
GRADED REPRESENTATION THEORY OF THE

CYCLOTOMIC QUIVER HECKE ALGEBRAS OF TYPE A

ANDREW MATHAS

Contents

Introduction 1
Acknowledgements 2
1. Cyclotomic Hecke algebras of type A 3
1.1. Cyclotomic Hecke algebras and Ariki-Koike algebras 3
1.2. Quivers of type A and integral parameters 4
1.3. Cellular algebras 5
1.4. Multipartitions and tableaux 6
1.5. The Murphy basis of H Λ

n 7
1.6. Semisimple cyclotomic Hecke algebras of type A 7
1.7. Gram determinants and the cyclotomic Jantzen sum formula 10
1.8. The blocks of Hn 11
2. Cyclotomic quiver Hecke algebras of type A 11
2.1. Graded algebras 11
2.2. Cyclotomic quiver Hecke algebras 13
2.3. Nilpotence and small representations 15
2.4. Semisimple KLR algebras 16
2.5. The nil-Hecke algebra 20
3. Isomorphisms, Specht modules and categorification 22
3.1. Brundan and Kleshchev’s Graded Isomorphism Theorem 22
3.2. Graded Specht modules 23
3.3. Blocks and dual Specht modules 25
3.4. Induction and restriction 26
3.5. Grading Ariki’s Categorification Theorem 27
3.6. Homogeneous Garnir relations 32
3.7. Graded adjustment matrices 34
3.8. Gram determinants and graded adjustment matrix examples 36
4. Seminormal bases and the KLR grading 38
4.1. Gram determinants and graded dimensions 38
4.2. A deformation of the KLR grading 40
4.3. A distinguished homogeneous basis 43
4.4. A conjecture 44
References 45

Introduction

The quiver Hecke algebras, or KLR algebras, Rn(Γ) are a remarkable family of graded algebras which were
introduced independently by Khovanov and Lauda [67, 68] and Rouquier [114], where n ≥ 0 and Γ is an
oriented quiver of Kac-Moody type. The algebras Rn(Γ) are Z-graded and they categorify the negative part
of the associated quantum group Uq(gΓ) [115,125]. That is, there are natural isomorphisms

Uq(gΓ)− ∼=
⊕
n≥0

[Rep(Rn(Γ))],

where [Rep(Rn(Γ))] is the Grothendieck group of the finitely generated graded Rn(Γ)-modules. For each
dominant weight Λ the quiver algebra Rn(Γ) has a cyclotomic quotient RΛ

n (Γ) which categorifes the highest
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2 ANDREW MATHAS

weight module L(Λ) [62,115,127]. These results can be thought of as far reaching generalizations of Ariki’s
Categorification Theorem in type A [2].

The quiver Hecke algebras attached to the quivers of type A are distinguished because these are the only
quiver Hecke algebras which already existed in the literature — all of the other quiver Hecke algebras are “new”
algebras. In type A, when we are working over a field, the quiver Hecke algebras are isomorphic to affine Hecke
algebras of type A [115] and the cyclotomic quiver Hecke algebras are isomorphic to the cyclotomic Hecke
algebras of type A [19]. The cyclotomic Hecke algebras of type A have a uniform description but, historically,
they been studied either as Ariki-Koike algebras (v 6= 1), or as degenerate Ariki-Koike algebras (v = 1). These
algebras include as special cases the group algebras of the symmetric groups and the Iwahori–Hecke algebras
of types A and B. The existence of gradings on Hecke algebras, as least in the “abelian defect case”, was
predicted Rouquier [113, Remark 3.11] and Turner [123].

The cyclotomic quiver Hecke algebras of type A are better understood than other types because we already
know a lot about the isomorphic, but ungraded, cyclotomic Hecke algebras [100]. For example, by piggybacking
on the existing theory, homogeneous bases have been constructed for the cyclotomic quiver Hecke algebras of
type A [49] but such bases are not yet known in other types. Many of the major results for general quiver
Hecke algebras were first proved in type A and then generalized to other types. In fact, the type A algebras,
through Ariki’s theorem and Chuang and Roouquier’s seminal work on sl2-categorifications [26], has motivated
many of these developments.

This chapter brings together the “classical” ungraded representation theory and the emerging graded
representation theory of the cyclotomic Hecke algebras of type A so that people can see how the two theories
interact. With the advent of the KLR algebras these algebras can now be studied from the following different
perspectives:

a) As ungraded cyclotomic Hecke algebras.
b) As graded cyclotomic quiver Hecke algebras or KLR algebras.
c) Geometrically as the ext-algebras of Lusztig sheaves [91,116,125].
d) Through the lens of 2-representation theory using Rouquier’s theory of 2-Kac Moody algebras [62, 114,

127].

Here we focus on (a) and (b) taking an unashamedly combinatorial approach, although we will see shadows of
geometry and 2-representation theory. Kleshchev [73] has written a nice survey of the applications of quiver
Hecke algebras to symmetric groups which takes a takes a slightly different path to that given here.

The first section starts by giving a uniform description of the degenerate and non-degenerate cyclotomic
Hecke algebras. We quickly recall some important structural results from the representation theory of these
algebras. Everything that we mention in this section is applied later in the graded setting.

The second section introduces the cyclotomic KLR algebras as abstract algebras given by generators and
relations. We use the relations in a series of extended examples to try and give the reader a feel for these
algebras. In particular, using just the relations we show that the semisimple cyclotomic quiver Hecke algebras
of type A are always direct sums of matrix rings. From this we deduce Brundan and Kleshchev’s Graded
Isomorphism Theorem in the semisimple case.

The third section starts with Brundan and Kleshchev’s Graded Isomorphism Theorem [19]. We then develop
the representation theory of the cyclotomic quiver Hecke algebras as graded cellular algebras, focusing on the
graded Specht modules. The highlight of this section is a self-contained proof of Brundan and Kleshchev’s
Graded Categorification Theorem [20], starting from the graded branching rules for the graded Specht modules
and then using Ariki’s Categorification Theorem [2] to make the link with canonical bases. We also give a
new treatment of graded adjustment matrices using a cellular algebra approach.

In the final section we sketch one way of proving Brundan and Kleshchev’s Graded Isomorphism Theorem
using the classical theory of seminormal forms. As an application we describe how to construct a new graded
cellular basis for the cyclotomic quiver Hecke algebras which appears to have remarkable properties. We end
with a conjecture for the q-characters of the graded simple modules.

Although the experts will find some new results here most of the novelty is in our approach and our
arguments. We include many examples and a comprehensive survey of the literature. We apologize for any
sins and omissions that remain.

Acknowledgements. This chapter grew of a series of lectures that the author gave at the IMS at the
University of Singapore. I thank the organizers for the opportunity to give these lectures and for asking me to
write this chapter. The direction taken in notes, and the conjecture formulated in §4.4, is partly motivated by
the authors joint work with Jun Hu and I thank him for his implicit contributions. Finally, this chapter was
written while visiting Universität Stuttgart and Charles University in Prague. I am grateful to them for their
hospitality.
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1. Cyclotomic Hecke algebras of type A

This sections surveys the representation theory of the cyclotomic Hecke algebras of type A and, at the
same time, introduces the results and the combinatorics that we need later.

1.1. Cyclotomic Hecke algebras and Ariki-Koike algebras. Hecke algebras of the complex reflections
groups G`,n = Z/`Z oSn of type G(`, 1, n) were introduced by Ariki-Koike [8], motivated by the Iwahori-Hecke
algebras of Coxeter groups [53]. Soon afterwards, Broué and Malle [14] defined Hecke algebras for arbitrary
complex reflection groups. The following refinement of the definition of these algebras unifies the treatment of
the degenerate and non-degenerate algebras.

Let Z be a commutative domain with one.

1.1.1. Definition (Hu-Mathas [52, Definition 2.2]). Fix integers n ≥ 0 and ` ≥ 1. The cyclotomic Hecke
algebra of type A, with Hecke parameter v ∈ Z× and cyclotomic parameters Q1, . . . , Q` ∈ Z, is
the unital associative Z-algebra Hn = Hn(Z, v,Q1, . . . , Q`) with generators L1, . . . , Ln, T1, . . . , Tn−1 and
relations ∏`

l=1(L1 −Ql) = 0, (Tr + v−1)(Tr − v) = 0,

LrLt = LtLr, TrTs = TsTr if |r − s| > 1,

TsTs+1Ts = Ts+1TsTs+1, TrLt = LtTr, if t 6= r, r + 1,

Lr+1 = TrLrTr + Tr,

where 1 ≤ r < n, 1 ≤ s < n− 1 and 1 ≤ t ≤ n.

By definition, Hn is generated by L1, T1, . . . , Tn−1 but we prefer including L2, . . . , Ln in the generating set.
Let Sn be the symmetric group on n letters. For 1 ≤ r < n let sr = (r, r+1) be the corresponding simple

transposition. Then {s1, . . . , sn−1} is the standard set of Coxeter generators for Sn. A reduced expression
for w ∈ Sn is a word w = sr1 , . . . srk with k minimal and 1 ≤ rj < n for 1 ≤ j ≤ k. If w = sr1 . . . srk is
reduced then set Tw = Tr1 . . . Trk . Then Tw is independent of the choice of reduced expression by Matsumoto’s
Monoid Lemma [103] since the braid relations hold in Hn; see, for example, [97, Theorem 1.8]. Arguing as
in [8, Theorem 3.3], it follows that Hn is free as a Z-module with basis

(1.1.2) {La1
1 . . . Lann Tw | 0 ≤ a1, . . . , an < ` and w ∈ Sn } .

Consequently, Hn is free as a Z-module of rank `nn!, which is the order of the complex reflection group
G`,n = Z/`Z oSn of type G(`, 1, n).

