in a financial time series. The extended models can

facilitate accurate forecasting. The methods of inference including the

LSE, ML and Bayesian are also exploited to implement the proposed

models.

To address the autoregressive feature of a financial time series,

the GP model is firstly extended to the autoregressive geometric pro-

cess (ARGP) model in which an autoregressive (AR) term is added

to the mean of the latent SP. To allow for nonlinearity and covari-

ant effects, the time-variant mean function adopts covariate effects and

components which incorporate threshold effects on time and on some
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lagged outcomes. Moreover, the ratio function at of the GP model de-

scribes the trend movement and permits the volatility to change over

time. The model called the conditional autoregressive geometric pro-

cess (CARGP) range model is further extended from the ARGP model

by adopting a conditional autoregressive range (CARR)-type (Chou,

2005) mean function in order to capture the dynamics of the serial cor-

relation better. By adopting the log-t distribution expressed in scale

mixtures representation for the SP, the model is more robust than its

normal counterpart in modelling leptokurtic time series. With the fact

that jumps occur in many financial time series, we propose further ex-

tensions of the CARGP model by adding threshold and jump effects

in the mean function of the SP. These two components capture mean

reversion, together with the log-t distribution for the SP and the ratio

function, and allow for the volatility clustering and heteroskedastic-

ity. We show that the extended CARGP Threshold (CARGPT) and

Jump (CARGPJ) models are the generalisation of the MRJD model of

Rambharat et al. (2005).

The LSE and ML methods using the non-parametric and paramet-

ric approaches, respectively are used for the inference of the ARGP

models. In the past decade, the Bayesian method becomes very popu-

lar. It has an advantage over the ML method as it avoids the evaluation

of complicated likelihood functions, particularly when the mean of the

GP model adopts a CARR-type mean function. Moreover, it has had
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increasing popularity in recent years due to the advancement of compu-

tational power and the development of efficient sampling techniques.

Furthermore, the Bayesian software, Bayesian analysis Using Gibbs

Sampling for Window version; (WinBUGS; Spiegelhalter et al., 2004)

allows non-experts to implement the model and performs forecast fairly

easily. Hence, we will then focus on the implementation of the CARGP,

CARGPT and CARGPJ models using the Bayesian method.

For the remaining parts of this thesis, they are structured as be-

low. The ARGP model using the LSE and ML methods of inference is

presented in Chapter 2. The CARGP model with a CARR-type mean

function using the Bayesian approach is introduced in Chapter 3. Fur-

ther extensions of the CARGP model to adopt threshold and jump

effects are described in Chapter 4. We will apply the proposed models

to real data sets in each of the above chapters. Finally, the thesis is

concluded in Chapter 5 by a discussion on the advantages and limi-

tations of the proposed GP models in modelling financial time series.

Some future research areas are proposed to advance the GP model and

enrich its financial applications.



Chapter 2

Autoregressive Geometric Process (ARGP) Model

2.1. Introduction

Most of the financial time series have several noticeable features.

They include trend movement, autocorrelation, heteroskedasticity, lever-

age effect and jump diffusion, etc. Among these features, heteroskedas-

ticity is perhaps the most prominent feature that attracts more research

attention. In financial markets, volatility has become a standard risk

measure. Accurate forecasting of volatility is important but difficult,

because financial time series often exhibit time-varying volatility and

volatility clustering. They are periods of elevated volatility interspersed

among more tranquil periods. As discussed in Section 1.2, two main

classes of models are derived to capture the dynamics of the volatility

precisely, and they are the generalised autoregressive conditional het-

eroskedastic (GARCH) models (Bollerslev, 1986) and the stochastic

volatility (SV) models (Hull and White, 1987).

Essentially, the GARCH and SV models are return-based models

as they are constructed using the data of closing prices, neglecting

all intra-day price movement. Parkinson (1980) stated that the range

13
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which is the difference between the intra-day high-low prices is an ef-

ficient proxy of volatility. This volatility estimator is based on the

assumption that the asset price follows a driftless geometric Brownian

motion, and is theoretically shown by Parkinson (1980) to be around

5 times more efficient than the classical estimator based on closing

prices. Garman and Klass (1980) who included more historical data in

the volatility estimator shown that it is 8 times more efficient. Beckers

(1983) also concluded that the daily price range contained important

information concerning the stock price variability. Although Garman

and Klass (1980), and Marsh and Rosenfeld (1986) remarked that the

extreme-value estimators are downward biased due to the discreteness

in prices and even worst with relatively low trading volumes as shown

in the estimator of Wiggins (1991). Wiggins (1992) demonstrated that

it is still significantly more efficient than the classical estimator for

some time series, like the S&P 500 futures price series which has a high

trading volume and takes values over a more continuous range. This is

because higher trading volume usually associates with higher continuity

in trading price. Kunitomo (1992) improved the Parkinson’s method

by allowing a drift in the geometric Brownian motion process. Ander-

sen and Bollerslev (1998) reported the favourable explanatory power of

range data. The more recent studies, including Alizadeh et al. (2002)

who used the ranged-based estimator for the SV model, Brandt and
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Jones (2006) who obtained a better volatility forecast using the range-

based exponential GARCH (EGARCH) model, Chou (2005, 2006) and

Chen et al. (2008) also found strong support on the models using a

range-based estimation for volatility. Hence, range, instead of closing

prices, is adopted as the outcome variable in this chapter for better

modelling and forecasting of volatility.

As mentioned, a financial time series often includes trend move-

ment, and exhibits volatility changes. The Geometric Process (GP)

model has shown distinct features to capture both dynamics simulta-

neously via the inherent geometric structure and the ratio parameter.

To further allow for the rather high serial dependency, we first extend

the GP model to the autoregressive GP (ARGP) model in which a

first order autoregressive (AR) term and possibly some other covari-

ates are added to the mean µt of the latent stochastic process (SP).

Secondly, nonlinearity arises when there is a change in the trend move-

ment and/or in the dynamics of the latent SP. As a result, threshold

model can be considered when the model differs in some important

way, for example, a shift in the mean after the occurrence of a cer-

tain event, such as, the global financial crisis in September 2008. This

threshold model is called the threshold time ARGP (TARGP) model.

In addition, another threshold model called the threshold level ARGP

(LARGP) model assumes that the exposure to a risk (threshold) vari-

able, such as the lagged outcome, causes a model shift only when the
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risk variable exceeds a certain threshold level. Both types of thresh-

old models will surely describe the dynamics of the range data better.

For model implementation, both the non-parametric (NP) least square

error (LSE) method and the parametric maximum likelihood (ML)

method are used.

The layout of the sections in this chapter is given below. Section

2.2 introduces the model development of ARGP model and the exten-

sions for capturing nonlinearity in a financial time series. Section 2.3

describes the LSE and the parametric ML methods for statistical infer-

ence. In Section 2.4, an empirical study is presented using the intra-day

range data of the All Ordinaries (AORD) index of the Australian stock

market. Finally, a conclusion is given in Section 2.5.

2.2. Model development

2.2.1. The parametric GP model. Assume that {Xt} follows

a GP such that {Yt = at−1t Xt} forms a latent SP with the ratio at.

Referring to equation (1.1), the mean and variance of the observed

data {Xt} are given by,

E(Xt) = µt/a
t−1
t and V ar(Xt) = σ2

t /a
2(t−1)
t ,(2.1)

respectively, where the mean µt and the ratio at may change over time

in general.
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By adopting some lifetime distributions including the lognormal

and gamma distributions to the SP {Yt}, the model can be imple-

mented using the parametric method. Chan et al. (2004) investigated

the statistical inference for the GP model with gamma distribution.

Assuming that Yt ∼ Ga(α, γt), the probability density function (pdf)

for Yt is

fG,t(yt) =
1

Γ(α)
γαt y

α−1
t exp(−γtyt) I(yt ≥ 0),

where α(> 0) is the shape parameter, γt(> 0) is the scale parameter

and Γ(α) is the gamma function. The mean and variance of Yt are

E(Yt) = µt =
α

γt
and V ar(Yt) = σ2

t =
α

γ2t
,

respectively. Using fG,t(xt) =
dyt
dxt

fG,t(yt) = at−1t fG,t(yt), the pdf for

the observed data Xt is given by

fG,t(xt) =
1

Γ(α)
(at−1t γt)

αxα−1t exp(−at−1t γtxt) I(xt ≥ 0),

or equivalently,

Xt ∼ Ga(α, at−1γt).

The likelihood and log-likelihood functions for the observed data {Xt}

are

LG(θ;x) =
n∏
t=1

1

Γ(α)
(at−1t γt)

αxt
α−1 exp(−at−1t γtxt) and

`G(θ;x) = α

n∑
t=1

ln
(
at−1t γt

)
+ (α− 1)

n∑
t=1

lnxt −
n∑
t=1

at−1t γtxt − n ln Γ(α),
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respectively, where x is a vector of xt, t = 1, ..., n and θ is a vec-

tor of model parameters including parameters in the mean and ratio

functions, and the shape parameter.

Alternatively, Lam and Chan (1998) considered a lognormal distri-

bution, that is,

Yt ∼ LN(υt, τ
2).(2.2)

Then the pdf for Yt is

fLN,t(yt) =
1

τ
√

2πyt
exp

[
− 1

2τ 2
(ln yt − υt)2

]
I(yt ≥ 0),

and the mean and variance of Yt are

E(Yt) = µt = exp

(
υt +

1

2
τ 2
)

and V ar(Yt) = σ2
t = exp

(
2υt + τ 2

) [
exp(τ 2)− 1

]
,

respectively. Equivalently, Xt ∼ LN(υt − ln(at−1t ), τ 2) with the pdf

fLN,t(xt) =
1

τ
√

2πxt
exp

{
− 1

2τ 2
[
ln(at−1t xt)− υt

]2}
,

the mean

E(Xt) =
µt

at−1t

= exp

[
υt − ln(at−1t ) +

1

2
τ 2
]
,(2.3)

and the variance

V ar(Xt) =
σ2
t

a
2(t−1)
t

= exp
{

2
[
υt − ln(at−1t )

]
+ τ 2

} [
exp(τ 2)− 1

]
.(2.4)



2.2. Model development 19

The likelihood and log-likelihood functions are given by

LLN (θ;x) =

n∏
t=1

1

τ
√

2πxt
exp

{
− 1

2τ2
[ln(at−1t xt)− υt]2

}
and

`LN (θ;x) = −n
2

ln τ2 − n

2
ln(2π)−

n∑
t=1

lnxt −
1

2τ2

n∑
t=1

[ln(at−1t xt)− υt]2,(2.5)

respectively.

2.2.2. Extension to autoregressive and covariate effects.

Original GP model assumes a constant mean µ and a constant ra-

tio a over time such that the latent {Yt} forms a renewal process (RP).

The adoption of a homogeneous mean µ over time is over-simplified in

many cases. On one hand, it fails to capture the high serial depen-

dency, and on the other, it does not account for other covariate effects

which may be highly correlated to the outcome variable. Adopting the

framework of the generalised linear models (GLM), the constant mean

is replaced by a mean function log linked to a linear function of r co-

variates ztk, k = 1, . . . , r as well as an first order AR term. Assuming

that r = 1 for simplicity, the mean function for lnYt is written as

υt = βµ0 + βµ1 ln(yt−1) + βµ2 zt,(2.6)

where yt−1 = at−2t−1 xt−1 since from (2.2), ln(Yt) ∼ N(υt, τ
2). To allow

a flexible trend movement, the ratio a which models the direction and

strength of the trend movement can change gradually over time. The

time effect in the ratio function can be modelled by different time

functions, for example, t or ln t. For a long time series, ln t is preferred
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as it allows the time effect to level off when t becomes large. Other

covariates can also be included to allow for their effects on the trend

movement. In subsequent analyses, we consider

at = exp(βa0 + βa1 ln t).(2.7)

The extended model is called the autoregressive GP (ARGP) model,

and the vector of model parameters for the ARGP model is θ = (β, τ 2)

where β = (βµ0, βµ1, βµ2, βa0, βa1). Dropping the lognormal distribution

assumption in non-parametric inference, the general mean function for

Xt is given by,

E(Xt) = exp
[
υt − ln(at−1t )

]
.

2.2.3. Extension to threshold time. Particularly when the time

series is long, some structural changes may occur over the course of

time, so that model shift should be allowed for at some time points T

called the turning points. Chan et al. (2006) extended the GP model to

the threshold GP (TGP) model by fitting a separate GP to each stage

of development, growing, stabilising and declining, of an epidemic as

identified by the turning points using the LSE method of inference.

Let Tg, g = 1, . . . , G be the turning point or threshold time for

the g-th GP, ng be the number of observations for the g-th GP, and
G∑
g=1

ng = n such that T1 = 1 and Tg = 1 +
g−1∑
j=1

nj, g = 2, . . . , G. For

Tg ≤ t < Tg+1, Xt ∼ LN(υtg−ln(a
t−Tg
tg ), τ 2g ) with the mean and variance
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given by

E(Xt) =
µtg

a
t−Tg
tg

= exp

[
υtg − ln(a

t−Tg
tg ) +

1

2
τ 2g

]
, and(2.8)

V ar(Xt) =
σ2
tg

a
2(t−Tg)
tg

= exp
{

2[υtg − ln(a
t−Tg
tg )] + τ 2g

} [
exp(τ 2g )− 1

]
,(2.9)

respectively, where

υtg = βµ0g + βµ1g ln(yt−1) + βµ2g zt(2.10)

and

atg = exp[βa0g + βa1g ln(t− Tg)],(2.11)

where yt−1 = a
t−Tg−1
t−1,g xt−1.

For non-parametric inference, the mean function for Xt is given by,

E(Xt) = exp
[
υtg − ln(a

t−Tg
tg )

]
.(2.12)

This extended model is called the threshold time ARGP (TARGP)

model. The vector of model parameters is θ = (β, τ 2,T ) where

β = (β1, . . . ,βG), βg = (βµ0g, βµ1g, βµ2g, βa0g, βa1g), g = 1, ..., G, τ 2 =

(τ 21 , . . . , τ
2
G) and T = (T1, . . . , TG).

2.2.4. Extension to threshold level. Nonlinearity occurs in a

financial time series when a certain risk variable, other than time, has

an effect on the outcome only, when the risk variable exceeds a certain

threshold. Assume that a model shift occurs when an observable lag-d

threshold variable, Lt−d, t = d + 1, . . . , n, exceeds a certain threshold
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level. Let Lg, g = 1, . . . , G be the latent threshold levels for Lt−d with

a lower bound L1 = 0 or −∞ depending on whether Lt is positive

continuous or continuous, and a upper bound LG+1 =∞.

When Lg ≤ lt−d < Lg+1, the mean and variance for Xt are given by

(2.8) and (2.9), respectively with Tg = 1.

The extended model is called the threshold level ARGP (LARGP)

model and the vector of model parameters is θ = (β, τ 2,L) where

L = (L1, . . . ,LG). The threshold variable Lt is preferable to be posi-

tively correlated to Xt and it should contain market information. Some

choices of Lt include certain lagged value ofXt, as well as certain lagged

value of an exogenous factor such as the international market move-

ment indices and the interest rates.

2.3. Methodology of inference

2.3.1. Non-parametric inference. LSE method estimates the

model parameters by minimising the sum of squared error (SSE) de-

fined as

SSE =
n∑
t=1

[Xt − E(Xt)]
2,

where E(Xt) = µt/a
t−1
t for the GP model. Obviously, a small SSE in-

dicates a better fit of the model to the data. To minimise the SSE, we

solve the first order derivative equation SSE ′ = 0 for the parameters

β using the standard Newton Raphson (NR) method. We start the
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process with some arbitrary initial value β0. The estimates in the iter-

ative procedures will converge and a local solution is found, provided

that this initial guess is close enough to the true root, β̂LSE, such that

SSE ′(β̂LSE) = 0. Denote the current parameter estimates in the ith it-

eration by β(i) and the next updated estimates by β(i+1), the updating

procedure in each NR iteration is:

β(i+1) = β(i) − [SSE ′′(β(i))]−1SSE ′(β(i)),

where SSE ′ and SSE ′′ denote the first and second order of derivatives

of SSE. The iteration continues until ‖ β(i+1) − β(i) ‖ becomes suffi-

ciently small. The estimates are now converged and the LSE estimates

are given by β̂LSE = β(i+1).