Definition 1.1.1 is different to Ariki and Koike’s [8] definition of the cyclotomic Hecke algebras of type
G(`, 1, n) because we have changed the commutation relation for Tr and Lr. Ariki and Koike [8] defined their
algebra to be the unital associative algebra generated by T0, T1, . . . , Tn−1 subject to the relations∏`

l=1(T0 −Q′l) = 0, (Tr + v−1)(Tr − v) = 0,

T0T1T0T1 = T1T0T1T0 TsTs+1Ts = Ts+1TsTs+1,

TrTs = TsTr if |r − s| > 1

We have renormalised the quadratic relation for the Tr, for 1 ≤ r < n, so that q = v2 in the notation of [8].
Ariki and Koike then defined L′1 = T0 and set L′r+1 = TrL

′
rTr for 1 ≤ r < n. In fact, if v − v−1 is invertible

in Z then Hn is (isomorphic to) the Ariki-Koike algebra with parameters Q′l = 1 + (v − v−1)Ql for 1 ≤ l ≤ `.
To see this set L′r = 1 + (v − v−1)Lr in Hn, for 1 ≤ r ≤ n. Then TrL

′
rTr = (v − v−1)TrLrTr + T 2

r = L′r+1,
which implies our claim. Therefore, over a field, Hn is an Ariki-Koike algebra whenever v2 6= 1. On the other
hand, if v2 = 1 then Hn is a degenerate cyclotomic Hecke algebra [11,72]. In general, Hn is not isomorphic
to an Ariki-Koike algebra when v2 = 1.

We note that the Ariki-Koike algebras with v2 = 1 include as a special the group algebras ZG`,n of the
complex reflection groups G`,n, for n ≥ 0. One consequence of the last paragraph is that ZG`,n is not a
specialization of Hn. This said, if F is a field such that Hn and FG`,n are both split semisimple then
Hn
∼= FG`,n. On the other hand, the algebras Hn always fit into the spetses framework of Broué, Malle and

Michel’s [15].
The algebras Hn with v2 = 1 are the degenerate cyclotomic Hecke algebras of type G(`, 1, n) whereas if

v2 6= 1 then Hn is an Ariki-Koike algebra in the sense of [8]. The definition of Hn that we have given is more
natural because many features of the Hecke algebras Hn have a uniform description in the degenerate and
non-degenerate cases:

• The centre of Hn is the set of symmetric polynomials in L1, . . . , Ln (Brundan [17] in the degenerate
case when v2 = 1 and announced when v2 6= 1 by Graham and Francis building on [39]).
• The blocks of Hn are indexed by the same combinatorial data (Lyle and Mathas [89] when v2 6= 1 and

Brundan [17] when v2 = 1).
Draft version as of October 5, 2013
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• The irreducible Hn-modules are indexed by the crystal graph of the integral highest weight module

L(Λ) for Uq(ŝle) (Ariki [2] when v2 6= 1 and Brundan and Kleshchev [21] when v2 = 1).
• The algebras Hn categorify L(Λ). Moreover, in characteristic zero the projective indecomposable

Hn-modules correspond to the canonical basis of L(Λ). (Ariki [2] when v2 6= 1 and Brundan and
Kleshchev [21] when v2 = 1).
• The algebra Hn is isomorphic to a cyclotomic quiver Hecke algebras of type A (Brundan and

Kleshchev [19]).

In contrast, the Ariki-Koike algebras with v2 = 1 do not share any of these properties: their center can be
larger than the set of symmetric polynomials in L1, . . . , Ln (Ariki [2]); they have only one block (Lyle and
Mathas [89]); their irreducible modules are indexed by a different set (Mathas [96]); they do not categorify L(Λ)
and no non-trivial grading on these algebras is known. In this sense, the definition of the Ariki-Koike algebras
from [8] gives the wrong algebras when v2 = 1. Definition 1.1.1 corrects for this.

We remark that many results for the cyclotomic Hecke algebras H Λ
n were proved separately in the

degenerate (v2 = 1) and non-degenerate cases (v2 6= 1). Using Definition 1.1.1 it should now be possible to
give uniform proofs in all cases. In fact, all of arguments that we have checked can be extended to include the
v2 = 1 case. One of the aims of this article is to give a uniform proof of the Ariki-Brundan-Kleshchev Graded
Categorification Theorem [2,20,21] for the integral cyclotomic Hecke algebras H Λ

n .

1.2. Quivers of type A and integral parameters. Rather than work with arbitrary cyclotomic parameters
Q1, . . . , Q`, as in Definition 1.1.1, we now specialize to the integral case using the Morita equivalence results
of Dipper and the author [30] (when v2 6= 1) and Brundan and Kleshchev [18] (when v2 = 1). First, however,
we need to introduce quivers and quantum integers.

Fix an integer e ≥ 2 and let Γe be the oriented quiver with vertex set Ii = Z/(eZ∩Z) and edges i −→ i+ 1,
for i ∈ Ie. If i, j ∈ Ie and i and j are not connected by an edge in Γe then we write i /— j. When e is fixed
we write Γ = Γe and I = Ie. Hence, we are considering either the linear quiver Z (e =∞) or a cyclic quiver
(e <∞):

0 1

0 1

2

0 1

23

0 1

2

4

5

. . .

e = 2 e = 3 e = 4 e = 5

In the literature the case e =∞ is often written as e = 0, however, we prefer e =∞ because then e = |Ie|.
There are also several results which hold when e > n — using the “e = 0 convention” this condition must be
written as e > n or e = 0. Below, if e =∞ then the coset i+ eZ ∈ I should be read as i+ (eZ∩Z) = {i} and
identified with i ∈ Z. We write e ≥ 2 to mean e ∈ {2, 3, 4, 5, . . . } ∪ {∞}.

To the quiver Γe we attach the symmetric Cartan matrix (cij)i,j∈I , where

cij =


2, if i = j,

−1, if i→ j or i← j,

−2, if i� j,

0, otherwise,

Let ŝle be the corresponding Kac-Moody algebra [61] with fundamental weights {Λi | i ∈ I }, positive weight
lattice P+ = P+

e =
∑
i∈I NΛi and positive root lattice Q+ =

⊕
i∈I Nαi. Let (·, ·) be the bilinear form

determined by
(αi, αj) = cij and (Λi, αj) = δij , for i, j ∈ I.

More details can be found, for example, in [61, Chapter 1].
Fix a sequence κ = (κ1, . . . , κ`) ∈ Z`, the multicharge, and define Λ = Λ(κ) = Λκ1 + · · ·+ Λκ` , where

a = a+ eZ ∈ I for a ∈ Z. Then Λ ∈ P+ is dominant weight of level `. The integral cyclotomic Hecke algebras
defined below depend only on Λ, however, the bases and much of the combinatorics that we introduce will
depend upon the choice of multicharge κ.

Recall that Z is an integral domain. For t ∈ Z× and k ∈ Z define the t-quantum integer [k]t by

[k]t =

{
t+ t3 + · · ·+ t2k−1, if k ≥ 0,

−(t−1 + t−3 + · · ·+ t2k−1), if k < 0.

When t is understood we simply write [k] = [k]t. Unpacking the definition, if t2 6= 1 then [k] = (t2k−1)/(t−t−1)
whereas [k] = ±k if t = ±1.

The quantum characteristic of v is the smallest non-negative integer e ∈ {2, 3, 4, 5, . . . } ∪ {∞} such
that [e]v = 0, where we set e =∞ if [k]v 6= 0 for all k ≥ 0.

Draft version as of October 5, 2013
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1.2.1. Definition. Suppose that Λ = Λ(κ) ∈ P+, for κ ∈ Z`, and that v ∈ Z has quantum character-
istic e. The integral cyclotomic Hecke algebra of type A of weight Λ is the cyclotomic Hecke algebra
H Λ
n = Hn(Z, v,Q1, . . . , Qr) with Hecke parameter v and cyclotomic parameters Qr = [κr]v, for 1 ≤ r ≤ `.

If the reader finds the choice of cyclotomic parameters in Definition 1.2.1 surprising then, as discussed
in §1.1, observe that if v2 6= 1 then these parameters correspond to the Ariki-Koike parameters Q′r = v2κr , for
1 ≤ r ≤ `.

As observed in [52, §2.2], translating the Morita equivalence theorems of [30, Theorem 1.1] and [18,
Theorem 5.19] into the current setting explains the significance of the integral cyclotomic Hecke algebras.

1.2.2. Theorem (Dipper-Mathas [30], Brundan-Kleshchev [18] ). Every cyclotomic quiver Hecke algebra Hn

is Morita equivalent to a direct sum of tensor products of integral cyclotomic Hecke algebras.

Brundan and Kleshchev treated the degenerate case when v2 = 1 using very different arguments than those
in [30]. With the benefit of Definition 1.1.1 the argument of [30] now applies uniformly to both the degenerate
and non-degenerate cases. The Morita equivalences in [18,30] are described explicitly, with the equivalence
being determined by orbits of the cyclotomic parameters. See [18,30] for more details.

In view of Theorem 1.2.2, it is enough to consider the integral cyclotomic Hecke algebras H Λ
n where v ∈ Z×

has quantum characteristic e and Λ ∈ P+. This said, in this section we continue to consider the general case
of a not necessarily integral cyclotomic Hecke algebra because we will need this generality in §4.2.

1.3. Cellular algebras. For convenience we recall Graham and Lehrer’s cellular algebra framework [45]. This
will allow us to define Specht modules for Hn as cell modules. Significantly, the cellular algebra machinery
endows the Specht modules with an associative bilinear form. Here is the definition.

1.3.1. Definition (Graham and Lehrer [45]). Suppose that A is a Z-algebra that is Z-free and of finite rank
as a Z-module. A cell datum for A is an ordered triple (P, T, C), where (P,B) is the weight poset, T (λ)
is a finite set for λ ∈ P, and

C :
∐
λ∈P

T (λ)× T (λ)−→A; (s, t) 7→ cst,

is an injective map of sets such that:

(GC1) { cst | s, t ∈ T (λ) for λ ∈ P } is a Z-basis of A.
(GC2) If s, t ∈ T (λ), for some λ ∈ P, and a ∈ A then there exist scalars rtv(a), which do not depend on s,

such that

csta =
∑

v∈T (λ)

rtv(a)csv (mod ABλ) ,

where ABλ is the Z-submodule of A spanned by { cab | µ B λ and a, b ∈ T (µ) }.
(GC3) The Z-linear map ∗ :A −→ A determined by (cst)

∗ = cts, for all λ ∈ P and all s, t ∈ T (λ), is an
anti-isomorphism of A.

A cellular algebra is an algebra which has a cell datum. If A is a cellular algebra with cell datum (P, T, C)
then the basis { cst | λ ∈ P and s, t ∈ T (λ } is a cellular basis of A with cellular algebra anti-isomorphism 8.

König and Xi [80] have given a basis free definition of cellular algebras. Goodman and Graber [42] have
shown that (GC3) can be relaxed to the requirement that there exists an anti-isomorphism ∗ of A such that
(cst)

∗ ≡ cts (mod A) Bλ.
The prototypical example of a cellular algebra is a matrix algebra with its basis of matrix units, which we

call a Wedderburn basis. As any split semisimple algebra is isomorphic to a direct sum of matrix algebras it
follows that every split semisimple algebra is cellular. The cellular algebra framework is, however, most useful
in studying non-semisimple algebras which are not isomorphic to a direct sum of matrix rings. In general, a
cellular basis can be thought of as approximation, or weakening of, a basis of matrix units. (This is idea is
made more explicit in [101].)

The cellular basis axioms, like the basis of matrix units of a split semisimple algebra, determines a filtration
of the cellular algebra, via the ideals ABλ. As we will see, this leads to a quick construction of its irreducible
representations.

For a cellular algebra A we let ADλ be the two-sided ideal of A spanned by { cab | µ D λ and a, b ∈ T (µ) }.
Fix λ ∈ P . The cell module Cλ is the (right) A-module with basis { ct | t ∈ T (λ) } and where a ∈ A acts

on Cλ by:

cta =
∑

v∈T (λ)

rtv(a)cv, for t ∈ T (λ),

where the scalars rtv(a) ∈ Z are those appearing in (GC2). It follows immediately from Definition 1.3.1 that

Cλ is an A-module. Indeed, if s ∈ T (λ) then Cλ is isomorphic to the submodule (cst +ABλ)A of A/Aλ via
Draft version as of October 5, 2013
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the map ct 7→ cst +Aλ, for t ∈ T (λ). The cell module Cλ comes with a symmetric bilinear form 〈 , 〉λ that is
uniquely determined by

(1.3.2) 〈ct, cv〉λcab ≡ catcvb (mod ABλ) ,

for a, b, t, v ∈ T (λ). By (GC2) of Definition 1.3.1, the inner product 〈ct, cv〉λ depends only on t and v, and not

on the choices of a and b. In addition, 〈xa, y〉 = 〈x, ya∗〉λ, for all x, y ∈ Cλ and a ∈ A. Therefore,

(1.3.3) radCλ = {x ∈ Cλ | 〈x, y〉λ = 0 for all y ∈ Cλ }

is an A-submodule of Cλ. Set Dλ = Dλ/ radCλ. Then Dλ is an A-module.
The following theorem summarizes some of the main properties of a cellular algebra. The proof is surprisingly

easy given the strength of the result. In applications the main difficulty is in showing that a given algebra is
cellular.

1.3.4. Theorem (Graham and Lehrer [45]). Suppose that Z = F is a field. Then:

a) Suppose that µ ∈ P. Then Dλ is either zero or absolutely irreducible.
b) Let P0 = {µ ∈ P | Dµ 6= 0 }. Then {Dµ | µ ∈ P0 } is a complete set of pairwise non-isomorphic

irreducible A-modules.
c) If λ ∈ P and µ ∈ P0 then [Cλ:Dµ] 6= 0 only if λ D µ. Moreover, [Cµ:Dµ] = 1.

In part (c), [Cλ:Dµ] is the decomposition multiplicity of the simple module Dµ in Cλ. If µ ∈ P0 let
Pµ be the projective cover of Dµ. It follows from Definition 1.3.1 that Pµ has a filtration in which the
quotients are cell modules such that Cλ appears with multiplicity [Cλ:Dµ]. Consequently, an analogue of
Brauer-Humphrey’s reciprocity holds for A. In particular, the Cartan matrix of A is symmetric.

1.4. Multipartitions and tableaux. A partition of m is a weakly decreasing sequence λ = (λ1, λ2, . . . )
of non-negative integers such that |λ| = λ1 + λ2 + · · · = m. An (`-)multipartition of n is an `-tuple
λ = (λ(1), . . . , λ(`)) of partitions such that |λ(1)|+ · · ·+ |λ(`)| = n. We identify the multipartition λ with its

diagram which is the set of nodes JλK = { (l, r, c) | 1 ≤ c ≤ λ(l)
r for 1 ≤ l ≤ ` }. In this way, we think of λ

as an ordered `-tuple of arrays of boxes in the plane and we talk of the components, rows and columns
of λ. For example, if λ = (3, 12|2, 1|3, 2) then

λ = JλK =


∣∣∣∣∣∣∣

∣∣∣∣∣∣∣
 .

A node A is an addable node of λ if A /∈ λ and λ ∪ {A} is the (diagram of) a multipartition of n+ 1.
Similarly, a node B is a removable node of λ if B ∈ λ and λ \ {B} is a multipartition of n − 1. If A is
an addable node of λ let λ + A be the multipartition λ ∪ {A} and, similarly, if B is a removable node let
λ−A = λ \ {B}. Order the nodes lexicographically by ≤.

The set of multipartitions of n becomes a poset under dominance where λ dominates µ, written as λ D µ,
if

l−1∑
k=1

|λ(k)|+
i∑

j=1

λ
(l)
j ≥

l−1∑
k=1

|µ(k)|+
i∑

j=1

µ
(l)
j ,

for 1 ≤ l ≤ ` and i ≥ 1. If λ D µ and λ 6= µ then write λ B µ. Let Pn = P`,n be the set of multipartitions
of n. We consider Pn as a poset ordered by dominance.

Fix a multipartition λ. A λ-tableau is a bijective map t : JλK−→{1, 2, . . . , n}, which we identify with a
labelling of (the diagram of) λ by {1, 2, . . . , n}. For example, 1 2 3

4
5

∣∣∣∣∣∣∣
6 7
8

∣∣∣∣∣∣∣
9 10 11
12 13

 and

 9 12 13
10
11

∣∣∣∣∣∣∣
6 8
7

∣∣∣∣∣∣∣
1 3 5
2 4


are both λ-tableaux when λ = (3, 12|2, 1|3, 2).

A λ-tableau is standard if its entries increase along rows and down columns in each component. For
example, the two tableaux above are standard. Let Std(λ) be the set of standard λ-tableaux. If P is any set
of multipartitions let Std(P) =

⋃
λ∈P Std(λ). Similarly set Std2(P) = { (s, t) | s, t ∈ Std(λ) for λ ∈ P }.

If t is a λ-tableau set Shape(t) = λ and let t↓m be the subtableau of t which contains the numbers
{1, 2, . . . ,m}. If t is a standard λ-tableau then Shape(t↓m) is a multipartition for all m ≥ 0. We extend the
dominance ordering to Std(Pn), the set of all standard tableaux, by defining s D t if Shape(s↓m) D Shape(t↓m),
for 1 ≤ m ≤ n. As before, write s B t if s D t and s 6= t. Finally, define the strong dominance ordering on
Std2(Pn) by (s, t) I (u, v) if s D u and t D v. Similarly, (s, t) I (u, v) if (s, t) I (u, v) and (s, t) 6= (u, v)
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It is easy to see that there are unique standard λ-tableaux tλ and tλ such that tλ D t D tλ, for all
t ∈ Std(λ). The tableau tλ has the numbers 1, 2, . . . , n entered in order from left to right along the rows of

tλ
(1)

, and then tλ
(2)

, . . . , tλ
(`)

. Similarly, tλ is the tableau with the numbers 1, . . . , n entered in order down

the columns of tλ
(`)

, . . . , tλ
(2)

, tλ
(1)

. If λ = (3, 12|2, 1|3, 2) then the two λ-tableaux displayed above are tλ and
tλ, respectively.

Given a standard λ-tableau t define permutations d(t), d′(t) ∈ Sn by tλd(t) = t = tλd
′(t). Then

d(t)d′(t)−1 = d(tλ) with `(d(t)) + `(d′(t)) = `(d(tλ)), for all t ∈ Std(λ). Let ≤ be the Bruhat order on Sn

with the convention that 1 ≤ w for all w ∈ Sn. Independently, Ehresmann and James [54] showed that if
s, t ∈ Std(λ) then s D t if and only if d(s) ≤ d(t) and if and only if d′(t) ≤ d′(s). A proof can be found, for
example, in [97, Theorem 3.8].

Finally, we will need to know how to conjugate multipartitions and tableaux. The conjugate of a partition λ
is the partition λ′ = (λ′1, λ

′
2, . . . ) where λ′r = # { s ≥ 1 | λs ≥ r }. That is, we swap the rows and columns of λ.

The conjugate of a multipartition λ = (λ(1)| . . . |λ(`)) is the multipartition λ′ = (λ(`)′| . . . |λ(1)′). Similarly,
the conjugate of a λ-tableau t = (t(1)| . . . |t(`)) is the λ′-tableau t′ = (t(`)′| . . . |t(1)′) where t(k)′ is the tableau
obtained by swapping the rows and columns of t(k), for 1 ≤ k ≤ `. Then λ D µ if and only if µ′ D λ′ and
that s D t if and only if t′ D s′.

1.5. The Murphy basis of H Λ
n . Graham and Lehrer [45] showed that the cyclotomic Hecke algebras (when

v2 6= 1) are cellular algebras. In this section we recall another cellular basis for these algebras which was
constructed in [29] when v2 6= 1 and in [11] when v2 = 1. When ` = 1 these result are due to Murphy [106].

First observe that Definition 1.1.1 implies that there is a unique anti-isomorphism ∗ on Hn which fixes
each of the generators T1, . . . , Tn−1, L1, . . . , Ln of Hn. It is easy to see that T ∗w = Tw−1 , for w ∈ Sn

Fix a multipartition λ ∈ Pn. Following [29, Definition 3.14] and [11, §6], if s, t ∈ Std(λ) define mst =
Td(s)−1mλTd(t), where mλ = uλxλ,

uλ =
∏

1≤l<`

|λ(1)|+···+|λ(l)|∏
r=1

1

Q′l+1

(Lr − [κl+1]) and xλ =
∑
w∈Sλ

v`(w)Tw,

where Q′l = 1 + (v − v−1)Ql as in §1.1. The renormalization of uλ by 1/Q′l+1 is not strictly necessary. When
Q′l+1 = 0 this factor can be omitted from the definition of uλ, at the expense of some aesthetics in some of
the formulas which follow. In the integral case, which i what we care most about, this problem does not arise
because Q′l = qκl 6= 0 since Ql = [κl], for 1 ≤ l ≤ `.

Using the relations in H Λ
n it is not hard to show that uλ and xλ commute. Consequently, m∗st = mts, for

all (s, t) ∈ Std2(Pn).

1.5.1. Theorem ( [29, Theorem 3.26] and [11, Theorem 6.3]). The cyclotomic Hecke algebra H Λ
n is free as a

Z-module with cellular basis {mst | s, t ∈ Std(λ) for λ ∈ Pn } with respect to the poset (Pn,D).