The first and second order derivatives of SSE, SSE ′ and SSE ′′

respectively, as required in the NR procedure are given by

∂SSE

∂βjkg
= −2

n∑
t=1

z′jkt x̂t (xt − x̂t) It, and

∂2SSE

∂βj1k1g1∂βj2k2g2
= −2

n∑
t=1

z′j1k1t z
′
j2k2t

x̂t (xt − 2x̂t) It,

respectively, where j, j1, j2 = µ, a; k, k1, k2 = 0, 1, 2; g, g1, g2 = 1, . . . , G;

z′µ0t = 1, z′µ1t = ln yt−1, z′µ2t = zt, z′a0t = −(t − 1), z′a1t = −(t − 1) ln t,

It = 1 for the ARGP model, It = I(Tg ≤ t < Tg+1) for the TARGP

model and It = I(Lg ≤ lt−d < Lg+1) for the LARGP model, and

x̂t = E(Xt) is given by (2.3) with τ 2 = 0 for the ARGP model, and

by (2.8) with τ 2g = 0 for the TARGP and LARGP models. The NR
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iterative procedures are implemented in R. Denote the element in the

uth row and vth column of [SSE ′′(β̂LSE)]−1 by suv, the standard error

of each estimate, β̂LSE,u is given by the square root of suu.

The mean squared error (MSE) which is defined as the average of

SSE is one of the measures for the goodness-of-fit (GOF) of a model

and is used in this chapter for model assessment.

2.3.2. Parametric inference. ML method is a classical method-

ology in parametric inference. Although the ML method requires more

distribution assumptions than the NP inference, it has more statistical

power. Lam and Chan (1998) and Chan et al. (2004) showed that the

ML method using the lognormal and gamma distributions, respectively

performed better than the NP method in parameter estimation.

Taking the lognormal distribution as an example, the ML estimates

θ̂ML which maximise the log-likelihood function in (2.5) can be ob-

tained again using the NR iterative method by solving `′LN(θ;x) = 0.

Writing `(θ) = `LN(θ;x) for simplicity, the NR iterative procedure is

given by

θ(i+1) = θ(i) − [`′′(θ(i))]−1` ′(θ(i)),(2.13)

and is updated iteratively until θ(i+1) converges for sufficiently large i.

The ML estimates are given by θ̂ML = θ(i+1), and the first and second



2.3. Methodology of inference 25

order derivatives, ` ′(θ) and `′′(θ), as required in (2.13) are given by

∂`(θ)

∂βjkg
=

1

τ 2g

n∑
t=1

z′jkt [ln(at−1t xt)− υt] It,

∂2`(θ)

∂βj1k1g1∂βj2k2g2
= − 1

τ 2g

n∑
t=1

z′j1k1t z
′
j2k2t

It,

∂`(θ)

∂τ 2g
= − ng

2τ 2g
+

1

2τ 4g

n∑
t=1

[ln(at−1t xt)− υt]2 It,

∂`(θ)

∂βjkg∂τ 2g
=

1

τ 4g

n∑
t=1

z′jkt [ln(at−1t xt)− υt] It,

∂2`(θ)

∂τ 2g ∂τ
2
g

=
ng
2τ 4g
− 1

τ 6g

n∑
t=1

[ln(at−1t xt)− υt]2 It,

respectively, where υt and at are given by (2.6) and (2.7) for the ARGP

model, and (2.10) and (2.11) for the TARGP and LARGP models.

To conduct hypothesis testing for a certain parameter, the large

sample properties for the ML estimates θ̂ML are derived using the

Lindeberg-Levy Central Limit Theorem.

Lindeberg-Levy Central Limit Theorem :

√
n(θ̂ML − θ)

D→ N(0, n−1Σ),

where D→ indicates the convergence in distribution when n is large and

Σ is the covariance matrix given by −E[`′′(θ)]−1. The standard error

of each estimate θ̂ML,u is given by the square root of suu where suv is

the element in the uth row and vth column of the matrix −[`′′(θ̂ML)]−1.

To assess the performance of each model in parametric inference, we

adopt the Akaike’s Information Criterion (AIC) (Akaike, 1973) given
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by

AIC = 2× p− 2× `(θ̂ML),

where `(θ̂ML) is the log-likelihood function evaluated at the maximum

likelihood estimates, and p is the number of independent parameters

in the model.

To estimate other model parameters such as the threshold time

Tg and threshold level Lg, a direct way is to conduct a grid search

condition on G. For example, for the TARGP model, we first set G = 2

and search T2 over a certain interval not too close to the end points 1

and n. Condition on each threshold time T2, two GP models are fitted

to data with time t < T2 and t ≥ T2, respectively. The optimal T2 is

chosen to minimise either the MSE for the NP inference, or the AIC

for parametric method. Then G is set to 3 and the search for T3 given

T2 is similarly repeated from the remaining time points not too close

to T2, 1 and n. The number of threshold times G can be chosen by the

MSE or AIC.

To estimate the threshold levels Lg in the LARGP model, we first

set G = 2. The search for the threshold level L2 is similar to that of the

threshold time T2, but we make further condition on d. Setting d = 1,

we search L2 over certain interval which is approximately the median

to the 95 percentile of the risk variable Lt because the threshold level

should be large in general. For each threshold value L2 in the interval,

two GP models are fitted to data xt with lt−1 < L2 and lt−1 ≥ L2



2.4. Empirical Study 27

respectively. Then we set d = 2 and fit two GP models for each L2

similarly. The optimal L2 is chosen to minimise the MSE or AIC over

the median to 95 percentile of lt−d for a range of d. Then we may set

G = 3 and repeat the search for L3 again.

Essentially the LSE and ML methods are partial LSE and ML meth-

ods because the shape parameter and parameters in the mean and ratio

functions are estimated using the LSE and ML methods whereas the

remaining parameters are estimated by a grid search.

2.4. Empirical Study

2.4.1. The data. We analyse the intra-day high-low prices from

the All Ordinaries (AORD) Index of Australia stock market. The data

is collected from 1 May 2006 to 30 April 2009 (n=763) in the website

finance.yahoo.com. The variable of interest is the daily range Xt

which is the differences between the log of the daily maximum price,

Pmax,t and minimum price, Pmin,t indices defined as

Xt = [ln(Pmax,t)− ln(Pmin,t)]× 100.(2.14)

As suggested in Chou (2005), the lag-one daily log return Zt−1 =

[ln(Pc,t−1)− ln(Pc,t−2)]× 100, where Pc,t is the closing price on day t, is

taken as a covariate to allow for the leverage effect. Summary statistics

and three test statistics for Xt, lnXt, Zt and |Zt| are reported in Table

2.1. The first statistic, Ljung-Box Q12, tests the overall randomness
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of a time series based on 12 lagged autocorrelations in this applica-

tion. The second and third statistics, the Cramér-von Mises W and

Jarque-Bera JB, test for the normality in the data. W compares the

empirical distribution with the hypothesized distribution while the JB

measures the departure from normality based on the sample kurtosis

and skewness. From Table 2.1, all tests are significant, showing non-

randomness and non-normality, except that Zt is random and lnXt is

normal, confirming the lognormal assumption for Xt. Furthermore, the

time series plots of Xt and Zt−1 and the histogram of Xt are presented

in Figure 2.1. The summary statistics in Table 2.1 and the histogram

in Figure 2.1(b) show that Xt is leptokurtic and skewed. Moreover, the

correlation between Xt and Zt (ρ̂X,Z=-0.241) and their plots in Figure

2.1(a) show that the leverage effect is present in the data, because the

daily range is high or the price is volatile when the return is low, partic-

ularly during the period of the global financial tsunami which started

in October 2008.

The autocorrelation function (ACF) plot in Figure 2.2 shows that

the daily range Xt of AORD index has strong correlation and hence

the ARGP model with the mean function given by (2.6) is applied to

allow for the strong autocorrelation. For the ratio function, we adopt a

time-varying ratio in (2.7) for the ARGP model, and in (2.11) for the

TARGP and LARGP models.
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2.4.2. Numerical results. The ARGP model is first fitted to the

data using both the LSE and ML methods. As Figure 2.1 shows that

there is a general increasing trend before October 2008 that marks

the beginning of the global financial tsunami, and a sharp decreasing

trend thereafter. The TARGP model is then fitted to the data. In

the TARGP model, the number of turning points, G is estimated by a

grid search by first setting G = 2 with T1 = 1 and T2 being searched

over a period of time, t = 200 to 700. The range is set to be wide

enough to avoid subjective bias. From Table 2.2, the threshold time

in the TARGP model is estimated to be 10 October 2008 (T̂2=625)

by the LSE method and 6 October 2008 (T̂2=621) by the ML method.

They marks the beginning of the nonlinear effects due to the global

financial tsunami at early October 2008. Then another TARGP model

is attempted with G = 3 in which T2 and T3 are sampled from 19 Sep-

tember 2006 to 10 September 2007 and 1 February 2008 to 12 February

2009, respectively. The two turning points are estimated to be 4 July

2007 (T̂2 = 302) and 24 December 2008 (T̂3 = 678), and they mark

three trends which are stationary (â1 = 1.000), increasing (â2 = 0.998)

and decreasing (â3 = 1.003), respectively. However, the AIC shows no

improvement. These explain why G = 2 is suitable for this data.

From Figure 2.1(a), the jump dynamics seem to be very different

across the time threshold T2 in October 2008. Before the time thresh-

old, there are some obvious jumps in February 2007, August 2007,
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January 2008 and July 2008, but not such kind of jumps after the time

threshold. Hence, a separate LARGP model is fitted to each period be-

fore and after October 2008. We call this model the threshold LARGP

(TLARGP) model. Again, we set G = 2 and search L2 over a range

from 1.0 to 3.5 which correspond to the median (1.16) and 95 percentile

(3.39) approximately, for lag d = 1, 2 and 3. Since the autocorrela-

tion often drops with increasing lags, the optimal lag will not be very

large. Experience shows that the optimal lag is often related to the lag

with high autocorrelation. The lag-1 to 3 autocorrelations rj for Xt

are (0.57, 0.56, 0.55) which drop slowly but they are higher than the

correlation between Xt and Zt. From Table 2.2, L2 are estimated to be

relatively large. Hence increasing G to 3 seems unnecessary. Moreover,

especially in the period of volatile market, the daily range will cross

the threshold levels Lg too often across time. To enable consistency

for some effects including the autoregressive effect and trend pattern

across time, we set βµ1g, βa0g and βa1g to be the same across g.

Table 2.2 reports the parameter estimates, standard errors (in paren-

thesis), MSE and AIC for applying the daily range data to the models.

Most parameter estimates are significant, except two cases: (1) βµ0

before the threshold time in both TARGP and TLARGP models, and

(2) βa0 and βa1 in the TLARGP model using the LSE method. In

both TARGP and TLARGP models, βµ1 are positive for the period

before October 2008 but negative after that period, showing that the
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autocorrelation is different across these two periods. A negative auto-

correlation arises when the data are more volatile after October 2008.

Since the sign of βµ2 is consistently negative across models and meth-

ods of inference, the leverage effect is present. The general positive

sign of βa0 and negative sign of βa1 show that the trend is decreas-

ing at a decreasing rate, that is, the series show a decreasing trend,

then a stationary trend and finally an increasing trend from December

2006, because atg in (2.11) changes from greater than 1 to less than

1. The only exception is the trend which is increasing at a decreasing

rate for the ARGP model using the LSE method. For the TARGP and

TLARGP models which consider threshold time in the models, the se-

ries follow a straightly decreasing trend after this threshold time, as atg

is greater than 1. However, while this estimated downward trend cap-

tures the real downward trend closely, it fails to describe the enlarged

volatility during this period while compared to the ARGP model.

Figure 2.3 plots the fitted lines, trends and threshold levels for

the ARGP, TARGP and TLARGP models using both LSE and ML

methods. It demonstrates graphically the trends described in the above

paragraph. From Figure 2.3(a), the trend line µ1/a
t−1
t of the ARGP

model using the LSE method is higher than that using the ML method,

and increasing all the way, because the jumps affect the parameters

using the LSE method more, resulting in a more obvious upward trend.

In Figure 2.3(b), the trend lines drop sharply and then slowly after the
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threshold time. Moreover, the trend by the LSE method is much flatter

than in the ARGP model after allowing model shift in time. Figure

2.3(c) shows that the fitted values in the TLARGP model are similar

to that in the TARGP model by the ML method. However, the fitted

values of the TLARGP model by the LSE method seem better than

in the TARGP model at some points, especially during start of the

downward trend period after the threshold time.

According to the MSE, the TARGP models improve over the ARGP

models by 19.6% and 18.4% using the LSE method and ML method, re-

spectively. Moreover, the TLARGP models improve over the TARGP

models further by 8.2% and 3.2% for the LSE and ML methods, re-

spectively. Further to the AIC in Table 2.2, it shows that the TLARGP

model is the best out of the three models due to the lowest AIC.

Apart from the model fit, the model performance is also evaluated

by comparing the fitted distribution with the hypothesized distribution.

Figure 2.4 displays the histograms of the standardised residuals,

St =
ln(Xt)− [υt − ln(at−1t )]

τ
∼ N(0, 1)

for the three models using the ML method, superimposed on the hy-

pothesized density functions. In general, the distribution of St from all

the three models is close to the hypothesized standard normal density,

except perhaps the middle position where St shows a slightly higher

density, and the right tail. In summary, the model performance is

satisfactory for all the three models.
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2.4.3. Forecasting. The TLARGP model using both LSE and

ML methods are used to forecast 50 days of daily ranges from 1 May

2009 to 10 July 2009. The forecasts of Xt, t = 764, . . . , 813, are based

on the expected value E(Xt) in (2.8) using the same set of parame-

ter estimates as given by Table 2.2 and xt−1 as required in (2.10) is

substituted by observed value in the forecasting period. Figure 2.3(c)

includes these forecast values of E(Xt). The forecast values E(Xt) and

the corresponding 95% prediction interval (PI)

( exp(υt − ln at−1t + Φ−1(0.025) τ 2), exp(υt − ln at−1t + Φ−1(0.975) τ 2))

by the ML method are also displayed in the enlarged figure, Figure

2.5. From the result, 86% of PIs cover the true values. In general, the

forecast values using the LSE method are smaller than those using the

ML method. Although the forecast period lies on the downward trend

of the TLARGP model, the data and so are the forecast values, using

both methods, do not show an obvious downward trend. The MSE of

the forecast values using the LSE method (0.2248) is as well smaller

than that using the ML method (0.2495).

2.5. Conclusion

In this chapter, we demonstrate the ability of the GP model in

modelling the trend movement and heteroskedasticity of a financial

time series. In particular, we show that the extended ARGP models
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can further allow for serial correlation in a financial time series. The

leverage effect is accounted for by adding the lag-1 return as a covari-

ate in the mean function. Besides, the TARGP and TLARGP models

can capture well the nonlinear effects in the mean across a threshold

in time or a threshold level of the outcome variable at a certain lag

respectively. Result from the TARGP models shows that the thresh-

old time T̂2 marks the beginning of the financial crisis in October 2008

accurately. The models are implemented using both the LSE and the

classical ML method, and R is used to perform the optimisation using

the NR procedures in the LSE and ML methods. In summary, the

proposed ARGP model and its extensions are simple, easy to imple-

ment and give reliable estimates of the mean and volatility dynamics.

However, there is still room for further improvement to capture other

features in a financial time series.

Although the TLARGP models allow for nonlinearity via a model

shift as detected by a risk variable, the model is incapable of captur-

ing the jumps when the market is highly volatile, particularly on 5

August 2008 when the jump is sudden. Further study is required to

extend the model to capture the characteristics of these outliers. One

approach is to consider heavy-tailed distribution, like log-t distribu-

tion for model robustness. Another approach is to consider a jump

model which will be presented in Chapter 4. To enable more flexible
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modelling of the serial dependency in a time series, the conditional au-

toregressive range (CARR) model can be incorporated into the mean

function of the ARGP models. These extensions are considered in the

next chapter.
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Table 2.1. Summary statistics for the AORD stock

market daily range data.

Range Xt Ln range ln(Xt) Return Zt Absolute return |Zt|

Mean 1.4311 0.0723 -0.0471 1.0509

Median 1.1572 0.0634 0.0081 0.7943

SD 0.9908 0.2649 1.4823 1.0457

Kurtosis 7.0649 -0.2866 3.8305 8.3178

Skewness 2.1410 0.2131 -0.5032 2.3368

Range 7.8271 1.4980 13.914 8.5536

Minimum 0.2568 -0.5904 -8.5536 0.0000

Maximum 8.0839 0.9076 5.3601 8.5536

Ljung-Box, Q12 2416 2838 20.22 † 721.7

Cramér-von Mises, W 5.647 0.110 † 1.337 6.374

Jarque-Beta, JB 2170 8 499 2894

† p-value > 0.05. All other p-values are less than 0.02.
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Table 2.2. Parameter estimates, standard errors in ital-

ics and model assessment measures for the AORD data.

Model T βµ0 βµ1 βµ2 βa0 βa1 τ2 GOF∧

LSE ARGP - -0.3014 0.4131 -0.0461 -0.0070 0.0008 - 0.5725
0.1202 0.0341 0.0077 0.0022 0.0003 -

TARGP t < 625 -0.0899† 0.3841 -0.0631 0.0038† -0.0008 - 0.4604
0.1178 0.0456 0.0128 0.0028 0.0004 -

t ≥ 625 1.8764 -0.2891 -0.0377 0.0325 -0.0050 -
0.0792 0.0563 0.0096 0.0084 0.0017 -

TLARGP xt−2 < 1.9 -0.1329† 0.2954 -0.0605 0.0013† -0.0004† - 0.4228
85.26%* 0.1189 0.0475 0.0224 0.0028 0.0004 -

xt−2 ≥ 1.9 0.1989† - -0.0727 - - -
14.74%* 0.1274 - 0.0129 - - -

t ≥ 625 xt−3 < 3.6 1.6222 -0.2897 -0.0267 0.0196 -0.0027† -
86.71%* 0.1044 0.0546 0.0186 0.0088 0.0018 -

xt−3 ≥ 3.6 1.8802 - -0.0472 - - -
13.29%* 0.0767 - 0.0102 - - -

ML ARGP - -0.1486 0.3434 -0.0544 0.0047 -0.0009 0.1942 0.5869
0.0638 0.0335 0.0109 0.0015 0.0002 0.0099 1181

TARGP t < 621 -0.0463† 0.2878 -0.0671 0.0109 -0.0019 0.1887 0.4792
0.0692 0.0378 0.0142 0.0019 0.0003 0.0107 1095

t ≥ 621 1.7042 -0.1423† -0.0251 0.0352 -0.0055 0.1113
0.1517 0.0782 0.0127 0.0104 0.0020 0.0132

TLARGP xt−3 < 2.5 -0.0465† 0.2126 -0.1008 0.0107 -0.0018 0.1732 0.4638
93.39%* 0.0505 0.0291 0.0120 0.0014 0.0002 0.0102 1060

xt−3 ≥ 2.5 0.3383 - 0.0000† - - 0.2397
6.61%* 0.0750 - 0.0225 - - 0.0536

t ≥ 621 xt−2 < 1 1.9472 -0.1458 -0.0184† 0.0347 -0.0054 0.0243†
4.20%* 0.0923 0.0337 0.0405 0.0044 0.0009 0.0140

xt−2 ≥ 1 1.7068 - -0.0269 - - 0.1127
95.80%* 0.0648 - 0.0055 - - 0.0136

† p-value > 0.05.

* proportion of lagged data below or above the threshold level.
∧ The first GOF measure is MSE and the second GOF in italics is AIC.
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Figure 2.1. (a) Observed daily range Xt (black) and

log-return Zt (grey) of the AORD stock market price

from 1 May, 2006 to 30 April, 2009 and (b) histogram of

Xt.
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Figure 2.2. Autocorrelation function (ACF) of ob-

served daily range Xt of AORD stock market price.
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Figure 2.3. Observed (black) and fitted values of the

(a) ARGP, (b) TARGP and (c) TLARGP models using

the LSE (red) and ML (green) methods with forecast

(orange for LSE and blue for ML methods), threshold

levels (horizontal dotted) and trends (inclined dotted).
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Figure 2.4. Comparison of observed and hypothe-

sized distributions for standardised Xt between ARGP,

TARGP and TLARGP models using ML method.
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Figure 2.5. Forecast values using the TLARGP models

by LSE method (orange) and ML method (blue) with

95% PI of the forecast values (blue dotted), and observed

values outside PI of the forecast values (red circle).
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Chapter 3

Conditional Autoregressive Geometric Process

(CARGP) Model

3.1. Introduction

Chapter 2 has demonstrated the ability of Geometric Process (GP)

model in capturing some common features of a financial time series,

that includes trend movement, autocorrelation and heteroskedasticity.

On top of these, we will show in this chapter, its strength in modelling a

financial time series which has leptokurtic distribution. As mentioned

in the last chapter, recent research has proposed using daily ranges

to construct estimates of daily return volatility since daily ranges are

known to be a more efficient measure of return volatility (see Parkinson,

1980; Andersen and Bollerslev, 1998; Alizadeh et al., 2002) than daily

returns.

Following the idea of Chou (2005), this chapter extends the mod-

elling strategy of the GP model to the dynamic conditional autore-

gressive range (CARR) model for range data, to obtain a simple yet

highly efficient model for capturing the dynamics of the volatility. In

particular, the mean of the stochastic process (SP) is assigned a CARR-

type mean function, and the extended model is called the conditional

43
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autoregressive geometric process (CARGP) model. By incorporating

lagged returns in the mean function, the model can capture leverage

effects or volatility asymmetry, which refers to the negative return se-

quences associated with an increase in volatility of the stock returns.

The strength of the CARGP model lies in its flexibility to adapt the

dynamics of the volatility using the CARR-type mean function and

the trend movement specified by the ratio parameter in the GP model.

The proposed model is further extended to accommodate a model shift

after some time points called thresholds, and is distinguished from the

regime switching model, where the changes occur when the outcomes

exceed certain threshold levels. Parameter estimation in threshold au-

toregressive (TAR) models is usually performed in two approaches:

classical likelihood approach (Tong and Lim, 1980 and Tong, 1990)

and Bayesian approach (Geweke and Terui, 1993, and Chen and Lee,

1995).

In this chapter, we adopt the Bayesian approach using Markov

chain Monte Carlo (MCMC) algorithms, and we apply the Metropolis-

Hastings algorithm to estimate the threshold time jointly with other

model parameters. A variety of model structures and error distribu-

tions can be considered to provide a tailor-made analysis (Chiu and

Wang, 2006). For robustness considerations, a heavy-tailed distribu-

tion such as Student’s t-distribution is considered, and it is expressed

in the scale mixture representation to allow a simpler Gibbs sampler
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for model implementation and to enable outlier diagnosis (Choy and

Chan, 2008).

For readers who are less familiar with Bayesian computation tech-

niques, the WinBUGS (Bayesian analysis Using Gibbs Sampling; Spiegel-

halter et al., 2004) package provides a user-friendly means to per-

form Bayesian inference in a relatively simple program. We adopt

the Bayesian approach using MCMC algorithms and implement the

CARGP model using WinBUGS package.

This chapter is structured as follows. Section 3.2 introduces the

extension of ARGP model to the CARGP model. Section 3.3 describes

the Bayesian computational methods for statistical inference. Section

3.4 presents a simulation result to illustrate the performance of the

CARGP model. In Section 3.5, a CARGP model is again fitted to

the intra-day range data of the Australian All Ordinary stock market

index (AORD). Models are comparied using both in-sample and out-

of-sample model assessment. Finally, the conclusion is made in Section

3.6.

The shortened version of this chapter is in press as : J.S.K. Chan,

C.P.L. Lam, P.L.H. Yu, S.T.B. Choy, C.W.S. Chen, A Bayesian condi-

tional autoregressive geometric process model for range data. Compu-

tational Statistics and Data Analysis (2011), doi: 10.1016/j.csda.2011.01.006.
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3.2. Model development

3.2.1. The CARGP model. To specify a dynamic structure in

the mean function that describes the persistence of market shocks to

the range of prices, Chou (2005) proposed the following CARR(p, q)

model for some positive continuous measurements, Xt, for example,

the range data, as below:

xt = µt εt,

µt = β0 +

p∑
j=1

β1j µt−j +

q∑
j=1

β2j xt−j,(3.1)

εt|=t−1 ∼ f(.|=t−1),

where =t−1 is the set of information up to time t − 1 and f(.|=t−1) is

the conditional density for the errors εt with unit mean. The stationary

condition for the process is

(3.2) C =

p∑
j=1

β1j +

q∑
j=1

β2j < 1,

where C determines the persistence of range shocks and the uncondi-

tional (long-term) mean of Xt is β0/(1−C). Chou (2005) adopted the

Weibull distribution with exponential distribution as a special case. If

the range Xt follows a Weibull distribution, that is, Xt ∼ W (ψt, α),

where ψt and α are the scale and shape parameters, respectively, ψt =

µt/Γ(1 + 1
α

), and Γ(·) is a gamma function, the pdf for Xt is,

fw,t(xt) =
α

ψt

(
xt
ψt

)α−1
exp

(
−xt
ψt

)α
.
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The mean and variance are given by µt and

σ2
t = µ2

t

[
Γ(1 + 2

α
)

Γ2(1 + 1
α

)
− 1

]
,

respectively.

However, this CARR model does not allow for trend movement

explicitly. To remedy this, we introduce the GP model and equate the

mean function (3.1) to υt in (2.3) as

υt = βµ0 +

p∑
j=1

βµ1j υt−j +

q∑
j=1

βµ2j ln(yt−j),

where yt−j = at−j−1t−j xt−j. The extended model combining the modelling

approaches of the GP and CARR techniques is called the conditional

autoregressive geometric process (CARGP(p,q)) model.

3.2.2. Extension to heavy-tailed distributions. Many finan-

cial data are heavy tailed, and hence the lognormal distribution is re-

placed by the log-t distribution to achieve a robust analysis. To fa-

cilitate efficient Bayesian MCMC computation and outlier diagnostics,

the t-distribution is expressed as a scale mixtures of normal (SMN)

distributions. Andrews and Mallows (1974) studied the class of SMN

distributions, and Choy and Chan (2008) investigated different scale

mixture distributions. Amongst the SMN distributions, the Student’s

t-distribution is the most popular member. Student’s t-distribution

with location µ, scale σ, and number of degrees of freedom ν has the
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following SMN representation:

tν(y|µ, σ) =

∫ ∞
0

N

(
y

∣∣∣∣µ, σ2

λ

)
G
(
λ
∣∣∣ν
2
,
ν

2

)
dλ

which can be expressed hierarchically as

Y |µ, σ, λ ∼ N

(
µ,
σ2

λ

)
, and λ ∼ G

(ν
2
,
ν

2

)
,

where G(α, γ) denotes the gamma distribution with mean α/γ. This

hierarchical form is particularly useful in Bayesian modelling where the

Gibbs sampler can be substantially simplified without a heavy compu-

tational cost. In addition, the posterior mean or median of the scale

mixture variable λ can be acted as a proxy to identify potential outliers.

See Choy and Chan (2008) for details.

In the CARGP model, we assume that Xt follows a GP such that

the latent Yt = at−1t Xt forms a detrended SP and at given by (2.7) in

general is the ratio parameter of the GP. In particular, if at = a =

1, Yt forms a renewal process (RP). In Chapter 2, we assume that

lnYt ∼ N(υt, τ
2). For model robustness, we assume, in this chapter,

that lnYt ∼ tν(υt, τ
2) or lnYt|λt ∼ N(υt,

τ2

λt
) by conditioning on λt.

Hence Xt|λt ∼ LN(υt − ln(at−1t ), τ
2

λt
) and the mean and variance of Xt

are given by

(3.3) E(Xt) =
µt

at−1t

= exp

[
υt − ln(at−1t ) +

τ 2

2λt

]
,
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and

(3.4)

V ar(Xt) =
σ2
t

a
2(t−1)
t

= exp

{
2[υt − ln(at−1t )] +

τ 2

λt

}[
exp

(
τ 2

λt

)
− 1

]
,

respectively.

3.2.3. Incorporation of covariate and threshold time ef-

fects. As the daily range may evolve over time subject to certain ex-

ternal effects, exogenous variables Ztj should be incorporated into the

conditional mean function µt of the CARGP model via υt as

(3.5) υt = βµ0 +

p∑
j=1

βµ1j υt−j +

q∑
j=1

βµ2j ln(yt−j) +
r∑
j=1

βµ3j ztj.

Chou (2005) suggested the use of lagged return, trading volume, and

seasonal factors as the exogenous variable, ztj. Because a negative

relationship is often found between the range and the lagged return,

suggesting a leverage effect that a decrease in return leads to higher

volatility, the leverage effect can be allowed for by including lagged

returns as a covariate. As a positive relationship is often present be-

tween the range and the trading volume, trading volume can be another

potential exogenous variable.

If we set p = q = r = 1 and drop the redundant subscript j in β in

(3.5), it becomes

(3.6) υt = βµ0 + βµ1 υt−1 + βµ2 ln(yt−1) + βµ3 zt,
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for t = 2, . . . , n, and υ1 = βµ0 + βµ3z1 for t = 1. This function can be

rewritten as

(3.7) υt = βµ0

t∑
i=1

βi−1µ1 + βµ2

t∑
i=2

βi−2µ1 ln(yt−i+1) + βµ3

t∑
i=1

βi−1µ1 zt−i+1,

showing the complexity of parameter βµ1 in υt. Note that the stationary

condition C < 1 in (3.2) does not apply to (3.6) with a log link function,

as shown in (3.3). However, we find that the sum of parameters in υt is

less than 1 for most of the models reported in Table 3.2 in the empirical

study. When at = a = 1, Xt, which is just Yt, is neither increasing nor

decreasing, and the stationary constraint in (3.2) does not apply too.

On the other hand, the CARGP model can be extended to allow for

multiple trends to describe different stages of development, the growing

stage (a < 1), stabilising stage (a = 1) and declining stage (a > 1), for

a certain event. In this case, the constant ratio a in (1.1) is replaced by

a time-dependent ratio function log linked to a function of covariates as

in equation (2.7) in section 2.2.2, to allow a flexible trend movement.

To incorporate threshold times effect in the CARGP model, we

assume that Xt|λt ∼ LN(υtg − ln(a
t−Tg
g ),

τ2g
λt

) for Tg ≤ t < Tg+1, where

(3.8) υtg = βµ0g +

p∑
j=1

βµ1jg υt−j,g +

q∑
j=1

βµ2jg ln(yt−j) +
r∑
j=1

βµ3jg ztj,

where yt−j = a
t−Tg−j
g xt−j. The mean and variance for Xt become

(3.9) E(Xt) =
µtg

a
t−Tg
g

= exp

[
υtg − ln(at−Tgg ) +

τ 2g
2λt

]
,
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and

(3.10)

V ar(Xt) =
σ2
g

a
2(t−Tg)
g

= exp

{
2[υtg − ln(at−Tgg )] +

τ 2g
λt

}[
exp

(
τ 2g
λt

)
− 1

]
,

respectively.

Tiwari et al. (2005) estimated the number of turning points us-

ing different model selection criteria. In applications, the number of

turning points G and the range from which each turning point Tg is

sampled are determined by examining the empirical time series. In

general, the best model among models with G = 1, 2, 3 . . . thresholds

can be selected based on some model selection criterion such as the

Bayesian Information Criterion (BIC) and the Deviance Information

Criterion (DIC) (Section 3.5.3).

The vector of all model parameters is θ = (βµ1, . . . ,βµG,βa1, . . . ,βaG, τ
2
1 , . . . , τ

2
G)

where βµg = (βµ0g, βµ11g, . . . , βµijg, . . . , βµ3rg), i = 1, 2, 3, j = 1, . . . , ki, k1 =

p, k2 = q, k3 = r, and βag = (βa0g, βa1g), g = 1, . . . , G. For mod-

els without threshold effect, we write G = 1, and the subscript g is

dropped, and for model with a constant ratio ag, ag = exp(βag).