Consequently, H Λ
n is a cellular algebra so all of theory in §1.3 applies. In particular, for each λ ∈ Pn there

exists a Specht module Sλ with basis {mt | t ∈ Std(λ) }. Concretely, we could take mt = mtλt + H Bλ
n , for

t ∈ Std(λ).

LetDλ = Sλ/ radSλ be the quotient of Sλ by the radical of its bilinear form. SetKΛ
n = {µ ∈ Pn | Dµ 6= 0 }.

Then by Theorem 1.3.4 we obtain:

1.5.2. Corollary ( [29, 45]). Suppose that Z = F is a field. Then {Dµ | µ ∈ KΛ
n } is a complete set of

pairwise non-isomorphic irreducible H Λ
n -modules.

The set of multipartitions KΛ
n has been determined by Ariki [3]. We describe and recover his classification

of the irreducible H Λ
n -modules in Corollary 3.5.12 below. When ` ≥ 3 the only known descriptions of KΛ

n are
recursive. See [9, 27] for the cases when ` ≤ 2.

1.6. Semisimple cyclotomic Hecke algebras of type A. We now explicitly describe the semisimple
representation theory of H Λ

n using the seminormal coefficient systems introduced in [52]. As we are ultimately
interested in the cyclotomic quiver Hecke algebras, which are intrinsically non-semisimple algebras, it is a little
surprising that we are interested in these results. we will see, however, that the semisimple representation
theory of H Λ

n and the KLR grading are closely intertwined.
The Gelfand-Zetlin subalgebra of Hn is the subalgebra Ln = Ln(Z) = 〈L1, L2, . . . , Ln〉. We believe

that understanding this subalgebra is crucial to understanding the representation theory of Hn. To explain
how Ln acts on H Λ

n define two content functions for t ∈ Std(Pn) and 1 ≤ r ≤ n by

(1.6.1) cZr (t) = v2(c−b)Ql + [c− b]v ∈ Z and cZr (t) = κl + c− b ∈ Z,
where t(l, b, c) = r. In the special case of the integral parameters, where Ql = [κl]v for 1 ≤ l ≤ `, the reader
can check that cZr (t) = [cZr (t)]v, for 1 ≤ r ≤ n.
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The next result is well-known and extremely useful.

1.6.2. Lemma (James-Mathas [57, Proposition 3.7]). Suppose that 1 ≤ r ≤ n and that s, t ∈ Std(λ), for
λ ∈ Pn. Then

mstLr ≡ cZr (t)mst +
∑
vBt

v∈Std(λ)

avmsv (mod H Bλ
n ) ,

for some av ∈ Z.

Proof. Let (l, b, c) = t−1(r). Using our notation, [57, Proposition 3.7] says that mstL
′
r = Q′lv

2(c−b)mst

plus linear combination of more dominant terms, where Q′l = 1 + (v − v−1)Ql. As Lr = 1 + (v − v−1)L′r
this easily implies the result when v2 6= 1. The case when v2 = 1 now follows by specialization – or,
see [11, Lemma 6.6]. �

In the integral case this implies that mstLr ≡ [cZr (t)]mst +
∑

vBt avmst (mod H Bλ
n ) . This agrees with [52,

Lemma 2.9].
The Hecke algebra Hn is content separated if whenever s, t ∈ Std(Pn) are standard tableaux, not

necessarily of the same shape, then s = t if and only if cZr (s) = cZr (t), for 1 ≤ r ≤ n. The following is an
immediate corollary of Lemma 1.6.2 using the theory of JM-elements developed in [101, Theorem 3.7].

1.6.3. Corollary ( [52, Proposition 3.4]). Suppose that Z = F is a field and that Hn is content separated.
Then, as an (Ln,Ln)-bimodule,

Hn =
⊕

(s,t)∈Std2(Pn)

Hst,

where Hst = {h ∈Hn | Lrh = cZr (s)h and hLr = cZr (t)h, for 1 ≤ r ≤ n }.

For the rest of §1.6 we assume that Hn is content separated. Corollary 1.6.3 motivates the following
definition.

1.6.4. Definition (Hu-Mathas [52, Definition 3.7]). Suppose that Z = K is a field. Then a ∗-seminormal
basis of Hn is any basis of the form { fst | 0 6= fst ∈ Hst and f∗st = fts, for (s, t) ∈ Std2(Pn) } .

There is a vast literature on seminormal bases. This story started with Young’s seminormal forms for
the symmetric groups [130] and has now been extended to Hecke algebras and many other diagram algebras
including the Brauer, BMW and partition algebras; see, for example, [98, 108,111].

Suppose that {fst} is a ∗-seminormal basis and that (s, t), (u, v) ∈ Std2(Pn). Let Cn = { cZr (s) | s ∈ Std(Pn) for 1 ≤ r ≤ n }
be the set of all possible contents for tableaux in Std(Pn). Following Murphy [101,105], for a standard tableau
s ∈ Std(Pn) define

Fs =

n∏
r=1

∏
c∈Cn
c 6=cZr (s)

Lr − c
cZr (s)− c

.

By Definition 1.6.4, if (s, t), (u, v) ∈ Std2(Pn) then fst = δsuδtvFufstFv. In particular, Fs is a non-zero element
of Hn. It follows that Fs is a scalar multiple of fss which in turn implies that {Fs | s ∈ Std(Pn) } is a set of
pairwise orthogonal idempotents in Hn. (In fact, in [101] these properties are used to establish Corollary 1.6.3.)
Consequently, there exists a non-zero scalar γs ∈ F such that Fs = 1

γs
fss. Therefore, if (s, t), (u, v) ∈ Std2(Pn)

then

(1.6.5) fstfuv = fstFtFvfuv = δtvγtfsv,

The next definition will allow us to classify all seminormal bases and to describe how H Λ
n acts on them.

1.6.6. Definition (Hu-Mathas [52, §3]). A ∗-seminormal coefficient system is a collection of scalars

α = {αr(t) | t ∈ Std(Pn) and 1 ≤ r ≤ n }
such that αr(t) = 0 if v = t(r, r + 1) is not standard, if v ∈ Std(Pn) then

αr(v)αr(t) =

(
1− v−1cZr (t) + vcZr (v)

)(
1 + vcZr (t)− v−1cZr (v)

)(
cZr (t)− cZr (v)

)(
cZr (v)− cZr (t)

) ,

and if 1 ≤ r < n then αr(t)αr+1(tsr)αr(tsrsr+1) = αr+1(t)αr(tsr+1)αr+1(tsr+1sr).

As the reader might guess, the two conditions on the scalars αr(t) in Definition 1.6.6 correspond to the
quadratic relations (Tr−v)(Tr +v−1) = 0 and the braid relations TrTr+1Tr = Tr+1TrTr+1 in Hn, respectively.
The simplest example of a seminormal coefficient system is

αr(t) =

(
1− v−1cZr+1(t) + vcZr (t)

)(
cZr+1(t)− cZr (t)

) ,
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whenever 1 ≤ r < n and t, t(r, r + 1) ∈ Std(Pn). Another seminormal coefficient system is given in (1.7.1)
below.

Seminormal coefficient systems arise because they describe the action of Hn on a seminormal basis. More
precisely, we have the following:

1.6.7. Theorem (Hu-Mathas [52]). Suppose that Z = K is a field and that Hn is content separated and that
{ fst | (s, t) ∈ Std2(Pn) } is a seminormal basis of Hn. Then {fst} is a cellular basis of Hn and there exists a
unique seminormal coefficient system α such that

fstTr = αr(t)fsv +
1 + (v − v−1)cZr+1(t)

cZr+1(t)− cZr (t)
fst,

where v = t(r, r + 1). Moreover, if s ∈ Std(λ) then Fs = 1
γs
fss is a primitive idempotent and Sλ ∼= FsHn is

irreducible for all λ ∈ Pn.

Sketch of proof. By definition, {fst} is a basis of Hn such that f∗st = fts for all (s, t) ∈ Std2(Pn). Therefore, it
follows from (1.6.5) that {fst} is a cellular basis of Hn with cellular automorphism ∗.

It is an amusing application of the relations in Definition 1.1.1 to show that there exists a seminormal
coefficient system which describes the action of Tr on the seminormal basis; [52, Lemma 3.13] for details. The
uniqueness of α is clear.

We have already observed that Fs = 1
γs

, for s ∈ Std(λ), so it remains to show that Fs is primitive and that

Sλ ∼= FsHn. By what we have already shown, FsHn is contained in the span of { fst | t ∈ Std(λ) }. On the
other hand, if f =

∑
t rtfst ∈ FsHn and rv 6= 0 then rvfsv = fFv ∈ FsHn. It follows that FsHn =

∑
tKfst, as

a vector space. Consequently, FsHn is irreducible and Fs is a primitive idempotent in Hn. Finally, Sλ ∼= FsHn

by Lemma 1.6.2 since Hn is content separated. �

1.6.8. Corollary ( [52, Corollary 3.7]). Suppose that α is a seminormal coefficient system and that s B t =
s(r, r + 1), for tableaux s, t ∈ Std(Pn) and 1 ≤ r < n. Then αr(s)γt = αr(t)γs.

Consequently, if the seminormal coefficient system α is known then fixing γt, for some t ∈ Std(λ), determines
γs for all s ∈ Std(λ). Conversely, these scalars, together with α, determines the seminormal basis.

1.6.9. Corollary (Classification of seminormal bases [52, Theorem 3.14]). There is a one-to-one correspondence
between the ∗-seminormal bases of Hn and the pairs (α,γ) where α = {αr(s) | 1 ≤ r < n and s ∈ Std(Pn) }
is a seminormal coefficient system and γ = { γtλ | λ ∈ Pn }.

Finally, the seminormal basis machinery in this section can be used to classify the semisimple cyclotomic
Hecke algebras Hn, thus reproving Ariki’s semisimplicity criterion [1], when v2 6= 1 and [11, Theorem 6.11],
when v2 = 1.

1.6.10. Theorem (Ariki [1] and [11, Theorem 6.11]). Suppose that F is a field. The following are equivalent:

a) Hn = Hn(F, v,Q1, . . . , Q`) is semisimple.
b) Hn is content separated.

c) [1]v[2]v . . . [n]v
∏

1≤r<s≤`

∏
−n<d<n

(v2dQr + [d]v −Qs) 6= 0.

We want to rephrase the semisimplicity criterion of Theorem 1.6.10 for the integral cyclotomic Hecke
algebras H Λ

n , for Λ ∈ P+. For each i ∈ I define the i-string of length n+1 to be αi,n = αi+αi+1+· · ·+αi+n.
Then αi,n ∈ Q+.

1.6.11. Corollary. Suppose that Λ ∈ P+ and that Z = F is a field. Then H Λ
n is semisimple if and only

if (Λ, αi,n) ≤ 1, for all i ∈ I.

Proof. As Qr = [κr], for 1 ≤ r ≤ `, the statement of Theorem 1.6.10(c) simplifies because v2dQr + [d]v −Qs =
v−2κs [d+ κr − κs]v. Therefore, H Λ

n is semisimple if and only if

[1]v[2]v . . . [n]v
∏

1≤r<s≤`

∏
−n<d<n

[d+ κr − κs]v 6= 0.

On the other hand, (Λ, αi,n) ≤ 1 for all i ∈ I if and only if (Λ, αi) ≤ 1, for all i ∈ I, and whenever (Λ, αi) 6= 0
then (Λ, αi+k) 6= 0, for 1 ≤ k ≤ n. The result follows. �

In particular, note that e` > n if (Λ, αi,n) ≤ 1, for all i ∈ I.
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1.7. Gram determinants and the cyclotomic Jantzen sum formula. For future use, we now recall
the closed formula for the Gram determinants of the Specht modules Sλ and the connection between these
formulas and Jantzen filtrations. Throughout this section we assume that Hn is content separated over the
field K = Z.

For λ ∈ Pn let Gλ =
(
〈ms,ms〉

)
s,t∈Std(λ)

be the Gram matrix of the Specht module Sλ, where we fix an

arbitrary ordering of the rows and columns of Gλ.
For (s, t) ∈ Std2(Pn) set fst = FsmstFt. Then by Lemma 1.6.2 and (1.6.5),

fst = mst +
∑

(u,v)B(s,t)

ruvmuv,

for some ruv ∈ K. By construction, {fst} is a seminormal basis of Hn. By [52, Proposition 3.18] this basis
corresponds to the seminormal coefficient system given by

(1.7.1) αr(t) =


1, if t B t(r, r + 1),(

1−v−1cr(t)+vcr(v)
)(

1+vcr(t)−v−1cr(v)
)(

cr(t)−cr(v)
)(
cr(v)−cr(t)

) , otherwise,

for t ∈ Std(Pn) and 1 ≤ r < n such that tsr is standard. The γ-coefficients {γt} for this basis are explicitly
known by [57, Corollary 3.29]. Moreover,

(1.7.2) detGλ =
∏

t∈Std(λ)

γt

By explicitly computing the scalars γt, and using an intricate inductive argument based on the semisimple
branching rules for the Specht modules, James and the author proved the following:

1.7.3. Theorem (James-Mathas [57, Corollary 3.38]). Suppose that Hn is content separated. Then there exist
explicitly known scalars gλµ and signs ελµ = ±1 such that

detGλ =
∏

µ∈Pn
µBλ

g
ελµ dimSλ

λµ .

The scalars gλµ are described combinatorially as the quotient of at most two hook lengths which are
determined by λ and µ. The sign ελµ is the parity of the sum of the leg lengths of these hooks.

Theorem 1.7.3 is a very pretty closed formula for the Gram determinantGλ which generalizes a classical result
of James and Murphy [59]. One problem with this formula is that detGλ is a polynomial in v, v−1, Q1, . . . , Q`
whereas Theorem 1.7.3 computes this determinant as a rational function in v,Q1, . . . , Q`. On the other hand,
as we now recall, Theorem 1.7.3 has an impressive module theoretic application in terms of the Jantzen sum
formula.

Fix a modular system (K,Z, F ), where Z discrete valuation ring with maximal ideal p and such that Z
contains v, v−1, Q1, . . . , Q`, Let K be the field of fractions of Z and let F = Z/p be the residue field of Z.
Let H Z

n , H K
n
∼= H Z

n ⊗Z K and H F
n = H Z

n ⊗Z F be the corresponding Hecke algebras. Therefore, H F
n

has Hecke parameter v + p and cyclotomic parameters Ql + p, for 1 ≤ l ≤ `.
Let λ ∈ Pn and let Sλ

Z and Sλ
F
∼= Sλ

Z ⊗Z F be the corresponding Specht modules for H Z
n and H F

n ,

respectively. Define a filtration { Jk(Sλ
Z) | k ≥ 0 } of Sλ

Z by Jk(Sλ
Z) = {x ∈ Sλ

Z | 〈x, y〉λ ∈ pk } , for k ≥ 0.

The Jantzen filtration of Sλ is the filtration Sλ = J0(Sλ
F ) ⊇ J1(Sλ

F ) ⊇ · · · ⊇ Jz(S
λ
F ) = 0, where

Jk(Sλ
F ) =

(
Jk(Sλ

Z) + pSλ
Z
)
/pSλ

Z for k ≥ 0.
Let Rep(Hn) be the category of finitely generated Hn-modules and let [Rep(Hn)] be its Grothendieck

group. Let [M ] be the image of the Hn-module M in [Rep(Hn)]. Let νp be the p-adic valuation map on Z×.

1.7.4. Theorem (James-Mathas [57, Theorem 4.6]). Suppose that (K,Z, F ) is a modular system and that
λ ∈ Pn. Then, in [Rep(H F

n )], ∑
k>0

[Jk(Sλ
F )] =

∑
µBλ

ελµνp(gλµ)[Sµ
F ].

Intuitively, the proof of Theorem 1.7.4 amounts to taking the p-adic valuation of the formula in Theorem 1.7.3.
In fact, this is exactly how Theorem 1.7.4 is proved except that you need the corresponding formulas for the
Gram determinants of the weight spaces of the Weyl modules of the cyclotomic Schur algebras of [29]. This is
enough because the dimensions of the weight spaces of a module uniquely determine the image of the module
in the Grothendieck group. The proof given in [57] is stated only for the non-degenerate case v2 6= 1, however,
the arguments apply equally well for the degenerate case when v2 = 1.

The main point that we want to emphasize in this section is that the rational formula for detGλ
F in

Theorem 1.7.3 corresponds to writing the lefthand side of the Jantzen sum formula sum as a Z-linear
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combination of Specht modules. Therefore, when the righthand side of the sum formula is written as a linear
combination of simple modules some of the terms must cancel. We give a cancellation free sum formula in
§4.1.

Theorem 1.7.4 is a useful inductive tool because it gives an upper bound on the decomposition numbers
of Sλ. Let jλµ = ελµνp(gλµ), for λ,µ ∈ Pn and set dFλµ = [Sλ

F : Dµ
F ]. Using Theorem 1.7.4 to compute the

multiplicity of Dµ
F in

⊕
k>0 Jk(Sλ) yields the following.

1.7.5. Corollary. Suppose that λ,µ ∈ Pn. Then 0 ≤ dFλµ ≤
∑
ν∈Pn

λBνDµ

jλνd
F
νµ.

A second application, Theorem 1.7.4 classifies the irreducible Specht modules Sλ, for λ ∈ KΛ
n .

1.7.6. Corollary (James-Mathas [57, Theorem 4.7]). Suppose that λ ∈ KΛ
n . Then the Specht module Sλ is

irreducible if and only if jλµ = 0 for all µ B λ.

1.8. The blocks of Hn. The most important application of the Jantzen Sum Formula (Theorem 1.7.4) is to
the classification of the blocks of H F

n . The algebra Hn, and in fact any algebra over a field, can be written as
a direct sum of indecomposable two-sided ideals: H F

n = B1 ⊕ · · · ⊕Bd. The subalgebras B1, . . . , Bz, which
are the blocks of Hn, are uniquely determined up to permutation. Any H F

n -module M splits into a direct
sum of block components M = MB1 ⊕ · · · ⊕MBd, where we allow some of the summands to be zero. The
module M belongs to the block Br if M = MBr. It is a standard fact that two simple modules Dλ and Dµ

belong to the same block if and only if they are in the same linkage class. That is, there exists a sequence
of multipartitions ν0 = λ, ν1, . . . ,νz = µ such that [Sνr : Dνr+1 ] 6= 0 or [Sνr+1 : Dνr ] 6= 0, for 0 ≤ r < z.

We want an explicit combinatorial description of the blocks of H F
n . Define two equivalence relations

∼C and ∼J on Pn as follows. First, λ ∼C µ if there is an equality of multisets { cZtλ(r) | 1 ≤ r ≤ n } =

{ cZtµ(r) | 1 ≤ r ≤ n }. The second relation, Jantzen equivalence, is more involved: λ ∼J µ if there exists a
sequence ν0 = λ,ν1, . . . ,νz = µ of multipartitions in Pn such that jνrνr+1

6= 0 or jνr+1νr 6= 0, for 0 ≤ r < z.

1.8.1. Theorem (Lyle-Mathas [89], Brundan [17]). Suppose that λ,µ ∈ Pn. Then the following are equivalent:

a) Dλ and Dµ are in the same H F
n -block.

b) Sλ and Sµ are in the same H F
n -block.

c) λ ∼J µ.
d) λ ∼C µ.

Parts (a) and (b) are equivalent by the general theory of cellular algebras [45] whereas the equivalence of
parts (b) and (c) is a general property of Jantzen filtrations from [89]. (In fact, part (c) is general property of
the standard modules of a quasi-hereditary algebra.) In practice, part (d) is the most useful because it easy
to compute.

The hard part in proving Theorem 1.8.1 is in showing that parts (c) and (d) are equivalent. The argument
is purely combinatorial with work of Fayers [34,35] playing an important role.

In the integral case, when H F
n = H Λ

n for some Λ ∈ P+, there is a nice reformulation of Theorem 1.8.1.
The residue sequence of a standard tableau t is it = (it1, . . . , i

t
n) ∈ In where itr = cZr (t) + eZ. If t ∈ Std(λ),

for λ ∈ Pn, define

βλ =

n∑
r=1

αitr =

n∑
r=1

αiλr ∈ Q
+.

It is easy to see that βλ depends only on λ, and not on the choice of t. By definition, βλ ∈ Q+. Moreover,
λ ∼C µ if and only if βλ = βµ. Hence, we have the following:

1.8.2. Corollary. Suppose that Λ ∈ P+ and λ,µ ∈ Pn. Then Sλ and Sµ are in the same H Λ
n -block if and

only if βλ = βµ.