3.3. Bayesian Inference

The first and second order derivatives of the log-likelihood function

as required in the classical likelihood approach are difficult to evaluate

because υt in (3.7) is a complicated function of βµ1. On the other hand,
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the Bayesian method differs from the classical method as the prior

probability or belief is used. Apart from the data, Bayesian method

makes use of both prior and observed data information to calculate the

posterior distribution f(θ|x) of the parameters θ given the observed

data x. Based on the Bayes theorem, the posterior distribution is equal

to

f(θ|x) =
f(x|θ)f(θ)∫
f(x|θ)f(θ)dθ

∝ f(x|θ)f(θ),

where f(θ) is the prior distribution and f(x|θ) is the likelihood.

With insufficient prior information, non-informative prior with large

variance is often used, just letting the data to speak for the posterior

distribution.

The Bayesian approach using MCMC techniques converts an opti-

misation problem into a sampling problem, by simulation of a single

or block of model parameters iteratively, conditional on other parame-

ters and the data. The Gibbs sampling algorithm (Smith and Roberts,

1993; Gilks et al., 1996) and Metropolis Hastings algorithm (Hastings,

1970; Metropolis et al., 1953) are the most popular MCMC techniques

that produce samples from the intractable posterior distributions. For

readers who are less familiar with Bayesian computation techniques,

we recommend using the WinBUGS (Bayesian analysis Using Gibbs

Sampling) package. See Spiegelhalter et al. (2004).
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In the simulation and empirical studies, different CARGP models

are compared, and vague and non-informative priors are assigned to

the model parameters. The Bayesian hierarchy for the CARGP models

(Models 1-4) is

Data: Xt ∼ LN(υt − ln(at−1), τ
2

λt
).

Priors: a ∼ U(0.95, 1.05), βµij ∼ N(0, σ2
β), τ 2 ∼ IG(ατ , γτ ),

λt ∼ G(ν
2
, ν
2
), ν ∼ G(αν , γν) I(1, 30),

where I(a, b) indicates a truncated distribution with support (a, b) and

λt = 1 for Model 1. With a ratio function at (Model 4), the priors

are βai ∼ N(0, σ2
β), i = 0, 1. The Bayesian hierarchy for the threshold

CARGP model (Model 5) is

Data: Xt ∼ LN(υt − ln(a
t−Tg
g ),

τ2g
λt

) I(Tg ≤ t < Tg+1).

Priors: ag ∼ U(0.95, 1.05), βµijg ∼ N(0, σ2
β), τ 2g ∼ IG(ατ , γτ ),

λt ∼ G(νg
2
, νg

2
), νg ∼ G(αν , γν) I(1, 30), Tg ∼ U(cg, dg),

where Tg is assigned a discrete uniform prior on the range [cg, dg].

Lastly, the Bayesian hierarchy for the CARR model with covariate

using the Weibull distribution (Models 6 (α = 1) and 7) is

Data: Xt ∼ W (µt/Γ(1 + 1
α

), α).

Priors: α ∼ G(c, d), βµ0 ∼ N(0, σ2
β), βµ1 ∼ U(0, 1), βµ2 ∼ U(0, 1− βµ1),

βµ3 ∼ N(0, σ2
β).
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The hyperparameter σ2
β is set to be very large whereas ατ , γτ , αν , γν ,

c, and d are set to zero for non-informative priors. The full conditional

distributions for the parameters in Model 5 are derived and reported in

the Appendix to facilitate the MCMC sampler. In the Gibbs sampling

scheme, a single Markov chain is run for 7000 iterations, discarding

the initial 5000 iterations as the burn-in period to ensure convergence

of parameter estimates. Convergence is also carefully checked by the

history and autocorrelation function (ACF) plots. Simulated values

from the Gibbs sampler after the burn-in period are taken to mimic

a random sample of size 2000 from the joint posterior distribution for

posterior inference. Parameter estimates are given by the posterior

means or medians. To check if the posterior samples of 2000 iterations

are sufficient, longer chains of 5000 iterations after burn-in are run for

Models 1 and 2, and they give estimates similar to those from 2000

iterations. Moreover, the ACFs and history plots show that the pos-

terior samples are quite uncorrelated. The computation time depends

on the complexity of the model and the power of computer, and it is

around 4 hours using a Core 2 Duo 2 GHz PC for fitting the CARGP

models in the empirical study.

3.4. Simulation study

In this simulation study, we compare the model performance for

models fitted to data of different sizes (small or medium) and adopted
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different data distributions (lognormal or log-t) and trend patterns (in-

creasing or decreasing). We simulate N = 100 data sets; each contains

n = 200 or n = 700 observations. Two models using lognormal (LN)

and log-t (LT) distributions are considered, and each model adopts

two sets of parameters with decreasing (set 1) and increasing (set 2)

trends. Table 3.1 reports the mean and standard deviation (SD) of the

parameter estimates over N = 100 replications as given by

θ̂ =
1

N

N∑
i=1

θ̂i, and SD =

[
1

N − 1

N∑
i=1

(θ̂i − θ̂)2
]1/2

,

respectively, where θ̂i is the posterior mean of θ in the i-th replication.

The performance of the proposed models is further evaluated via three

criteria: the absolute percentage bias (APB), root mean square error

(RMS) and coverage percentage (CP), defined as

APB =

∣∣∣∣∣ θ̂ − θθ
∣∣∣∣∣ ,

RMS =

[
1

N

N∑
i=1

(θ̂i − θ)2
]1/2

, and

CP =
100

N

N∑
i=1

I[θ ∈ (θ̂i,0.025, θ̂i,0.975)],

respectively, where (θ̂i,0.025, θ̂i,0.975) is the 95% credible interval of θ in

the i-th replication and I(E) is an indicator function for the event E.

Models with smaller SD, APB and RMS and with CP closer to 95

are preferred.
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From Table 3.1, the parameter estimates are close to their true val-

ues except ν̂ (both sets) and β̂µ1 (set 2) when n = 200. The complex

function of βµ1 in the mean function (3.7) explains the difficulty of

estimating βµ1 precisely. As for the number of degrees of freedom ν,

it is well known that the shape of the t-distribution is rather insen-

sitive to moderate to large numbers of degrees of freedom. However,

both estimates improve substantially when the sample size increases to

n = 700. The CP ranges from 80% to 100% for all CARGP models,

showing satisfactory coverage. There is no obvious difference in model

performance between models showing a decreasing (set 1) or increasing

(set 2) trend, nor between models adopting a lognormal or log-t dis-

tribution. Generally speaking, the results in the simulation study are

satisfactory when n=200 and are excellent when n=700.

3.5. Empirical Study

3.5.1. The data. We apply the daily range of intra-day high-low

prices, Xt which defined in (2.14) from the All Ordinaries (AORD)

index of the Australian stock market in Chapter 2, to the CARGP

models.

3.5.2. Model selection. The basic CARGP(1,1) model with log-

normal (Model 1) and log-t distributions (Model 2) are first utilised,

and Model 2 is preferred according to the DIC because the heavier
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tails of the log-t distribution can accommodate outliers. The BIC is

slightly larger due to the rather heavy penalty for an additional param-

eter. Hence, the log-t distribution is adopted in all subsequent CARGP

models. By setting a = 1, the trend movement is not modelled, sim-

ilar to the CARR model (Model 2.1), but it adopts a log-t instead of

Weibull distribution with a log link function and uses the Bayesian

approach in parameter estimation.

To describe different levels of persistence, the CARGP(1,2) and

CARGP(2,1) models are considered. However, the CARGP(2,1) model

has a technical problem in the implementation and β22 in the CARGP(1,2)

model (Model 3) is insignificant, showing that the basic CARGP(1,1)

model describes the market persistence effect well. Moreover, both the

BIC and DIC of Model 3 show no improvement either. Hence the basic

CARGP(1,1) model is adopted hereafter.

To allow for the leverage effect, Zt is added to υt as an exogenous

variable. Moreover, Models 1 to 3 are restricted to monotone trend

data. Figure 2.1(a) of Chapter 2 shows that the monotonic increasing

trend applies only till the global financial tsunami in October 2008,

and decreases thereafter. To allow a flexible trend movement, a ratio

function at in (2.7) of Chapter 2 is adopted in Model 4 and a threshold

time effect in Model 5. Moreover, we set G = 2 and the range for

sampling T2 to be [610, 630], which covers the period from 19 September

2008 to 17 October 2008 for Model 5.
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Lastly, the CARR models in (3.1) with the covariate Zt in the mean

µt using exponential (Model 6) and Weibull (Model 7) distributions and

the Bayesian approach are also fitted for model comparison. Table 3.2

reports the posterior mean and the posterior standard error (in italics)

of the model parameters, together with two model assessment criteria

for Models 1 to 7.

3.5.3. Model assessment. To compare Models 1 to 7, the Bayes

factor, BIC, and DIC (Spiegelhalter et al., 2002) are often used in

Bayesian analysis. However, the former is often commented on as be-

ing too difficult to calculate, especially for models that involve many

random effects, large numbers of unknowns, or improper priors (Nt-

zoufras, 2009). Alternatively, the BIC and DIC are defined as

BIC = −2 ln f(y|θ) + p lnn, and(3.11)

DIC = D(θ) + pD,

respectively, are adopted to approximate the Bayes factor. Both cri-

teria contain two components: a measure of model fit and a penalty

for model complexity, where f(y|θ) is the likelihood function, D(θ) =

Eθ|y[D(θ)] is the posterior expectation of the deviance, and pD is the

effective number of parameters defined as the difference between the

posterior mean of deviance and the deviance evaluated at the posterior

mean of parameters; that is,

pD = Eθ|y(D(θ))−D(Eθ|y(θ)) = D(θ)−D(θ̄).
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Clearly, the model with the smallest BIC and/or DIC values is pre-

ferred. The BIC and DIC values for Models 1 to 7 are presented in

Table 3.2.

Moreover, five more measures, namely the root mean squared error

(RMS), mean absolute error (MAE), coverage percentage (CP), width

of the 95% confidence interval (CI) for E(Xt) (CI(EX)) and width of

the 95% CI for Xt (CI(X)), are defined as

RMSih =

[
1

nh

nh∑
t=1

(MRt+sh,i − X̂t+sh)2

]1/2
,

MAEih =
1

nh

nh∑
t=1

|MRt+sh,i − X̂t+sh |,

CPh =
1

nh

nh∑
t=1

I(Xt+sh ∈ (CIXt+sh
,low, CIXt+sh

,up)),

CI(EX)h =
1

nh

nh∑
t=1

(CIE(Xt+sh
),up − CIE(Xt+sh

),low),

CI(X)h =
1

nh

nh∑
t=1

(CIXt+sh
,up − CIXt+sh

,low),

where h = 0 indicates the in-sample estimation with start s0 = 0,

h = 1 indicates the out-of-sample forecast with start s1 = n1 = 763,

i = 1 indicates the measure of range MRt,1 = Xt, and i = 2 indicates

MRt,2 = |Zt| as a proxy of Xt (Chou, 2005). The standardised variables

when Xt ∼ LN(ωt, ςt), where ωt = υt − ln at−1t and ς2t = τ2

λt
, and when

Xt ∼ W (ψt, α), where ψt = µt/Γ(1 + 1
α

), are

(3.12)

SLT,t =
ln(Xt)− ωt

ςt
∼ N(0, 1) and SW,t = (Xt/ψt)

α ∼ Exp(1),
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respectively. Hence the corresponding 95% CIs (CIXt,low, CIXt,up) for

Xt are

(3.13) ( exp(ωt + Φ−1(0.025) ςt), exp(ωt + Φ−1(0.975) ςt))

and

(3.14) ([− ln(0.975)]1/αψt, [− ln(0.025)]1/αψt),

respectively, where Φ(·) is the standard normal distribution function.

On the other hand, the CIs for E(Xt) are obtained from the 2.5 and

97.5 percentiles of the posterior sample for E(Xt), where E(Xt) is given

by (3.3) and (3.1), respectively, for the log-t and Weibull distributions.

The first three criteria measure the accuracy of the model while the

last two measure the precision of the CIs. Models with smaller values

of these criteria except CPh are preferred. For CPh, it should be close

to 95%. Table 3.3 reports these measures together with the three test

statistics Q12, W and JB. The standardised variables SLT,t and SE,t

are used to test the log-t and Weibull data distributions, respectively.

3.5.4. Numerical results. The results in Table 3.2 show that the

parameter estimates are qualitatively consistent across the models. In

particular, the ratio a for Models 1 to 3 is less than 1 and significant,

showing a general monotonic increasing trend. Since both βµ11, βµ21 >

0 and are significant in all models, a persistence effect is present in the

data. Moreover, τ 2 decreases across Models 1 to 5, showing an increase

in model robustness while the number of degrees of freedom is around
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20, indicating a moderate tail effect. Since Model 2 shows a better

model fit than Model 2.1 (a = 1) according to both the BIC and DIC

(1125 versus 1128 for the BIC and 1095 versus 1102 for the DIC), after

allowing for model complexity, the superiority of the CARGP model in

allowing trend movement is clear.

For Models 4 and 5, as βµ31 is significant and negative, a lever-

age effect is present in the data. Parameters βa0 and βa1 in Model

4 show that at changes from greater than 1 to less than 1, indicat-

ing a mild and short decreasing trend followed by an increasing trend

thereafter. Moreover, the substantially larger DIC for Models 1 and 4

with a gamma distribution (1223 and 1167 for the BIC and 1200 and

1130 for the DIC) supports the assertion in Section 2.4 that lognormal

and log-t distributions give better fits than a gamma distribution. For

Model 5, the ratios a1 and a2 show an increasing trend before 7 Oc-

tober 2008 (t = 622) and a decreasing trend thereafter. The market

volatility increases sharply from September 2008 to the maximum on

7 October 2008, during which the market price dropped continuously.

The trends of the mean, E(Xt) in (3.3) and (3.9), variance, V ar(Xt)

in (3.4) and (3.10) and the ratio 1/at−1t for Models 4 and 5, as plot-

ted in Figures 3.1(a) and 3.2(a), respectively, show that the mean and

variance capture the volatility clustering well.
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The 95% CIs for Xt in (3.13) are displayed in Figures 3.1(b) and

3.2(b). The coverage percentages (CPs), 96.5% and 96.3%, are reason-

ably close to 95%. Because there is no obvious volatility clustering after

7 October 2008, no outliers are detected, and βµ112 and βµ212 are both

insignificant in Model 5, leading to a rather smooth trend after 7 Octo-

ber 2008. Obviously the significance of βµ11 and βµ21 for other models

with a monotonic increasing trend is due to the volatility clustering

before 7 October 2008. Moreover, even though there is no stationary

constraint for Yt, the sum of parameters in the mean function υt in (3.5)

is less than 1 for all the models reported in Table 3.2. This stationary

condition is only violated by the second-stage model in Model 5.

The results for Models 6 and 7 are qualitatively the same as for

Models 1 to 5. The shape parameter α is estimated to be 2.186 for the

Weibull distribution. Using both the BIC and DIC, the CARR model

using an exponential distribution (Model 6) is far from satisfactory but

the model using the Weibull distribution (Model 7) is still no better

than any of the CARGP models (Models 1-5), because the CARGP

models accommodate the trend effect and adopt the more robust log-t

distribution. The trends of the mean and variance for Model 7 are plot-

ted in Figure 3.3(a) and the 95% CI for Xt in (3.14) is plotted in Figure

3.3(b). Again, the mean and variance capture the volatility clustering

well, but the lower bound of the CI is very close to zero, revealing the
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characteristic of the Weibull distribution with higher density around

zero when α is small.

Tests using Q12,W and JB show that all the standardised residuals

Sit, i = LT,W in (3.12) are non-random and do not follow the hypoth-

esized distribution except Model 5. Figure 3.4 displays the histograms

of SLT,t for Models 4 and 5 and SW,t for Model 7 superimposed on their

hypothesized density functions. Again, the distribution of SLT,t from

Model 5 is closest to the hypothesized standard normal density. Hence

Model 5 is preferable to the other models.

Tables 3.2 and 3.3 show that Model 5 outperforms Models 4 and 7

across all in-sample model assessment criteria, BIC and DIC. The only

two exceptions are the shorter CI(EX) for Model 7 and the slightly

lower BIC for Model 4. The latter is due to the heavy penalty term

in the BIC (−2 ln f(y|θ) in (3.11) is 1021 and 1001, respectively, for

Models 4 and 5). Figure 3.5 compares the mean and 95% CI of Xt

between Models 5 and 7. The CI estimate is clearly shorter for Model

5, giving more precise fitted values.