2. Cyclotomic quiver Hecke algebras of type A

This section introduces the quiver Hecke algebras, and their cyclotomic quotients. We use the relations
to reveal some of the properties of these algebras. The main aim of this section is to give the reader an
appreciation of, and some familiarity with, the KLR relations without appealing to any general theory.

2.1. Graded algebras. In this section we quickly review the theory of graded (cellular) algebras. For more
details the reader is referred to [13, 49, 107]. Throughout, Z is a commutative integral domain. Unless
otherwise stated, all modules and algebras will be free and of finite rank as Z-modules.

In this chapter a graded module will always mean a Z-graded module. That is, a Z-module M which
has a decomposition M =

⊕
d∈ZMd as a Z-module. A positively graded module is a graded module

M =
⊕

dMd such that Md = 0 if d < 0.
Draft version as of October 5, 2013



12 ANDREW MATHAS

A graded algebra is a unital associative Z-algebra A =
⊕

d∈ZAd that is a graded Z-module such that
AdAe ⊆ Ad+e, for all d, e ∈ Z. It follows that 1 ∈ A0 and that A0 is a graded subalgebra of A. A graded
(right) A-module is a graded Z-module M such that M is an A-module and MdAe ⊆Md+e, for all d, e ∈ Z,
where M and A are the ungraded modules obtained by forgetting the Z-grading on M and A respectively.
Graded submodules, graded left A-modules and so on are all defined in the obvious way.

Suppose that M is a graded A-module. If m ∈ Md, for d ∈ Z, then m is homogeneous of degree d
and we set degm = d. Every element d ∈ M can be written uniquely as a linear combination m =

∑
dmd

of its homogeneous components, where degmd = d. Importantly, if M is a graded A-module and
m =

∑
dmd ∈M then md ∈M , for all d ∈ Z.

A homomorphism of graded A-modules M and N is an A-module homomorphism f :M −→ N such
that deg f(m) = degm, for all m ∈ M . That is, f is a degree preserving A-module homomorphism. Let
HomA(M,N) be the space of (degree preserving) homogeneous maps and set

HomA(M,N) =
⊕
d∈Z

HomA(M〈d〉, N) ∼=
⊕
d∈Z

HomA(M,N〈−d〉).

The reader may check that HomA(M,N) ∼= HomA(M,N) as Z-modules.
Let Rep(A) be the category of finitely generated graded A-modules together with degree preserving

homomorphisms. Similarly, Proj(A) is the category of finitely generated projective A-modules with degree
preserving maps.

If M is a graded Z-module and s ∈ Z let M〈s〉 be the graded Z-module obtained by shifting the grading
on M up by s; that is, M〈s〉d = Md−s, for d ∈ Z. Then M ∼= M〈s〉 as A-modules if and only if s = 0. In
contrast, M ∼= M〈s〉 as A-modules, for all s ∈ Z.

Suppose that q be an indeterminate and that M is a graded module. The graded dimension of M is
the Laurent polynomial dimqM =

∑
d∈Z(dimMd)q

d ∈ N[q, q−1]. If M is a graded A-module and D is an
irreducible graded A-module then the graded decomposition number is the Laurent polynomial

[M : D]q =
∑
s∈Z

[M : D〈s〉] qs ∈ N[q, q−1].

By definition, the (ungraded) decomposition multiplicity [M : D] is given by evaluating [M : D]q at q = 1,
Suppose that A is a graded algebra and that m is an (ungraded) A-module. A graded lift of m is a graded

A-module M such that M ∼= m as A-modules. If M is a graded lift of m then so it M〈s〉, for any s ∈ Z, so
graded lifts are not unique in general. If m is indecomposable then its graded lift, if it exists, is unique up to
grading shift [13, Lemma 2.5.3].

Following [49], the theory of cellular algebras from §1.3 extends to the graded setting in a natural way.

2.1.1. Definition ( [49, §2]). Suppose that A is Z-graded Z-algebra that is free of finite rank over Z. A
graded cell datum for A is a cell datum (P, T, C) together with a degree function

deg :
∐
λ∈P

T (λ)−→Z

such that

(GCd) the element cst is homogeneous of degree deg cst = deg(s) + deg(t), for all λ ∈ P and s, t ∈ T (λ).

In this case, A is a graded cellular algebra with graded cellular basis {cst}.

We use ? for the homogeneous cellular algebra involution of A which is determined by c?st = cts, for
s, t ∈ T (λ).

2.1.2. Example (Toy example) The most basic example of a graded algebra is the truncated polynomial
ring A = F [x]/(xn+1), for some integer n > 0, where deg x = 2. As an ungraded algebra, A has exactly one
simple module, namely the field F with x acting as multiplication by zero. This algebra is a graded cellular
algebra with P = {0, 1, . . . , n}, with its natural order, and T (d) = {d} and cdd = xd. The irreducible graded
A-modules are F 〈d〉, for d ∈ Z, and dimqA = 1 + q2 + · · ·+ q2n. ♦

2.1.3. Example Let A = Matn(Z) be the Z-algebra of n × n-matrices. The basis of matrix units
{ est | 1 ≤ s, t ≤ n } is a cellular basis for A, where P = {♥} and T (♥) = {1, 2, . . . , n}. We want to put a
non-trivial grading on A. Let {d1, . . . , dn} ⊂ Z be a set of integers such that ds + dn−s+1 = 0, for 1 ≤ s ≤ n.
Set cst = es(n−t+1) and define a degree function deg :T (♥)−→Z by deg s = ds. Then { cst | 1 ≤ s, t ≤ n }
is a graded cellular basis of A. We have dimqA =

∑s
s=1 q

ds . In particular, semisimple algebras can have
non-trivial gradings. ♦

Exactly as in §1.3, for each λ ∈ P we obtain a graded cell module Cλ with homogeneous basis { ct | t ∈ T (λ) }
and deg ct = deg t. Generalizing (1.3.2), the graded cell module Cλ comes equipped with a homogeneous
symmetric bilinear form 〈 , 〉λ of degree zero. Therefore, if x, y ∈ Cλ then 〈x, y〉λ 6= 0 only if deg x +
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deg y = 0. Moreover, 〈xa, y〉λ = 〈x, ya?〉λ, for all x, y ∈ Cλ and all a ∈ A. Consequently, radCλ =
{x ∈ Cλ | 〈x, y〉λ = 0 for all y ∈ Cλ } is a graded submodule of Cλ so that Dλ = Cλ/ radCλ is a graded
A-module. Let P0 = {µ ∈ P | Dµ 6= 0 }.
2.1.4. Theorem (Hu-Mathas [49, Theorem 2.10]). Suppose that Z is a field and that A is a graded cellular
algebra. Then:

a) If Dλ 6= 0, for λ ∈ P, then Dλ is an absolutely irreducible graded A-module and (Dλ)~ ∼= Dλ.
b) {Dλ〈s〉 | λ ∈ P0 and s ∈ Z } is a complete set of pairwise non-isomorphic irreducible (graded) A-

modules.
c) If λ ∈ P and µ ∈ P0 then [Cλ:Dµ]q 6= 0 only if λ D µ. Moreover, [Cµ:Dµ]q = 1.

Forgetting the grading, the basis {cst} is still a cellular basis of A. Comparing Theorem 1.3.4 and
Theorem 2.1.4 it follows that every (ungraded) irreducible A-module has a graded lift that is unique up to
shift. Conversely, if D is an irreducible graded A-module then D is an irreducible A-module (this holds more
generally for any finite dimensional graded algebra; see [107, Theorem 4.4.4]). It is an instructive exercise to
prove that if A is a finite dimensional graded algebra then every simple A-module has a graded lift and, up to
shift, every graded simple A-module is of this form.

By [44, Theorems 3.2 and 3.3] every projective indecomposable H Λ
n -module has a graded lift. More

generally, as shown in [107, §4], if M is a finitely generated graded A-module then the Jacobson radical of M
has a graded lift.

The matrix DA(q) = ([Cλ : Dµ]q)λ∈P,µ∈P0
is the graded decomposition matrix of A. For each µ ∈ P0

let Pµ be the projective cover of Dµ in Rep(A). The matrix CA(q) = ([Pλ : Dµ]q)λ,µ∈P0
is the graded

Cartan matrix of A.
An A-module M has a cell filtration if it has a filtration M = M0 ⊃ M1 ⊃ · · · ⊃ Mz ⊃ 0 such

that all of the subquotients Mr/Mr+1 are isomorphic to graded cell module, up to shift. Fixing iso-
morphisms Mr/Mr+1

∼= Cλr 〈dr〉, for some λr ∈ P and dr ∈ Z, define (M : Cλ)q =
∑
dmdq

d, where
md = # { 1 ≤ r ≤ z | λr = λ and dr = d }. In general, the multiplicities (M : Cλ)q depend upon the choice
of filtration and the labelling of the isomorphisms Mr/Mr+1

∼= Cλr 〈dr〉 because the cell modules are not
guaranteed to be pairwise non-isomorphic, even up to shift.

2.1.5. Corollary ( [49, Theorem 2.17]). Suppose that Z = F is a field. If µ ∈ P0 then Pµ has a cell filtration
such that (Pµ : Cλ)q = [Cλ : Dµ]q, for all λ ∈ P. Consequently, CA(q) = DA(q)trDA(q) is a symmetric
matrix.

2.2. Cyclotomic quiver Hecke algebras. We are now ready to define cyclotomic quiver Hecke algebras.
We start by defining the affine versions of these algebras and then pass to the cyclotomic quotients. Through
this section we will make extensive use of the Lie theoretic data that is attached to the quiver Γe in §1.2.