3.5.5. Forecasting. As in Chapter 2, we perform the forecast of

n1 = 50 daily ranges using Models 4, 5 and 7 with the forecasting

period from 1 May 2009 to 10 July 2009, and the forecasting values are

labelled as x764, . . . , x813. There are two possible ways of computing

the forecasts in a Bayesian approach.
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Firstly, the forecasts can be obtained using the posterior predictive

means of Xt which are sampled based on the predictive distribution.

The joint predictive distribution is given by

f(x764, . . . , x813|x) =

∫ 813∏
t=764

fLT
(
x|υt − ln(at−T22 ), τ 2, α

)
f(θ|x) dθ,(3.15)

where x denotes the vector of 763 observed daily ranges, θ is the vector

of model parameters, and fLT (x|b, c, d) is the density function of the

log-t distribution with location b, scale c, and number of degrees of

freedom d. Given a set of parameter values, θ(i), at the i-th iteration

of the Gibbs sampling output, a set of predicted values can be simulated

successively from

xt|xt−1,θ(i) ∼ LT
(
υ
(i)
t − ln[(a

(i)
2 )t−T

(i)
2 ], (τ

(i)
2 )2, α

(i)
2

)
,(3.16)

where t = 764, . . . , 813. The random variate generation from the log-t

distribution can be done via its scale mixture of normal representation.

This forecast can be easily performed in WinBUGS by assigning a

missing value ‘NA’ for the forecast Xt, (t > 763) such that the vector

of 813 observations to be uploaded is (X1, . . . X763,NA, . . . ,NA). Pos-

terior samples of model parameters together with the missing forecast

Xt are then generated using MCMC techniques.

Secondly, the forecast can be based on the expected value E(Xt)

in (3.9) which are sampled in the MCMC similar to the forecast in

Chapter 2 where E(Xt) is analytically evaluated. Forecast based on
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the expected value E(Xt) is more robust to outliers. To enable com-

parison of forecasting performance with models in Chapter 2, forecasts

using E(Xt) are reported. The posterior means of E(Xt) and the cor-

responding 95% Bayesian prediction intervals of E(Xt) are displayed in

Figures 3.1(b), 3.2(b), and 3.3(b) for Models 4, 5, and 7, respectively,

and are also plotted in Figure 3.6 for clarity.

In general, the forecasting error increases across the forecast period

due to the accumulated uncertainty. However, Model 5 has a sub-

stantially lower forecasting error, and hence a much shorter prediction

interval, because of the fitted decreasing trend and the insignificance

of βµ112 and βµ212, leading to a relatively constant υt in the expres-

sion of E(Xt). Since the observed Xt shows a gentle decline during

the forecast period, the forecast using Model 4 with a fitted increasing

trend is less satisfactory. Model 5 still outperforms Model 7 across all

out-of-sample forecasting criteria in Table 3.3.

3.5.6. Outlier diagnostic. It is well known that Student’s t-

distribution provides a robust inference by downweighting the distort-

ing effects of outliers. Expressing the t-distribution as an SMN dis-

tribution, Choy and Smith (1997) was the first to propose performing

outlier diagnostics using the scale mixture variable λ in the SMN rep-

resentation. An outlier is associated with a large value of 1/λ which
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inflates the variance of the corresponding normal distribution to ac-

commodate the outlier. Therefore, the extremeness of observations is

closely associated with the magnitude of λ.

Figure 3.7 plots the reciprocal 1/λt in Model 5 across time. From

the figure, two outliers on 28 February 2007 and 5 August 2008 (t=214

and 577) are detected, because their variances are inflated nearly twice

as much as the variances at other time points. Table 3.4 reports the

reciprocal 1/λt, the observed value Xt, the mean E(Xt), and the 95%

CI of Xt for the two outliers. As the CIs do not contain Xt, the daily

ranges on 28 February 2007 and 5 August 2008 are indeed outlying.

3.6. Conclusion

This chapter extends the GP model to the CARGP model for range

data to describe the persistence dynamics in the mean function µt.

The CARR-type range model is simpler than the GARCH and SV

models, but yet it was shown to provide a superior volatility forecast.

The performance of the proposed CARGP model was shown to exceed

that of the CARR-type models in four aspects: the accommodation

of trend movement using an explicit ratio parameter or function, the

adoption of heavy-tailed distributions such as the log-t distribution to

describe different tail behavior, the use of the Bayesian approach via the

Bayesian software WinBUGS to simplify the model implementation for

non-experts, and, lastly, the representation of the t-distribution in an
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SMN representation to facilitate the MCMC algorithm in the Bayesian

simulation and enable outlier detection. The simulation study shows

that the CARGP model provides highly accurate parameter estimates,

particularly when the sample size is large. In the empirical study using

the AORD daily range data, the CARGPmodel acheives a better model

fit and provides a sharper volatility forecast, confirming the superiority

of the CARGP model.

Range data is sensitive to outliers. In the daily range of AORD

data, the daily ranges on 28 February 2007 and 5 August 2008 are

detected to be outliers by the variable 1/λt. However, Figure 3.2(a) and

Table 3.4 show that even the best model, Model 5, fails to capture these

instantaneous jumps and possibly mean reversions well. To capture the

spikes in a highly volatile financial time series, a product of the random

jump indicator and the random jump size in a jump diffusion model

may be added to υt. We believe the extension of the CARGP model

to incorporate the mean reverting jump diffusion modelling strategies

is promising and will be considered in the next chapter.
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Appendix
The full conditional distributions for the parameters in Model 5

are derived to facilitate the Gibbs sampling algorithm. Define x =

(x1, . . . , xn); βg = (βµ0g, βµ1g, βµ2g, βµ3g) (drop the redundant subscript

j), g = 1, 2 indicate the GP model before and after the threshold T2
(T1 = 1) respectively; (s1, e1) = (1, T2−1) and (s2, e2) = (T2, n) indicate

the start and end times of the two GPs respectively; λ = (λ1, . . . , λn)

and λ−t = (λ1, . . . , λt−1, λt+1, . . . , λn). The Gibbs sampler draws reali-

sations iteratively from the following conditional distributions:

f
(
ln(ag)|βg, τ2g ,λ, νg, T2,x

)
= N

−
eg∑

t=sg+1
(t− Tg) [ln(xt)− vt] τ2g
eg∑

t=sg+1
λt(t− Tg)2

,
τ2g

eg∑
t=sg+1

λt(t− Tg)2


×I(ln(0.95), ln(1.05))

f
(
βg|ag, τ2g ,λ, νg, T2,x

)
∝

eg∏
t=sg

N

(
ln(xt)

∣∣∣∣∣vt − (t− Tg) ln(ag),
τ2g
λt

)

f
(
τ2g |ag,βg,λ, νg, T2,x

)
= IG

(
n

2
,

1

2

n∑
t=1

λt [ln(xt)− vt + (t− Tg) ln(ag)]
2

)

f
(
λt|ag,βg,λ−t, νg, T2,x

)
= IG

(
νg + 1

2
,
νg
2

+
1
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[ln(xt)− vt + (t− Tg) ln(ag)]
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)
(3.17)

f
(
νg|ag,βg,λ, T2,x

)
∝

eg∏
t=sg

1

νg
G
(
λt

∣∣∣νg
2
,
νg
2

)
f
(
T2|ag,βg,λg, νg,x

)
∝ Multinomial(π610, . . . , π630),

where πk =

k−1∏
t=1

fLN

(
xt|υt1 − ln(at−11 ),

τ2
1

λt

) n∏
t=k

fLN

(
xt|υt2 − ln(at−k2 ),

τ2
2

λt

)
630∑

k′=610

[
k′−1∏
t=1

fLN

(
xt|υt1 − ln(at−11 ),

τ2
1

λt

) n∏
t=k′

fLN

(
xt|υt2 − ln(at−k

′

2 ),
τ2
2

λt

)] , k =

610, . . . , 630, g = 1, 2, g = 1 I(t < T2) + 2 I(t ≥ T2) in (3.17), and υt is

given by (3.8). The algorithm of Robert (1995) can be used to simu-

late the random variate ln(ag) from a truncated normal distribution.
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The conditional distributions of βg and νg are non-standard, and ran-

dom variate generations from these full conditional distributions can

be performed using Metropolis-Hastings algorithms.
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Table 3.1. Parameter estimates, standard deviation,

absolute percentage bias, root mean square error and

coverage percentage in the simulation study.

Dist. Set a βµ0 βµ1 βµ2 ν σ2 Set a βµ0 βµ1 βµ2 ν σ2

n = 200

LT θ 1 1.001 1.000 -0.200 0.030 5.000 0.500 2 0.99800 -0.020 0.700 0.200 5.000 1.000

θ̂ 1.001 0.995 -0.207 0.021 8.043 0.545 0.99790 -0.063 0.484 0.222 9.036 1.095

SD 0.001 0.216 0.241 0.065 3.877 0.098 0.00415 0.185 0.214 0.055 3.968 0.168

APB 0.000 0.005 0.035 0.311 0.609 0.089 0.00010 2.165 0.309 0.109 0.807 0.095

RMS 0.001 0.215 0.240 0.066 4.91 0.107 0.00413 0.189 0.304 0.059 5.65 0.192

CP 85 98 98 95 92 93 91 89 80 95 91 95

n = 700

LN θ 1 1.001 1.000 -0.200 0.030 - 0.500 2 0.99800 -0.020 0.700 0.200 - 1.000

θ̂ 1.001 1.005 -0.212 0.031 - 0.501 0.99802 -0.023 0.659 0.212 - 0.999

SD 0.000 0.255 0.280 0.038 - 0.028 0.00056 0.032 0.060 0.026 - 0.055

APB 0.000 0.030 0.138 0.202 - 0.005 0.00002 0.128 0.059 0.062 - 0.001

RMS 0.000 0.411 0.327 0.034 - 0.031 0.00056 0.031 0.072 0.029 - 0.055

CP 100 89 89 92 - 94 94 92 88 96 - 95

n = 700

LT θ 1 1.001 1.000 -0.200 0.030 5.000 0.500 2 0.99800 -0.020 0.700 0.200 5.000 1.000

θ̂ 1.001 1.011 -0.206 0.022 5.769 0.517 0.99800 -0.025 0.669 0.208 5.600 1.034

SD 0.000 0.269 0.301 0.030 1.359 0.045 0.00065 0.031 0.046 0.027 1.224 0.088

APB 0.000 0.202 0.729 0.230 0.114 0.011 0.00000 0.271 0.044 0.041 0.120 0.034

RMS 0.000 0.462 0.351 0.035 1.32 0.043 0.00065 0.031 0.055 0.028 1.358 0.094

CP 100 85 88 95 94 96 94 97 93 93 94 94
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Table 3.2. Parameter estimates, standard errors in ital-

ics, BIC and DIC for the AORD daily range data.

Model Dist. Type T βµ0 βµ11 βµ21 βµ22 βµ31 a or βa0 βa1 τ2 ν or α GOF∧

CARGP

M1 LN (1,1) - -0.0234 0.7644 0.1879 - - 0.9983 - 0.1762 - 1121
- 0.0118 0.0356 0.0253 - - 0.0005 - 0.0090 - 1098

M2 LT (1,1) - -0.0192 0.7878 0.1735 - - 0.9984 - 0.1568 19.26 1125
- 0.0095 0.0263 0.0202 - - 0.0005 - 0.0103 5.93 1095

M2.1 LT (1,1) - 0.0027† 0.8080 0.1776 - - - - 0.1570 17.96 1128
(a = 1) - 0.0031 0.0199 0.0182 - - - - 0.0104 5.97 1102

M3 LT (1,2) - -0.0222 0.7806 0.1661 0.0110† - 0.9983 - 0.1566 20.56 1132
- 0.0103 0.0328 0.0415 0.0521 - 0.0006 - 0.0104 5.40 1097

M4 LT (1,1) - -0.0129 0.8269 0.1124 - -0.0536 0.0038 -0.0008 0.1441 18.63 1074
- 0.0061 0.0259 0.0197 - 0.0067 0.0005 0.0001 0.0094 5.91 1047

M5 LT (1,1) 622 -0.0225 0.8437 0.0972 - -0.0765 0.9988 - 0.1490 21.56 1101
5.27 0.0084 0.0311 0.0233 - 0.0089 0.0003 - 0.0096 4.86 1037

LT (1,1) - 1.0530 0.1960† -0.0734† - -0.0300 1.0070 - 0.1144 18.44
- 0.3328 0.2279 0.0875 - 0.0135 0.0007 - 0.0153 6.29

CARR

M6 Exp (1,1) - 0.1571 0.6075 0.2820 - -0.1261 - - - - 1949
- 0.0410 0.0733 0.0615 - 0.0365 - - - - 1930

M7 Wei (1,1) - 0.1883 0.5858 0.2766 - -0.1378 - - - 2.1860 1339
- 0.0156 0.0286 0.0262 - 0.0181 - - - 0.0521 1316

† p-value > 0.05.

∧ The first GOF measure is BIC and the second GOF in italics is DIC.
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Table 3.3. In-sample and out-of-sample model assess-

ment for Models 4 to 7.

In-sample model-fit criteria (n = 763)

Model RMS1 MAE1 RMS2 MAE2 CP CI(EX) CI(X) Q12 W JB

M4 0.684 0.455 1.001 0.750 0.965 0.189 2.161 12.1 0.32 14.1

M5 0.649 0.442 0.953 0.736 0.963 0.284 2.069 5.91 0.11 † 6.40

M6 0.700 0.485 0.994 0.763 0.996 0.362 5.265 21.2 23.7 -

M7 0.707 0.490 0.988 0.759 0.972 0.165 2.616 19.4 1.73 -

Out-of-sample forecasting criteria (n1 = 50)

Model RMS1 MAE1 RMS2 MAE2 CP CI(EX) CI(X)

M4 0.859 0.712 1.277 1.095 0.820 1.194 2.961

M5 0.521 0.383 0.800 0.659 0.940 0.419 1.764

M6 0.577 0.664 0.878 0.851 1.000 2.359 4.618

M7 0.604 0.483 0.922 0.770 0.980 1.382 2.472

† p-value > 0.05 while the p-values for other test statistics are all < 0.05.

Table 3.4. Summary information for the outliers in

Model 5.

t Date 1/λt Xt E(Xt) 95% CI of Xt

214 28 Feb 2007 1.8021 3.5846 0.7378 (0.2455, 1.8676)

577 5 Aug 2008 1.7176 8.0839 1.8200 (0.6091, 4.4166)
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Figure 3.1. (a) Trends of the mean, variance, and ratio.

(b) Observed, expected, 95% CI of Xt and 95% PI of the

forecast E(Xt) using Model 4.
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Figure 3.2. (a) Trends of the mean, variance, and ratio.

(b) Observed, expected, 95% CI of Xt and 95% PI of the

forecast E(Xt) using Model 5.
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Figure 3.3. (a) Trends of the mean and variance. (b)

Observed, expected, 95% CI of Xt and 95% PI of the

forecast E(Xt) using Model 7.
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Figure 3.4. Comparison of observed and hypothesized

distributions for standardised Xt between Models 4, 5,

and 7.
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Figure 3.5. Comparison of the expected and 95% CI

of X between Models 5 and 7.
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Figure 3.6. Forecast range and 95% PI of the forecast

range using Models 4, 5 and 7 respectively.
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Figure 3.7. Reciprocal of lambda 1/λt in outlier diag-

nostic using Model 5.



Chapter 4

Extension to CARGP Threshold and CARGP

Jump models

4.1. Introduction

In the last two chapters, we show that the extended geometric pro-

cess (GP) models enjoy several nice properties. The models address

trend movements, autocorrelation, leverage effect, leptokurtosis and

heteroskedasticity which are the common features in a financial time

series. Moreover, the ARGP and CARGP models are easy to imple-

ment using both the LSE and ML methods of inferences for the former

model and Bayesian method for the latter model. However, the models

are still incapable of detecting and describing the frequent and rather

pronounced jumps and mean reversions in the daily range data. This

chapter focuses on devising different modelling strategies to capture

these features. To do this, we consider two stages of development. In

the first stage, we adopt a data set which displays more prominent jump

diffusion and mean reversion features, and hence, facilitates the train-

ing of more efficient mean reverting jump diffusion (MRJD) models.

One favourable choice of such data is the electricity price data because

80
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it is well known that electricity market is highly volatile due to its sea-

sonality in demand and absence of effective storage. As we focus on the

modelling of electricity price, daily maximum electricity price of New

South Wales (NSW), Australia, is used in the first empirical study to

test different models that describe mean reversions and jumps in the

search of better models. Then, in the second stage, the best model(s)

will be applied to the daily range of All Ordinaries (AORD) Index of

Australia stock market used in Chapter 2 and 3.

Apart from providing insight in model development, research on

electricity price has a practical context. Because of the increasing con-

cerns over climate change and global warming, efficient energy use is a

contemporary prominent and urgent issue. Governments and authori-

ties set rules and regulations to ensure efficient power generation and

security of supply. However, as efficiency is often achieved through eco-

nomics of scale, many countries started to restructure and deregulate

power markets to introduce competition. Consequently, it brings enor-

mous uncertainty and market risk to electricity market participants,

including generators and service providers.

Comparing to financial stock markets, electricity markets are more

competitive and hence spot electricity prices are more volatile. This

is attributed to several unique features of electricity prices. Firstly,

the demand of electricity is highly seasonal. Peaks of demand during

summer, winter, week-day, and intra-day high load hours are driven
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by the effects of temperature, number of day light hours and human

activities. Secondly, the prices contain frequent and short term extreme

jumps caused by the low elasticity of supply. Electricity is continuously

generated and consumed with no effective storage. If the instantaneous

demand cannot be met because of a system breakdown say, the price

can be pushed up substantially but it reverts back to equilibrium price

shortly after the outage is over. Lastly, the prices often display a

common feature called mean reversion which refers to the tendency

to fluctuate around a long term equilibrium.

To reduce the financial exposure and maintain spot market stability,

some market participants use financial contracts, known as derivatives,

which include swaps or hedges, options and futures contracts, to lock

electricity at a fix price for a certain time in the future. Alternatively,

they monitor closely the price movement using models that describe

the dynamics of the price volatility, and capture the major features of

electricity prices for pricing, hedging and forecasting in the electricity

markets (Schwartz 1997).

There are two main branches of electricity price models: funda-

mental models and econometric models. The former are based on the

equilibrium of demand and supply (Barlow, 2002) whereas the latter

on stochastic models in finance which include the MRJD models of

Barz and Johnson (1998) and Cartea and Figueroa (2005). A general
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MRJD model for the price Xt is defined as

(4.1) dXt = µt dt+ Jdqt + σt dWt,

where the first term µt dt contains a deterministic function of covari-

ates such as seasonality and a mean reversion term −mXt−1, the second

term J dqt describes a pure jump process which is a product of a jump

size J with a lognormal or gamma distribution and a Poisson process

dqt with intensity π dt (a compound Poisson process), and the last term

σt dWt is the error or diffusion process with volatility σt and Wiener

process Wt. The term −mXt−1 with a mean reversion rate m causes

the price process to be pulled towards a equilibrium value. Rambharat

el al. (2005) showed that the threshold autoregressive (TAR) model

using a Bayesian approach provided a better fit than the simple MRJD

model for electricity spot prices, as it allows both the mean reversion

rate m and jump intensity J to depend on the previous price through

a threshold level L, that is, m = m1I(Xt−1 ≤ L) + m2I(Xt−1 > L)

and π = π1I(Xt−1 ≤ L) + π2I(Xt−1 > L), where I(E) is an indica-

tor function for event E. Other electricity price models include the

neural networks model of Zhang et al. (2003), the autoregressive in-

tegrated moving average (ARIMA) model of Contreras et al. (2003),

the general autoregressive conditional heteroskedastic (GARCH) mod-

els of Thomas and Mitchell (2005) and Higgs and Worthington (2005),
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the data mining approach of Lu el al. (2005), the dynamic economet-

ric model of Nogales and Conejo (2006) and the Gaussian stochastic

volatility (SV) model of Smith (2010).

While many of these models capture the short-term jumps and

mean reversions, they do not allow for a long-term trend on equilib-

rium price, particularly when the observation period is long so that

the assumption of constant equilibrium price becomes unrealistic. In

Chapter 3, we develop the Conditional Autoregressive Geometric Pro-

cess (CARGP) model to allow for heteroskedasticity and flexible trend

movement. To model the dynamics of electricity prices, this chapter

extends the CARGP model and proposes two flexible types of models,

namely the CARGP Threshold (CARGPT) model and CARGP Jump

(CARGPJ) model, by including threshold and jump effects into the

CARR-type mean function. The CARR-type mean function fosters

flexible correlation, whereas the threshold model permits the mean re-

version rate to be price dependent. Moreover, the extreme jumps are

captured by the heavy-tailed t-distribution as well as an explicit jump

component. Lastly, as compared to the very sophisticated GARCH

and SV models, the GP model offers a simple modelling alternative

to capture the long-term price movement and volatility dynamics, us-

ing a ratio parameter which describes the trend pattern. See equation

(2.1) in Section 2.2.1 for details. Essentially, the model classifies the

price dynamics into short-term jumps and long-term trend movement.
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The jump and mean reversion components in the short-term jumps are

based on the untrended prices, after discounting the observed prices ge-

ometrically by the ratio parameter, thereby eliminating the distorting

effect of long-term price movement on modelling the jumps and mean

reversions. In numerical analysis using electricity prices, the CARGPT

and CARGPJ models are shown to be a generalisation of the MRJD

model in allowing volatility clustering, long-term trend movement and

leptokurtic data distribution.

For model implementation, Barlow (2002) and Huisman and Mahieu

(2003) adopted the maximum likelihood approach. We use a Bayesian

approach using Markov chain Monte Carlo (MCMC) algorithms via

the user friendly Bayesian software WinBUGS.

This chapter is organised as follows. Section 4.2 introduces the

development of CARGPT and CARGPJ models. In Section 4.3, the

Bayesian inference for the proposed models is described. In Section 4.4,

the proposed models are fitted to the daily maximum electricity price

of NSW, Australia and AORD daily range data. Finally, the study is

concluded in Section 4.5.

4.2. Model development

4.2.1. The CARGP model. To model the jump diffusion dy-

namics in a time series with trends, we begin with the CARGP model
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in Chapter 3. In the model, we assume that lnYt ∼ tν(υt, τ
2) or equiva-

lently, lnYt|λt ∼ N(υt,
τ2

λt
) by conditioning on λt, where the CARR-type

mean function is defined as

υt = βµ0 + βµ1υt−1 + βµ2 ln(yt−1) + βµ3z1t + βµ4z2t,(4.2)

where yt−1 = at−2t−1xt−1 is the latent SP and z1t and z2t denote some

time-varied covariates which measure, for example, the temperature

and weekday effects. Hence, lnXt|λt ∼ N(υxt,
τ2

λt
), where the mean

and ratio functions are given by

Model 0: υxt = υt − ln(at−1t ),(4.3)

at = exp(βa0 + βa1 ln t),(4.4)

respectively. Then the mean and variance of Xt in Model 0 and the

forthcoming extended models (Models 1-5) are given by (3.3) and (3.4)

in Section 3.2.2 respectively.

4.2.2. Extension to the CARGPmodel. A time series is some-

times subject to abrupt and unanticipated effects and behaves differ-

ently across a possibly unknown level of a certain risk variable. They

are the jumps which occur prominently and frequently in some finan-

cial time series such as the daily maximum electricity price. These

jumps usually do not stay in the new level but rather quickly revert to

their previous levels. Time series model not cater for these jumps and

mean reversions will underestimate the price at the time of jump, lead-

ing to inflated variance estimate, τ 2. To accurately model these jump
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dynamics, we consider two important factors: the time and magnitude

for the jumps. Two types of models, the threshold and jump models,

are proposed to address these two factors on the jump dynamics.

4.2.2.1. Threshold intercept model. A threshold model assumes that

the exposure to a risk variable has no influence on the model except

when the risk variable exceeds a certain threshold L. Because of the

autoregressive feature in a time series, the risk variable is often taken

to be certain lagged response, say the lag-1 response, Xt−1. To allow

for the model shift across a certain threshold L, a single component

Qt = J · I(xt−1 > L), where I(E) is an indicator function of the event

E, is added to υxt in (4.3), and the extended model is given by

Model 1: υxt = υt − ln(at−1t ) + J · I(xt−1 > L),(4.5)

where υt and at are given by (4.2) and (4.4), respectively. The compo-

nent Qt consists of a constant jump size J and a risk variable, say Xt−1

which determines a possible jump time when Xt−1 exceeds L. This

threshold model assumes that the mean reversion rate m = 1− βµ2 is

a constant.

4.2.2.2. Threshold intercept model with time-varied jump size. A

constant jump size J may be too restrictive. To allow a flexible jump

mechanism, J is allowed to change over time and is written as Jt. The

function υxt is similar to (4.5) but with Jt replacing J , and the resultant
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model, called Model 2, is defined as

Model 2: υxt = υt − ln(at−1t ) + Jt · I(xt−1 > L),(4.6)

where Jt ∼ G(α, γ) and E(Jt) =
α

γ
.

4.2.2.3. Threshold coefficient model. Instead of assigning a single

component to describe the model shift, a new set of parameters in the

mean and ratio functions is applied when the threshold is exceeded.

The new mean and ratio functions are defined as:

Model 3: υxt =

 βµ01 + βµ11υt−1 + βµ21 ln(yt−1) + βµ31z1t + βµ41z2t − ln(at−1t ) if xt−1 ≤ L,

βµ02 + βµ12υt−1 + βµ22 ln(yt−1) + βµ32z1t + βµ42z2t − ln(at−1t ) if xt−1 > L,

(4.7)

at =

 exp(βa01 + βa11 ln t) if xt−1 ≤ L,

exp(βa02 + βa12 ln t) if xt−1 > L.

Note that Model 3 can be written as (4.3) and (4.4), where

βjkj = βj,kj ,1 I(xt−1 ≤ L)+βj,kj ,2 I(xt > L), j = µ, a; kµ = 0, 1, . . . , 4; ka = 0, 1,

and hence, it is a generalisation of Model 1 when βµ02 = βµ01 + J and

βj,k,2 = βj,k,1, k = 1, 2, 3, 4 otherwise. The parameters βµ2g, g = 1, 2 in

(4.8) provide different mean reversions with rates mg = 1−βµ2g before

(g = 1) and during (g = 2) the jumps when Xt−1 > L signals a pos-

sible jump. They are similar to mg in the TAR model of Rambharat

et al. (2005). This threshold coefficient model can be interpreted as a

regime switching model with two basic CARGP models for two subsets

of data, according to whether Xt−1 ≤ L. The three threshold models,
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Models 1 to 3, are called the CARGP Threshold (CARGPT) model.

4.2.2.4. Jump model with time-varied jump size. Although we can

detect the jump time using say a lag-1 response Xt−1 in the thresh-

old models, the model falls short of identifying an instantaneous jump

which is not related to the level ofXt−1. Similar to the jump component

{Gt} in Rambharat et al. (2005), we consider a jump component Qt,

where the indicator of jump is a stochastic variable qt which follows a

Bernoulli distribution, that is, qt ∼ Bern(π) and π is the probability of

jumps. Moreover, similar to Model 2, we allow the jump magnitude Jt

to vary across time t. This extended model, called the CARGP Jump

(CARGPJ) model (Model 4), is equivalent to adding the component

Qt = Jt qt to υxt, that is,

Model 4: υxt = υt − ln(at−1t ) + Jt qt,(4.8)

where Jt ∼ G(α, γ) and qt ∼ Bern(π).

4.2.2.5. Jump model with threshold effects. While the threshold co-

efficient model (Model 3) allows the mean reversion to have a price

dependent rate, and the jump model (Model 4) captures instantaneous

jumps, a model which incorporates both features will model the charac-

teristics of electricity prices better. The resultant model, called Model
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5, is given by

Model 5: υxt = υt − ln(at−1t ) + Jt qt,(4.9)

where υt is given by (4.2),

βµk = βµk1 I(xt−1 ≤ L) + βµk2 I(xt−1 > L), k = 2, 3, 4,(4.10)

Jt ∼ G(α, γ),

qt ∼ Bern(π),

h = h1 I(xt−1 ≤ L) + h2 I(xt−1 > L), h = α, γ, π,

E(Jt) =
α1

γ1
I(xt−1 ≤ L) +

α2

γ2
I(xt−1 > L).

Writing Xt = lnXt, dXt = Xt − Xt−1, dt = 1, µt = βµ0 −mXt−1 +

βµ3z1t + βµ4z2t and σ2
t = τ 2/λt, the MRJD model in (4.1) can be ex-

pressed as

Xt = βµ0 + (1−m)Xt−1 + βµ3z1t + βµ4z2t + Jt qt +
τ√
λt
Zt,

where Zt ∼ N(0, 1) is a standard normal random variable, Jt follows

a lognormal or gamma distribution, and qt is a Poisson process with

qt = 1 at probability π and zero otherwise. Equivalently, Model 5 can

be written as lnXt ∼ N(υxt,
τ2

λt
), where υxt = βµ0 + (1 − m)Xt−1 +

βµ3z1t + βµ4z2t + Jt qt, showing that the MRJD model, including the

TAR model of Rambharat et al. (2005) (equation (2) and (3) in that

paper), is closely related to a special case of Model 5 when at = λt = 1,

βµ1 = 0, βµ2g = 1 − mg, α1 = α2 and γ1 = γ2. Releasing these
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constraints, Model 5 captures the long-term trend movement for equi-

librium price, heteroskedasticity, leptokurtic data distribution, flexible

jump mechanism and mean reversion with price dependent rate and the

price dependent jump probability, and covariates such as temperature

and weekday effects.

4.3. Bayesian Inference

4.3.1. Model hierarchy and priors. The log-likelihood function

and its derivatives as required in the classical likelihood approach are

difficult to evaluate because υt in (4.2) is a complicated function of

βµ1 in (3.7). Bayesian approach is used to avoid the numerical difficul-

ties associated with the maximisation of complicated high-dimensional

likelihood functions. The Bayesian hierarchy of the proposed models

can be represented by

Xt ∼ LN(υxt, τ
2/λt),

λt ∼ G(ν/2, ν/2),

where υxt is given by (4.3), (4.5), (4.6), (4.8), (4.8) and (4.9) for Models

0-5, respectively,

Jt ∼ G(α, γ) (Models 2, 4 & 5) and

qt ∼ Bern(π) (Models 4 & 5).
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We assign prior distributions to the model parameters as

βai, βaij ∼ N(0, σ2
β), βµi, βµij ∼ N(0, σ2

β), τ 2 ∼ IG(cτ , dτ ), 1/ν ∼ U(cν , 1),

L ∼ U(cL, dL) (Models 1 to 3, 5), J ∼ G(cJ , dJ) (Model 1),

π, πj ∼ U(0, 1) (Models 4 & 5), α, αj, γ, γj ∼ G(cα, dα) (Models 2, 4 & 5).

(4.11)

To obtain non-informative priors, the hyperparameter σ2
β is set to be

very large whereas cτ , dτ , cα and dα are set to zero. Other hyperpa-

rameters cν , cL, dL, cJ and dJ are set to some specific values depending

on real data. In the Gibbs sampling scheme, a single Markov chain is

run for 10000 iterations, discarding the initial 5000 iterations as the

burn-in period to ensure convergence of parameter estimates. Con-

vergence is also carefully checked by the history and auto-correlation

function (ACF) plots. Simulated values from the Gibbs sampler after

the burn-in period are taken to mimic a random sample of size 5000

from the joint posterior distribution for posterior inference. Parameter

estimates are given by the posterior means or medians. The full con-

ditional posterior distributions which are derived in the Appendix of

Chapter 3 for Model 5 can be similarly modified for Models 1 to 5 in

this chapter.

4.3.2. Model assessment. Model comparison is based on three

measures. Firstly, the deviance information criterion (DIC) which was

introduced in Section 3.5.3 is adopted. This criterion measures the
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model fit while allowing for model complexity. The other two measures,

namely the mean square error (MSE) and mean absolute percentage

error (MAPE) are defined as

MSE =
1

n

n∑
t=1

(Xt − X̂t)
2 and(4.12)

MAPE =
1

n

n∑
t=1

|Xt − X̂t|
Xt

,(4.13)

respectively and they assess model fit without a penalty. For each cri-

terion, a smaller value indicates a better model fit.