2.2.1. Definition (Khovanov and Lauda [67, 68] and Rouquier [114]). Suppose that e ≥ 2 and n ≥ 0.
The quiver Hecke algebra, or Khovanov-Lauda–Rouquier algebra, of type Γe is the unital associative
Z-algebra Rn = Rn(Z) with generators {ψ1, . . . , ψn−1} ∪ {y1, . . . , yn} ∪ { e(i) | i ∈ In } and relations

e(i)e(j) = δije(i),
∑

i∈Ine(i) = 1,

yre(i) = e(i)yr, ψre(i) = e(sr·i)ψr, yrys = ysyr,

ψrψs = ψsψr, if |r − s| > 1,

ψrys = ysψr, if s 6= r, r + 1,

ψryr+1e(i) = (yrψr + δirir+1
)e(i), yr+1ψre(i) = (ψryr + δirir+1

)e(i),(2.2.2)

ψ2
re(i) =



(yr+1 − yr)(yr − yr+1)e(i), if ir � ir+1,

(yr − yr+1)e(i), if ir → ir+1,

(yr+1 − yr)e(i), if ir ← ir+1,

0, if ir = ir+1,

e(i), otherwise,

(2.2.3)

(ψrψr+1ψr − ψr+1ψrψr+1)e(i) =


(yr + yr+2 − 2yr+1)e(i), if ir+2 = ir � ir+1,

−e(i), if ir+2 = ir → ir+1,

e(i), if ir+2 = ir ← ir+1,

0, otherwise,

(2.2.4)

for i, j ∈ In and all admissible r and s. Moreover, RΛ
n is naturally Z-graded with degree function determined

by
deg e(i) = 0, deg yr = 2 and degψse(i) = −cis,is+1

,

for 1 ≤ r ≤ n, 1 ≤ s < n and i ∈ In.
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Khovanov and Lauda [67, 68] and Rouquier [114] define quiver Hecke algebras for quivers of arbitrary type.
In the short time since their inception a lot has been discovered about these algebras. The first important
result is that these algebras categorify the negative part of the corresponding quantum group [20, 67, 115, 125].

2.2.5. Remark. We have defined only a special case of the quiver Hecke algebras defined in [67,114]. In addition
to allowing arbitrary quivers, Khovanov and Lauda allow a more general choice of signs. Rouquier’s definition,
which is the most general, defines the quiver Hecke algebras in terms of a matrix Q = (Qij)i,j∈I with entries
in a polynomial ring Z[u, v] with the properties that Qii = 0, Qij is not a zero divisor in Z[u, v] for i 6= j and
Qij(u, v) = Qji(v, u), for i, j ∈ I. For an arbitrary quiver Γ, Rouquier [114, Definition 3.2.1] defines Rn(Γ) to
be the algebra generated by ψr, ys, e(i) subject to the relations above except that the quadratic and braid
relations are replaced with

ψ2
re(i) = Qir,ir+1

(yr, yr+1)e(i),

(ψrψr+1ψr − ψr+1ψrψr+1)e(i) =

{
Qir,ir+1

(yr,yr+1)−Qir,ir+1
(yr,yr+1)

yr+2−yr , if ir+2 − ir,
o, otherwise.

The assumptions on Q ensure that the last expression is a polynomial in the generators. In general, yre(i) is
homogeneous of degree (αir , αir ), for 1 ≤ r ≤ n and i ∈ In. Under some mild assumptions, Rn is independent
of the choice of Q by [114, Proposition 3.12]. We leave it to the reader to find a suitable matrix Q for
Definition 2.2.1.

For β ∈ Q+ let Iβ = { i ∈ In | β = αi1 + · · ·+ αin }. Then In =
⊔
β I

β is the decomposition of In into a
disjoint union of Sn-orbits. Define

(2.2.6) Rβ = Rneβ , where eβ =
∑
i∈Iβ

e(i).

Then Rβ = eβRneβ is a two-sided ideal of Rn and Rn =
⊕

β∈Q+ Rβ is the decomposition of Rn into blocks.

That is, Rβ is indecomposable for all β ∈ Q+.
For the rest of these notes for w ∈ Sn fix a reduced expression w = sr1 . . . srk , with 1 ≤ rj < n. Using this

fixed reduced expression for w define ψw = ψr1 . . . ψrk .

2.2.7. Example As the ψ-generators of Rn do not satisfy the braid relations the element ψw will, in general,
depend upon the choice of reduced expression for w ∈ Sn. For example, by (2.2.4) if e 6= 2, n = 3 and
w = s1s2s1 = s2s1s2 then ψ1ψ2ψ1e(0, 2, 0) = ψ2ψ1ψ2e(0, 2, 0) + e(0, 2, 0), by (2.2.4). Therefore, the two
different reduced expressions for w lead to different elements ψw ∈ Rn. ♦

The (fixed) choice of reduced expression for each w ∈W is completely arbitrary. Even though ψw is not
uniquely determined by w, these elements form part of a basis of Rn.

2.2.8. Theorem (Khovanov-Lauda [67, Theorem 2.5], Rouquier [114, Theorem 3.7]). Suppose that β ∈ Q+.
Then Rβ(Z) is free as an Z-algebra with homogeneous basis

{ψwya1
1 . . . yann e(i) | w ∈ Sn, a1, . . . , an ∈ N and i ∈ Iβ } .

We note that Li [85, Theorem 4.3.10] has given a graded cellular basis of Rn and, in the special case when
e = ∞, that Kleshchev, Loubert and Miemietz [74] have given a graded affine cellular basis of Rn, in the
sense of Koenig and Xi [79].

In these notes we are not directly concerned with the quiver Hecke algebras Rn. Rather, we are more
interested in cyclotomic quotients of these algebras.

2.2.9. Definition (Brundan-Kleshchev [19]). Suppose that Λ ∈ P+. The cyclotomic quiver Hecke algebra

of type Γe and weight Λ is the quotient algebra RΛ
n = Rn/〈y

(Λ,αi1 )
1 e(i) | i ∈ In〉.

We abuse notation and identify the KLR generators of Rn with their images in RΛ
n . That is, we consider

Rn to be generated by ψ1, . . . , ψn−1, y1, . . . , yn and e(i), for i ∈ In, subject to the relations in Definition 2.2.1
and Definition 2.2.9.

When Λ is a weight of level 2, the algebras RΛ
n first appeared in the work of Brundan and Stroppel [24] in

their series of papers on the Khovanov diagram algebras. In full generality, the cyclotomic quotients of Rn

were introduced by Khovanov-Lauda [67] and Rouquier [114]. Brundan and Kleshchev were the first to
systematically study the cyclotomic quiver Hecke algebras RΛ

n , for any Λ ∈ P+.
Although we will not need this here we note that, rather than working algebraically, it is often easier to

work diagrammatically by identifying the elements of RΛ
n with certain planar diagrams. In these diagrams,
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the end-points of the strings are labeled by {1, 2, . . . , n, 1′, 2′, . . . , n′} and the strings themselves are coloured
by In. For example, following [67], the KLR generators can be identified with the diagrams:

e(i) =

i1 i2 in

ψre(i) =

i1 ir−1ir ir+1 in

yse(i) =

1 s − 1 s s n

.

Multiplication of diagrams is given by concatenation, read from top to bottom, subject to the relations above
which are also interpreted diagrammatically. As an exercise, we leave it to the reader to identify the two
relations in Definition 2.2.1 which correspond to the following ‘local’ relations on strings inside braid diagrams:

i j

=

i j

+ δij

i i

and

i i±1 i

=

i i±1 i

±

i i±1 i

.

(For the second relation, e 6= 2.) For more rigorous definitions of such diagrams, and non-trivial examples of
their application, we refer the reader to the works [48, 75, 85, 90] which, among others, use variations of these
diagrams extensively.

2.2.10. Example (Rank one algebras) Suppose that n = 1 and Λ ∈ P+. Then

RΛ
1 = 〈y1, e(i) | y1e(i) = e(i)y1 and y

〈Λ,αi〉
1 e(i) = 0, for i ∈ I〉,

with deg y1 = 2 and deg e(i) = 0, for i ∈ I. Therefore, there is an isomorphism of graded algebras

RΛ
1
∼=

⊕
i∈I

(Λ,αi)>0

Z[y]/y(Λ,αi)Z[y],

where y = y1 is in degree 2. Armed with this description of RΛ
n it is now straightforward to show that

H Λ
n
∼= RΛ

n when Z is a field and n = 1. ♦

2.3. Nilpotence and small representations. In this section and the next we use the KLR relations to
prove some results about the cyclotomic quiver Hecke algebras RΛ

n for particular Λ and n.
By Theorem 2.2.8 the algebra Rn is infinite dimensional, so it is not obvious from the relations that the

cyclotomic Hecke algebra RΛ
n is finite dimensional — or even that RΛ

n is non-zero. The following result shows
that yr is nilpotent, for 1 ≤ r ≤ n, which implies that RΛ

n is finite dimensional.

2.3.1. Lemma (Brundan and Kleshchev [19, Lemma 2.1]). Suppose that 1 ≤ r ≤ n and i ∈ In. Then
yNr e(i) = 0 for N � 0.

Proof. We argue by induction on r. If r = 1 then y
(Λ,αi1 )
1 e(i) = 0 by Definition 2.2.9, proving the base step

of the induction. Now consider yr+1e(i). By induction, we may assume that there exists N � 0 such that
yNr e(j) = 0, for all j ∈ In. There are three cases to consider.

Case 1. ir+1 /— ir.
By (2.2.3) and (2.2.2), yNr+1e(i) = yNr+1ψ

2
re(i) = ψry

N
r ψre(i) = ψry

N
r e(sr · i)ψr = 0, where the last equality

follows by induction.

Case 2. ir+1 = ir ± 1.
Suppose first that e 6= 2. This is a variation on the previous case, with a twist. By (2.2.3) and (2.2.2), again

y2N
r+1e(i) = y2N−1

r+1 yre(i) + y2N−1
r+1 (yr+1 − yr)e(i)

= yry
2N−1
r+1 e(i)± y2N−1

r+1 ψ2
re(i)

= yry
2N−1
r+1 e(i)± ψry2N−1

r e(sr · i)ψr
= yry

2N−1
r+1 e(i) = · · · = yNr y

N
r+1e(i) = 0.

The case when e = 2 is similar. First, observe that y2
r+1e(i) = (2yryr+1 − y2

r − ψ2
r)e(i) by (2.2.3). Therefore,

arguing as before, y3N
r+1e(i) = yr(2yr+1 − yr)y3N−2

r+1 e(i) = · · · = yNr (2yr+1 − yr)NyNr+1e(i) = 0.