4.4. Empirical Study

We illustrate the ability of the models in capturing jumps through

two sets of data. First of all, since the electricity prices exhibit jumps

frequently, it is a good choice of data for deriving efficient jump models.

In the second empirical study, we apply the model to the daily range

data used in Chapter 2 and 3 to capture the pronounced jump and

mean reversion effects in the data.

4.4.1. Electricity price data, NSW of Australia.

4.4.1.1. The data. In Australia, the National Electricity Market

(NEM) started to work as a pooled exchange market, for supplying

electricity to retailers and end-users in Queensland, NSW, ACT, Vic-

toria, and South Australia in December 1998. Tasmania joined the
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NEM in 2005. Due to the growing needs for multi-faceted energy ser-

vices, the Australian Energy Management Operator (AEMO) was es-

tablished, and replaced the National Electricity Market Management

Company (NEMMCO) to manage the NEM and gas markets, accord-

ing to the provisions of National Electricity Law and Statutory Rules

(The Rules) from July 2009. The NEM operates the world’s longest

interconnected power system which is around 5000 kilometres in dis-

tance and supplies more than 10 billion dollars of electricity annually

to over 8 million consumers.

NSW is the state that has highest average demand in electricity

and also highest production of total energy in 2007/08. A study of

the electricity prices of NSW gives participants valuable insight of the

price dynamics, and provides them accurate forecast to reduce the risk

in this volatile market. In wholesale electricity market, a dispatch price

is determined every five minutes, and six of dispatched price are av-

eraged every half-hour to determine the spot price for each trading

interval. We analyse the logarithm of daily maximum electricity re-

gional reference price (DMRRP) in mega watt per hour (mwh), Xt =

ln(DMRRP), of NSW, Australia over a 3-year period from 1 January

2007 to 31 December 2009. There are 1096 observations. The data are

obtained from the website of AEMO, www.aemo.com.au.

Daily maximum prices are analysed to facilitate the modelling of

spikes which is the main focus of this empirical study. Moreover, daily
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prices are also free from the strong intraday on- and off-peak hours

cycle. Since the DMRRP is highly skewed, we take logarithmic trans-

formation of DMRRP. Figure 4.1 displays the time series plot of Xt.

The histogram of Xt is presented in Figure 4.2, and summary statistics

are reported in Table 4.1. Note that the maximum value of 9.2103 are

the log of maximum price which is set to be $10000 according to The

Rules. Figure 4.2 and Table 4.1 show that Xt and ln(Xt) are right-

skewed and heavy-tailed. The autocorrelation (ACF) plot in Figure

4.3 indicates the high correlation feature of this time series. To cap-

ture the prominent jump and mean reversion effects, the CARGPT and

CARGPJ models with threshold and jump components are applied to

fit the data.

Temperature and weekday effects are included as covariates in the

analyses to account for the seasonality at annual and weekly levels

(Huisman and Mahieu, 2003, and Rambharat et al., 2005). Owing to

the parabolic relationship between temperature Tt and response Xt,

the temperature effect is measured by the absolute deviation from the

mean z1t = |Tt− T̄|, whereas the weekday effect is given by the weekday

indicator z2t = I(t is a weekday). We set some of the hyperparameters

in the prior distributions in (4.11) as follow:

cν = 0.033, cL = 5, dL = 9, cJ = 1, and dJ = 1 to ensure that

ν ∈ (1, 30), L ∈ (5, 9) and E(J) = 1.
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4.4.1.2. Numerical results. Table 4.2 reports parameter estimates

for Models 0 to 5. The two sets of parameters for Model 3 and 5 are

labelled as ‘lower’ and ‘upper’, according to Xt−d ≤ L and Xt−d > L,

respectively, where d=1 for simplicity. To enable consistency of some

effects across a time period, we set βµ1g, βa0g and βa1g to be consistent

across g in Model 5 as in Section 2.4.2 for the LARGP and TLARGP

models. Moreover, βµ0g, νg and τ 2g are set to be the same across g

because the jump size Jt, allows a different intercept when Xt−1 > L,

and a unit set of parameters for the variance and the degrees of freedom

simplifies the error distribution.

Parameters in υt and at are generally consistent in direction across

models. The insignificance of βµ1 except for Models 1 and 2 which have

a negative effect, shows that the time series do not demonstrate a strong

persistence feature in the model. On the other hand, the positive and

significant m = 1 − βµ2 gives the mean reversion rates. For Models 3

and 5, the mean reversion rates are higher when Xt−1 > L. Moreover

the positive and significant βµ3 and βµ4 show that the price increases

when the temperature is more different from the overall mean and

during weekdays. These covariate effects are more pronounced when

Xt−1 > L. Furthermore, the positive and significant βa0 except M0

and M2, indicates a decreasing trend of Xt but the rate of decline

drops across time as βa1 is negative. The number of degrees of freedom

estimate ν shows that the distribution is heavy-tailed and it is more
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heavy-tailed when Xt−1 ≤ L relative to Xt−1 > L in Model 3 with no

jump component.

The threshold values L for Models 2, 3 and 5 are around 5.5,

whereas that for Model 1, it is much higher (8.05) because the only

jump size J in Model 1 may be pushed to a higher level to reveal the

prominent jump effects. The corresponding threshold levels for electric-

ity price (TLEP) after transformation are $3137, $287, $261 and $248

per mwh whereas the percentages of days exceeding L are 2.37, 6.66,

7.66, and 7.85, respectively for Models 1 to 3 and 5. Except for Model

1, the estimated TLEPs are close to $300/mwh which is the current

Administered Price Cap (APC) in all regions of NEM in Australia, set

in May 2008, and is also the cap of the futures traded in Sydney Futures

Exchange (SFE). According to The Rules, if the cumulative spot price

over the previous 7 days or 336 half-hour trading intervals exceeds the

current Cumulative Price Threshold (CPT) of $187,500/mwh in the

wholesale electricity market, the APC is applied to mitigate financial

risk exposure. On the other hand, hedge contracts are used by the

generators and wholesalers as agreements, to lock the electricity price

for a certain time in the future to minimise their risks. To set up hedge

contracts, it is necessary to determine the lock-up price levels. The

estimated TLEPs can be used as references in determining the APC

for the authority as well as the strike price in a hedge contract.
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Table 4.2 shows that model fit improves across Models 0 to 5 in

general and Model 5 is the best model, according to the three criteria

of DIC, MSE and MAPE as given in (??) to (4.13). In Model 5, jumps

occur at much higher probability (π = 0.81) with higher expected jump

size E(Jt) (0.39) when Xt−1 > L. Figure 4.4 illustrates graphically

the improvements in model fit. Without both threshold and jump

components, Model 0 fails to model the jumps adequately, but although

Models 1 to 3 can capture the spikes better than Model 0, they still

underestimate the magnitude of jumps. Figure 4.5 displays an enlarged

portion of Figure 4.3 for Models 0, 2 and 5 during 31 October to 10

December 2009 when more spikes are observed. On 3, 19, 26 November

and 7 December 2009 when the spikes occurred, Model 0 can only allow

for part of the jump at lag-1 time whereas Models 2 (threshold model)

and 5 model the jump sizes more closely. However, only Model 5 (jump

model) can capture the instantaneous jump. Figure 4.6 compares the

observed and hypothesized distributions of the standardised residuals

St =
ln(Xt)− υxt
τ/
√
λt

∼ N(0, 1),

in Models 0 and 5. The St in Model 0 are far more uniform than

N(0, 1), whereas those for Model 5 approximate closely a truncated

N(0, 1) because the DMRRPs are capped at $10000.

4.4.1.3. Forecasting. A 1-step ahead forecast is performed using

Model 5 for 10 selected days which include 4 days of jumps (12, 21
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to 23 January 2010). As mentioned in Section 3.5.5, two types of

forecasting values can be evaluated in the Bayesian approach. In this

study, the forecasts are based on the first type where the predictive

distribution for xt is given by,

f(xt|x) =

∫
fLT

(
xt|υt − ln(at−1t ) + Jt qt, τ

2, α
)
f(θ|x) dθ.

The predicted values xt can be sampled successively from

xt|xt−1,θ(i) ∼ LT
(
υ
(i)
t − ln(a

(i) t−1
t ), (τ (i))2, α(i)

)
.

As mentioned in Section 3.5.5, the forecast of Xt can be easily per-

formed in WinBUGS by assigning a missing value ‘NA’ for the forecast

Xt=ln (DMRRP) (t > 1096) such that the vector of 1097 observations

to be uploaded is (Xt−1096, . . . Xt−1,NA). Posterior samples of model

parameters together with the missing forecast Xt are then generated

using MCMC techniques. Forecast and its prediction interval are given

by the posterior mean X̂t and the 2.5 (X̂t,0.025) and 97.5 (X̂t,0.975) per-

centiles of the posterior sample of Xt. The forecasts of the 10 selected

days are reported in Table 4.4 together with the observed Xt, tempera-

ture effect z1t, weekday effect z2t and forecast error which is defined as

|Xt− X̂t|/Xt. The forecast errors range from 2.93% to 46.94%. Larger

forecast errors occur at the days with spikes and among them, 23 Jan-

uary has an unexpected high temperature which pushes the forecast

price to a much higher level with an inflated prediction interval. The

only exception is on 13 January where a large forecast error is also
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observed on a day with no spike. This is because the daily maximum

price is mean-reverted to a rather low level after the spike on 12 Jan-

uary 2010. Figure 4.7 plots the observed (circle), forecast (dot) and

prediction intervals (lines) for the ten selected days. Table 4.3 and

Figure 4.7 show that there are three observations (30%) which lie just

outside the prediction intervals. In summary, the forecast performance

is satisfactory.

4.4.2. AORD daily range data.

4.4.2.1. Numerical results. AsModel 5, the jump model with thresh-

old effect, provides the best fit for the electricity price data which ex-

hibit typical jump and mean reversion effects, we apply Model 5 to the

AORD daily range data which are adopted in Chapter 2 and 3. We

demonstrate that Model 5 is capable of allowing for the jump and mean

reversion effects in the data. The data contain one covariate which is

the lag-1 daily log return Zt−1 to account for the leverage effect as

shown in Chapter 2 and 3. Hence, the last term, βµ4 z2t in (4.2) for

Models 0 to 4 is omitted in this study and k = 2, 3 in (4.10) for Model

5. We set some of the hyperparameters in the prior distributions (4.11)

as follow:

cν = 0.033, cL = 1, and dL = 3.5 to ensure that ν ∈ (1, 30), and

L ∈ (1, 3.5) which is also used as the searching range for threshold

levels in Chapter 2. Again, the analyses begin with Model 0 which

is actually Model 4 in Chapter 3 (Model 4.3). We apply Model 5 of
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this chapter without and with threshold time effect (Model 5T) to the

daily range to facilitate the comparison to Model 5 in Chapter 3 (Model

5.3). Table 4.4 reports the parameter estimates and three goodness-of-

fit (GOF) measures for Models 4.3, 5.3, 5, and 5T.

The positive and significant βµ1 for Models 5 and 5T supports the

persistence effect in this time series, except for Model 5T after T2=622.

Model 5T has more insignificant parameter estimates after T2=622 be-

cause of the reduced number of observations. The positive and signifi-

cant βµ2 andm = 1−βµ2 gives the mean reversion rates, also except for

Model 5T after T2=622. As βµ3 is negative and significant, a leverage

effect is present in the data, except for downward trend AORD daily

range data. The positive and significant βa0 for Model 5 in this chap-

ter without threshold time, indicates a decreasing trend of the range

data but the rate of decline drops across time as βa1 is negative, and

as a result followed by an increasing trend thereafter. On the other

hand, for the model with threshold time, negative and significant βa0

indicates an upward trend with increasing rate as βa1 is positive for the

period before T2, and vice versa for the period after T2. The degrees

of freedom estimates show that the tail behaviour is moderate for all

models whereas the decrease in τ 2s from Models 4.3 and 5.3 to Models

5 and 5T shows that Model 5 can capture jump effects.

For the jump components, the estimated threshold levels for Model

5T are similar to those of the TLARGP models using ML method,
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probably because the sampling or search methods for these two models

are conducted over the same range of (1,3.5). The proportion of the

data before L that is higher than L=2.595 is 5.48% while the proportion

after L that is higher than L=1.234 is 85.92%. The expected jump size

is significant only in Models 5 and 5T for xt−1 < L.

Lastly, all three GOF measures indicate a gradual improvement in

model fit across Models 4.3, 5.3, 5 and 5T. As a result, Model 5T pro-

vides the best model fit. Figure 4.8 compares the observed and fitted

using E(Xt) across the 4 models. The fitted values E(X) for all 4

models describe the trend movement well, although it is well under-

stood that the variability is underestimated using E(X). The last plot

in Figure 4.8, as well as Figure 4.9 which compares Models 5.3 and

5T, shows that Model 5T capture the jumps better than other models

particularly for the instantaneous jumps which occurs at 28 February

2007 and 5 August 2008 which are both detected as outliers in Section

3.5.6. Furthermore, the variability in the fitted values of Model 5T is

closer to the observed than that of Model 5.3. Figure 4.10(a) shows the

percentage of difference of the fitted values between Model 4 of Chapter

3 and Model 5 of Chapter 4 and (b) for the models with threshold time

effect. Two outliers (28 Feb 2007 and 5 Aug 2008) found in Chapter 3

are modelled well in this chapter. It is also convinced by the plot of re-

ciprocal, 1/λt in Figure 4.11(a) and (b). No obvious outlier is detected
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for Model 5 in this chapter.

4.4.2.2. Forecasting. As in Chapter 2 and 3, forecast of 50 daily

ranges is performed using Model 5T. To facilitate comparison, we use

the second type of forecast based on E(Xt) as given by

E(Xt) = exp

[
υtg − ln(at−Tgg ) + Jt qt +

τ 2g
2λt

]
.

which is also adopted in Section 3.5.5.

Figure 4.9 includes the forecast values of E(Xt) (blue line). It shows

the forecast values are more volatile than those in Model 5.3 (orange

line). The forecast values of TLARGP model by LSE (MSE=0.2248)

and ML (MSE=0.2495) method in Chapter 2, Model 5.3 (MSE=0.2714)

in Chapter 3 and Model 5T (MSE=0.2459) in this chapter are also

displayed in the enlarged figure, Figure 4.12 for comparison. As Model

TLARGP using LSE method is based on minimizing the sum of squared

errors, it has the smallest MSE among these 4 models. On the other

hand, Model 5T is slightly out-performed Model TLARCP using ML

method as the former model has a jump diffusion component but they

are similar in having both threshold time and threshold level effects.

In general, all the forecast performance are satisfactory.
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4.5. Conclusion

In this chapter, different models that cater for mean reversion and

jump diffusion are considered. In wholesales electricity market, op-

erational planning for the delivery of electricity requires short-term

and accurate forecast to facilitate optimal decision making. Statistical

models that do not properly capture the essential features of electric-

ity prices, including the strong seasonality, frequent spikes with mean

reversions, volatility clustering and long-term trend movement can sub-

stantially misprice electricity. In finance, the range models not cater

for the infrequent but pronounced jumps and mean reversions will not

provide accurate forecast of volatility for risk management. This study

proposes three CARGPT models and two CARGPJ models which pro-

gressively improve the fit of log DMRRP of NSW, Australia in the first

empirical study. The best model (Model 5) also enhanced the fit of the

log daily range of AORD Index of Australia in the second empirical

study.

In the study, the CARGPJ model with threshold effects (Model 5)

is chosen to be the best model, according to three model selection cri-

teria. The model is shown to be a generalisation of the MRJD models,

including the TAR model of Rambharat et al. (2005), and hence, it al-

lows the jump sizes, jump likelihoods and mean reversion rates to be all

price-varied. With a ratio component, the CARR-type mean function,
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and heavy-tailed data distribution, it further captures heteroskedas-

ticity, long-term trend movement and leptokurtic data behavior. For

model implementation, instead of adopting the two-step approach of

Rambharat et al. (2005), we propose a full Bayesian approach via the

user friendly Bayesian software WinBUGS.

Model performance is evaluated by the in-sample model-fit, out-

of-sample forecast accuracy and residual plot. Figures 4.4 and 4.5

for the electricity price data and figures 4.8 to 4.11 for the AORD

range data show that Model 5 can capture the spikes well in the in-

sample estimation, and figure 4.7, 4.9 and 4.12 further shows that the

out-of-sample forecast for both data is satisfactory. Furthermore, for

the electricity price data, residual plot in figure 4.6 shows that the

standardised residuals agree closely with the hypothesized standard

normal distribution, and the estimated threshold levels help to set the

control level price for the authority as well as the strike price for a

hedge contract.
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Table 4.1. Summary statistics for log daily maximum

electricity price Xt and lnXt for NSW, Australia (1 Jan

2007 - 31 Dec 2009)

Xt ln(Xt)

Mean 4.3002 1.4377

Standard Error 0.0302 0.0059

Median 4.1190 1.4156

Mode 3.5553 1.2685

Standard Deviation 0.9993 0.1943

Kurtosis 8.9248 3.7834

Skewness 2.6154 1.5569

Range 6.2813 1.1456

Minimum 2.9291 1.0747

Maximum 9.2103 2.2203

% of Jump (DMRRP>$300) 6.02

% of Jump (DMRRP>$1000) 3.38

% of Jump (DMRRP>$3000) 2.55
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Table 4.2. Parameter estimates, standard errors in ital-

ics and model fit criteria for Models 0 to 5 using the

electricity price data.

M0 M1 M2 M3 M4 M5
lower upper lower upper

βµ0 0.1882 0.4226 0.4476 0.2893 1.0820 0.4699 0.4178 -
0.0309 0.0311 0.0398 0.0761 0.3255 0.0444 0.0361 -

βµ1 0.0903† -0.0670 -0.0679 0.1646† -0.1835† -0.0310† -0.0297† -
0.0785 0.0146 0.0154 0.1408 0.1407 0.0194 0.0339 -

βµ2 0.7181 0.7453 0.7196 0.6090 0.3745 0.6754 0.7047 0.3719
0.0660 0.0265 0.0322 0.0941 0.1406 0.0308 0.0211 0.0319

βµ3 0.0088 0.0114 0.0110 0.0088 0.0534 0.0111 0.0096 0.0478
0.0014 0.0012 0.0012 0.0018 0.0103 0.0013 0.0012 0.0079

βµ4 0.0322 0.0388 0.0403 0.0334 0.1007† 0.0411 0.0478 0.1345
0.0064 0.0063 0.0064 0.0063 0.0641 0.0063 0.0079 0.0537

1000βa0 -4.3300 0.5021 -0.1120† 0.5128 0.9956† 0.5310 -0.1491† -
0.5547 0.1357 0.1186 0.2050 0.7544 0.0957 0.1619 -

1000βa1 0.6282 -0.0452 0.0383 -0.0465† -0.0926† -0.0481 0.0469 -
0.0799 0.0190 0.0167 0.0294 0.1053 0.0136 0.0224 -

ν 2.14 2.08 2.23 2.65 15.94 2.87 11.04 -
0.1727 0.1707 0.1857 0.2502 8.0810 0.3665 4.2560 -

τ2 0.0049 0.0044 0.0045 0.0045 0.0495 0.0045 0.0048 -
0.0005 0.0004 0.0004 0.0005 0.0100 0.0004 0.0004 -

L - 8.0510 5.6590 5.5630 - - 5.5150 -
- 0.5753 0.3253 0.0573 - - 0.0825 -

J or E(J) - 0.1128 0.0296†∗ - - 0.1725∗ 0.1054∗ 0.3630∗

- 0.0355 0.0174 - - 0.0852 0.0511 0.0350

π - - - - - 0.1046 0.1328 0.8053
- - - - - 0.0498 0.0384 0.0977

DIC 1398 1308 1264 1273 - 1015 841 -
MSE 0.5945 0.6334 0.5271 0.1525 - 0.2892 0.0776 -
MAPE 0.0896 0.0890 0.0853 0.0421 - 0.0750 0.0529 -

† p-value > 0.05.

∗ The estimates are E(Jt).
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Table 4.3. Observed, forecast and prediction interval

using Model 5 for 10 selected days in Jan 2010 using the

electricity price data.

Date Observed Temp Weekday Forecast Prediction interval Forecast error(%)

t Xt z1t z2t X̂t (X̂t,0.025, X̂t,0.975) |Xt−X̂t|
Xt

1/01/2010 3.173 6.745 1 3.997 ( 3.338, 5.366 ) 25.98

2/01/2010 3.212 8.138 0 3.430 ( 2.872, 4.490 ) 6.80

11/01/2010 4.532 3.226 1 4.258 ( 3.503, 5.614 ) 6.05

12/01/2010 7.194 7.723 1 4.634 ( 3.825, 6.422 ) 35.59

13/01/2010 3.712 5.122 1 5.455 ( 3.342, 9.060 ) 46.94

21/01/2010 5.930 4.821 1 3.904 ( 3.296, 5.147 ) 34.17

22/01/2010 8.415 10.026 1 6.767 ( 4.210, 11.53 ) 19.58

23/01/2010 7.849 18.716 0 10.400 ( 6.162, 17.29 ) 32.51

24/01/2010 3.373 0.418 0 3.713 ( 2.106, 6.758 ) 10.06

30/01/2010 3.692 4.714 0 3.800 ( 3.157, 4.896 ) 2.93
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Table 4.4. Parameter estimates, standard errors in ital-

ics and model fit criteria for Models 4.3, 5.3, 5, and 5T

with AORD range data.

Model 4.3 Model 5.3 Model 5 Model 5T

t < 622 t ≥ 622 t < 622 t ≥ 622

lower upper lower upper lower upper

βµ0 -0.0129 -0.0225 1.0530 -0.0334 - -0.0306 - 1.6710 -
0.0061 0.0084 0.3328 0.0108 - 0.0101 - 0.1977 -

βµ1 0.8269 0.8437 0.1960† 0.7652 - 0.8478 - -0.1160† -
0.0259 0.0311 0.2279 0.0408 - 0.0304 - 0.1633 -

βµ2 0.1124 0.0972 -0.0734† 0.1197 0.1953 0.0965 0.1177 0.0462† -0.1206†
0.0197 0.0233 0.0875 0.0246 0.0394 0.0204 0.0591 0.3004 0.1036

βµ3 -0.0536 -0.0765 -0.0300 -0.0952 -0.0445 -0.0766 -0.0818 -0.3115† -0.0192†
0.0067 0.0089 0.0135 0.0221 0.0083 0.0139 0.0189 0.2190 0.0150

βa0 0.0038 0.9988 1.0070 0.0041 - -0.0051 - 0.0219 -
0.0005 0.0003 0.0007 0.0017 - 0.0018 - 0.0065 -

βa1 -0.0008 - - -0.0008 - 0.0006 - -0.0029 -
0.0001 - - 0.0003 - 0.0003 - 0.0013 -

ν 18.63 21.56 18.44 20.13 - 21.11 - 15.27 -
5.91 4.86 6.29 5.69 - 5.54 - 6.70 -

τ2 0.1441 0.1490 0.1144 0.1359 - 0.1405 - 0.1019 -
0.0094 0.0096 0.0153 0.0094 - 0.0112 - 0.0163 -

L - - - 1.4460 - 2.5950 - 1.2340 -
- - - 0.2209 - 0.7234 - 0.3518 -

E(J) - - - 0.3007 0.0499† 0.6354 0.0306† 2.0810† 0.0350†
- - - 0.0940 0.0424 0.1965 0.0325 90.600 0.0631

π - - - 0.1162 0.5635 0.0401† 0.4701† 0.0774† 0.4682†
- - - 0.0531 0.2688 0.0424 0.2650 0.0559 0.2673

proportion 100% 81.39% 18.61% 63.96% 36.04% 94.52% 5.48% 14.08% 85.92%

DIC 1047 1037 - 1028 - 1010 - - -
MSE 0.4682 0.4216 - 0.4107 - 0.3531 - - -
MAPE 0.3623 0.3574 - 0.3400 - 0.3383 - - -

† p-value > 0.05.
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Figure 4.1. Observed log daily maximum of electricity

price, for NSW, Australia.
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Figure 4.2. Histogram of log daily maximum electricity

price for NSW, Australia.
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Figure 4.3. Autocorrelation function (ACF) of ob-

served daily maximum of electricity regional reference

price.

0 20 40 60 80 100

0.0
0.2

0.4
0.6

0.8
1.0

Lag

AC
F



112 4. Extension to CARGP Threshold and CARGP Jump models

Figure 4.4. Observed and fitted values using Models 0

to 5 for the electricity price data.
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Figure 4.5. Observed (black line) and fitted values us-

ing Models 0 (green line), 2 (red line) and 5 (blue line)

for the electricity price data from 31 Oct 2009 to 10 Dec

2009.
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Figure 4.6. Observed and hypothesized distribution for

standardised residuals in Models 0 (left) and 5 (right) for

the electricity price data.
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Figure 4.7. Observed, forecast and 95% PI using

Model 5 for 10 selected days in Jan 2010 for the elec-

tricity price data.
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Figure 4.8. Observed and fitted values using Models

4.3, 5.3, 5, and 5T for the AORD range data.
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Figure 4.9. Observed (black line) and fitted values us-

ing Model 5.3 (red line) and forecast (orange line), Model

5T (green line) with threshold levels (green dotted lines)

and forecast (blue line) for AORD range data.
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Figure 4.10. Percentage of difference of fitted values

between (a) Models 4.3 and 5 (b) Models 5.3 and 5T for

AORD range data.
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Figure 4.11. Inverse lambda values of (a) Model 4.3

(black line) and Model 5 (red line) (b) Model 5.3 (black

line) and Model 5T (red line) for AORD range data.
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Figure 4.12. Observed (black line) and forecast val-

ues using TLARGP model by LSE (red line), TLARGP

model by ML (green line), CARGP model (orange line),

and CARGPJ model (blue line) for AORD range data.
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Chapter 5

Overview and further studies

The analysis of a financial time series is of great interest to many

researchers. Its contribution to the economy worldwide is highly recog-

nised, as two econometricians Robert F. Engle who proposed an autore-

gressive conditional heteroskedastic (ARCH) model in 1982, and Clive

Granger who developed the concept of cointegration and published a

joint paper with Robert Engle in 1987 (Engle and Granger, 1987), were

awarded the Nobel Prize in Economics in 2003. To develop some mod-

els that can help in understanding and predicting the markets or the

economies is very important for the economists, the analysts and even

the policy makers in their decision-making processes.

This thesis proposes, develops and improves the GP models to ad-

dress different features of a financial time series including trend move-

ment, seasonality, non-linearity such as threshold effects, autocorrela-

tion, jumps, mean-reversion, volatility clustering and leptokurtic errors,

etc. We begin with the autoregressive GP (ARGP) model in Chapter

2 by adding an autoregressive (AR) term to the mean of the latent

stochastic process (SP) which is detrended from the observed data ge-

ometrically using a ratio parameter. The time-variant ratio function

allow for the volatility clustering and heteroskedasticity. By taking the

120
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lag-1 log return as a covariate in the mean function, the model allows

for leverage effect. To further allow for nonlinearity, components with

threshold effects across time and across levels of some lagged outcome

are also included in the mean function.

In order to capture the dynamics of the autocorrelation better, the

model is further extended to the conditional ARGP (CARGP) model

by adopting a conditional autoregressive range (CARR)-type (Chou,

2005) mean function, in Chapter 3. To allow for leptokurtic data dis-

tribution for model robustness, we also adopt the heavy-tailed log-t

distribution expressed in scale mixtures of normal (SMN) representa-

tion for the SP. Simulation and empirical studies show that the models

provide accurate parameter estimates and forecasts respectively. In

the empirical study, the model outperforms the original CARR models

in both in-sample estimation and out-of-sample forecast. However, al-

though the SMN representation of Student’s t-distribution in the model

can help to identify and downweight the effect of outliers which are the

jumps in the data using the mixture variable λi, the models still fail to

capture adequately the magnitude of the jumps.

To capture the jumps and possibly their mean reversions effectively,

we propose further extensions of the CARGP model in Chapter 4, by

adding components that describe the threshold and jump effects in the

mean function of the SP. These two components capture the jump and
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mean reversion features in a financial time series. The model can fur-

ther capture seasonality by including a covariate in the mean function.

We show that the extended CARGP Jump (CARGPJ) models are the

generalisation of the mean reverting jump diffusion (MRJD) model of

Rambharat et al. (2005). The results of two empirical studies show

that the CARGPJ model can capture the jumps and mean reversions

well, and hence, facilitate accurate forecast.

For model implementation, the non-parametric least square error

(LSE) method and parametric maximum likelihood (ML) method are

used for the inference of the ARGP models. The first and second order

derivatives of the least square and log-likelihood functions are derived

to facilitate the implementation in R. However, the likelihood functions

become particularly complicated when the GP model adopts a CARR-

type mean function. Hence, it is more appealing to use the Bayesian

approach for the inference of the CARGP model and its extensions.

The Bayesian software, Bayesian analysis Using Gibbs Sampling (Win-

BUGS; Spiegelhalter et al., 2004) allows us to implement the model

and performs forecast fairly easily. However, in order to facilitate the

Markov chain Monte Carlo (MCMC) sampler, the full conditional dis-

tributions for the parameters in threshold CARGP model are also de-

rived and reported in the Appendix of Chapter 3 for reference.

In summary, the proposed GP models are capable of modelling a fi-

nancial time series which exhibits trend movement, heteroskedasticity,
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leptokurtic data distribution, jumps and mean reversions. However,

there are a few limitations of the GP models in modelling financial

time series. One of them is the model failure in describing the en-

larged volatility for the downward trend data. This is a challenging

and favourable matter in further development of GP models on the

financial time series. There are still many research areas that we can

go on in modelling a financial time series with GP models. We state

some as below.

For modelling methodologies, the CARGPJ model with a jump dif-

fusion component is shown to be the most capable model for capturing

the spikes. However, it still fails to model the spikes adequately in

some cases. Perhaps the likelihood of jumps should be modelled using

some dynamic modelling techniques that involve covariates. A model

with dynamic jump probability provides more information to the likeli-

hood of jumps, and hence improves the forecast accuracy for data with

spikes.

Studies should also be directed to the choice of distributions which

serves as an alternative modelling technique for the jumps. Heavy-

tailed distributions, including the generalised error (exponential power)

distribution with leptokurtic and platykurtic shapes, the generalised-t

distribution which encompasses uniform, t and generalised error distri-

butions, etc and their asymmetric extensions, have different skewness
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and kurtosis to provide more flexible and adaptive models, and hence

to foster better understanding of market activity.

The models considered in this thesis focus on modelling the condi-

tional mean of a distribution. However, attention should also be drawn

to the modelling of different quantiles of the data, particularly the up-

per quantiles which are important for risk management. Nonparametric

quantile regression is first introduced by Koenker and Bassett (1978)

to model the conditional quantile functions. Extension of the CARGP

model to different quantile functions is feasible and promising as the

model is robust to outliers, and can provide a more comprehensive view

on the covariates effects across quantiles.

Univariate model is considered in this thesis. However, the price

dynamics in most financial time series are often more complicated than

a univariate model can describe, because a univariate model ignores the

cross correlation among a number of interrelated time series from the

same industry and/or region. For example, the electricity prices of

New South Wales and Victoria are highly correlated due to their geo-

graphical proximity and the number of the interconnectors. Extension

to multivariate CARGP model allows the cross correlation to be mod-

elled in the correlation matrix of the multivariate distribution. This

simultaneous modelling of a set of asset prices is practical and useful

in portfolio setting.
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Although Bayesian inference is adopted in Chapters 3 and 4 for its

simplicity in model implementation particularly with the use of Win-

BUGS, the ML method is feasible for the CARGP model and its ex-

tension. The log-likelihood function and its derivatives can be derived

without the need of integration based on (3.7). From our experience, es-

timates using the ML method of inference are often more efficient and,

more importantly, the prolonged MCMC computation for complicated

models can be avoided. Hence, the ML method should be considered

as an alternative method of inference for the CARGP model and its

extensions.

Lastly, in application, daily range and electricity price have been fit-

ted to the proposed models. As range data is sensitive to outliers, Chou

(2005) suggested using other frequency range intervals, say every hour

or every quarter. With the rapid development of market automation

and computational power, high frequency data (HFD) emerge and fuel

the development and application of CARGP model to high frequency

range data that may exhibit different trend movements and volatility

dynamics.
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