Case 3. ir+1 = ir.
Let φr = ψr(yr − yr+1). Then φrψre(i) = −2ψre(i) by (2.2.2), so that (1 + φr)

2e(i) = e(i). Moreover,

(1 + φr)yr(1 + φr)e(i) = (yr + φryr + yrφr + φryrφr)e(i) = yr+1e(i),
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where the last equality is a small calculation using (2.2.2). Now we are done because

yNr+1e(i) =
(
(1 + φr)yr(1 + φr)

)N
e(i) = (1 + φr)y

N
r (1 + φr)e(i) = 0,

since φr commutes with e(i) and yNr e(i) = 0 by induction. �

We have marginally improved on Brundan and Kleshchev’s original proof of Lemma 2.3.1 because, with a
little more care, the argument gives an explicit bound for the nilpotency index of yr. In general, this bound
is far from sharp. For a better estimate of the nilpotency index of yr see [52, Corollary 4.6] (and [48] when
e = ∞). See [62, Lemma 4.4] for another argument which applies to cyclotomic quiver Hecke algebras of
arbitrary type.

Combining Theorem 2.2.8 and Lemma 2.3.1 shows that RΛ
n is a finite dimensional.

2.3.2. Corollary (Brundan and Kleshchev [19, Corollary 2.2]). Suppose Z is a field. Then RΛ
n is finite

dimensional.

As our next exercise we classify the one dimensional representations of RΛ
n when Z = F is a field. For

i ∈ I let i+n = (i, i + 1, . . . , i + n − 1) and i−n = (i, i − 1, . . . , i − n + 1). Then i±n ∈ In. If (Λ, αi) = 0 then
e(in±) = 0 by Definition 2.2.9. However, if (Λ, αi) 6= 0 then using the relations it is easy to see that Rn has

unique one dimensional representations D+
i,n = Fd+

i,n and D−i,n = Fd−i,n such that

d±i,ne(i) = δi,in±d
±
i,n and d+

i,nyr = 0 = d±i,nψs,

for i ∈ In, 1 ≤ r ≤ n and 1 ≤ s < n and such that deg d±i,n = 0. In particular, this shows that e(in±) 6= 0. If

e 6= 2 then {D±n (i) | i ∈ I and (Λ, αi) 6= 0 } are pairwise non-isomorphic irreducible representations of RΛ
n .

If e = 2 then i+n = i−n so that D+
i,n = D−i,n.

2.3.3. Proposition. Suppose that Z = F is a field and that D is a one dimensional graded RΛ
n -module. Then

D ∼= D±i,n〈k〉, for some k ∈ Z and i ∈ I such that (Λ, αi) 6= 0.

Proof. Let d be a non-zero element of D so that D = Fd. Then d =
∑

j∈In de(j) so that de(i) 6= 0 for some

i ∈ In. Moreover, de(j) = 0 if and only if j = i since otherwise de(i) and de(j) are linearly independent
elements of D, contradicting assumption that D is one dimensional. Now, deg dyr = 2 + deg d, so dyr = 0,
for 1 ≤ r ≤ n, since D is one dimensional. Similarly, dψr = de(i)ψr = 0 if ir = ir+1 or ir = ir+1 ± 1 since in
these cases deg e(i)ψr 6= 0.

It remains to show that i = in± and that (Λ, αi1) 6= 0. First, since 0 6= d = d e(i) we have that
e(i) 6= 0 so that (Λ, αi1) 6= 0 by Definition 2.2.9. To complete the proof we show that if i 6= in± then
d = 0, which is a contradiction. First, suppose that ir = ir+1 for some r, with 1 ≤ r < n. Then
d = de(i) = d

(
ψryr+1 − yrψr

)
= 0 by (2.2.2), which is not possible so ir 6= ir+1. Next, suppose that

ir+1 6= ir ± 1. Then d = de(i) = dψ2
re(i) = dψre(sr · i)ψr = 0 because D is one dimensional and de(j) = 0 if

j 6= i. This is another contradiction, so we must have ir+1 = ir ± 1 for 1 ≤ r < n. Therefore, if i 6= in± then
e 6= 2, n > 2 and ir = ir+2 = ir+1 ± 1 for some r. Applying the braid relation (2.2.4),

d = de(i) = ±de(i)
(
ψrψr+1ψr − ψr+1ψrψr+1) = 0,

a contradiction. Setting k = deg d it follows that D ∼= D±i,n〈k〉, completing the proof. �

2.4. Semisimple KLR algebras. Now that we understand the one dimensional representations of RΛ
n we

consider the semisimple representation theory of the cyclotomic quiver Hecke algebras. These results do not
appear in the literature, but there will be no surprises for the experts because everything here can be easily
deduced from results which are known. The main idea is to show by example how to use the quiver Hecke
algebra relations.

Recall from Corollary 1.6.11 that H Λ
n is semisimple if and only if (Λ, αi,n) ≤ 1, for all i ∈ I. In this section

we use this criterion to study RΛ
n .

Recall from §1.8 that it = (it1, . . . , i
t
n) is the residue sequence of t ∈ Std(Pn), where itr = cZr (t) + eZ. In §1.4

we defined addable and removable nodes. If i ∈ I then a node A = (l, r, c) is an i-node if i = κl + c− r + eZ.

2.4.1. Lemma. Suppose that (Λ, αi,n) ≤ 1, for all i ∈ I, where Λ ∈ P+ has height `. Then e > n`. Moreover,
if s, t ∈ Std(Pn) then s = t if and only if is = it.

Proof. By definition, if Λ = Λ(κ) ∈ P+ then (Λ, ακl) ≥ 1, for 1 ≤ l ≤ `. Therefore, if (Λ, αi,n) ≤ 1, for all
i ∈ I, then κl 6= κl′ ± d, for 0 ≤ d ≤ n and 1 ≤ l < l′ ≤ `. This forces e > n`.

For the second statement, observe that if i ∈ I and µ ∈ Pm, where 0 ≤ m < n, then µ has at most one
addable i-node since (Λ, αi,n) ≤ 1. Hence, it follows easily by induction on n that if s, t ∈ Std(Pn) then s = t
if and only if is = it. �
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We could have proved Lemma 2.4.1 by appealing toTheorem 1.6.10 and Corollary 1.6.11. We caution
the reader that if t is a standard tableau then the contents cZr (t) ∈ Z and the residues itr ∈ I are in general
different.

Let InΛ = { it | t ∈ Std(Pn) } be the set of residue sequences of all of the standard tableaux in Std(Pn). As
a consequence of the proof of Lemma 2.4.1, if i = it ∈ InΛ and ir+1 = ir ± 1 then r and r + 1 must be in either
in the same row or in the same column of t. Hence, we have the following useful fact.

2.4.2. Corollary. Let Λ ∈ P+ with (Λ, αi,n) ≤ 1, for all i ∈ I. Suppose that i ∈ InΛ and that ir+1 = ir ± 1.
Then sr · i /∈ InΛ.

When Λ = Λ0 the next result is due to Brundan and Kleshchev [19, §5.5]. More generally, Kleshchev and
Ram [77, Theorem 3.4] prove a similar result for quiver Hecke algebras of simply laced type.

2.4.3. Proposition (Seminormal representations of RΛ
n ). Suppose that Z = F is a field, Λ ∈ P+ and that

(Λ, αi,n) ≤ 1, for all i ∈ I. Then for each λ ∈ Pn there is a unique irreducible graded RΛ
n -module Sλ with

homogeneous basis {ψt | t ∈ Std(λ) } such that degψt = 0, for all t ∈ Std(λ), and where the RΛ
n -action is

given by

ψte(i) = δi,itψt, ψtyr = 0 and ψtψr = vt(r,r+1),

where we set vt(r,r+1) = 0 if t(r, r + 1) is not standard.

Proof. By Lemma 2.4.1, if s, t ∈ Std(λ) then s = t if and only if is = it. Moreover, itr+1 = itr ± 1 if and only if
r and r + 1 are in the same row or in the same column of t. Similarly, itr 6= itr+1 for any r. Consequently,
since ψt = ψte(i

t) almost all of the relations in Definition 2.2.1 are trivially satisfied. In fact, all that we need
to check is that ψ1, . . . , ψn−1 satisfy the braid relations of the symmetric group Sn with ψ2

r acting as zero
when itr+1 = itr ± 1, which follows automatically by Corollary 2.4.2. By the same reasoning if t(r, r + 1) is

standard then deg e(it)ψr = 0. Hence, we can set degψt = 0, for all t ∈ Std(λ). This proves that Sλ is a
graded RΛ

n -module.
It remains to show that Sλ is irreducible. If s, t ∈ Std(λ) then s = tλd(s) = td(t)−1d(s), so ψs =

ψtψd(t)−1ψd(s). Suppose that x =
∑

t rtψt is a non-zero element of Sλ. If rt 6= 0 then ψt = 1
rt
xe(it), so it

follows that ψs ∈ xRΛ
n , for any s ∈ Std(λ). Therefore, Sλ = xRΛ

n so that Sλ is irreducible as claimed. �

Consequently, e(i) 6= 0 in RΛ
n , for all i ∈ IΛ

n . This was not clear until now.
We want to show that Proposition 2.4.3 describes all of the graded irreducible representations of RΛ

n , up to
degree shift. To do this we need a better understanding of the set InΛ. Okounkov and Vershik [110, Theorem 6.7]
explicitly described the set of all content sequences (cZ1(t), . . . , cZn(t)) when ` = 1. This combinatorial result
easily extends to higher levels and so suggests a description of InΛ.

If i ∈ In and 1 ≤ m ≤ n let im = (i1, . . . , im). Then im ∈ Im and ImΛ = { im | i ∈ InΛ }.

2.4.4. Lemma (cf. Ogievetsky-d’Andecy [109, Proposition 5]). Suppose that (Λ, αi,n) ≤ 1, for i ∈ I, and that
i ∈ In. Then i ∈ InΛ if and only if it satisfies the following three conditions:

a) (Λ, αi1) 6= 0.
b) If 1 < r ≤ n and (Λ, αir ) = 0 then {ir − 1, ir + 1} ∩ {i1, . . . , ir−1} 6= ∅.
c) If 1 ≤ s < r ≤ n and ir = is then {ir − 1, ir + 1} ⊆ {is+1, . . . , ir−1}.

Proof. Suppose that t ∈ Std(Pn) and let i = it. We prove by induction on r that ir ∈ IrΛ. By definition,
i1 = κt + eZ for some t with 1 ≤ t ≤ `, so (a) holds. By induction we may assume that the subsequence
(i1, . . . , ir−1) satisfies properties (a)–(c). If (Λ, αir) = 0 then r does not sit in the first row and first column
of any component of t, so t has an entry in the row directly above r or in the column immediately to the
left of r — or both! Hence, there exists an integer s with 1 ≤ s < r such that its = itr ± 1. Hence, (b) holds.
Finally, suppose that ir = is as in (c). As the residues of the nodes in different components of t are disjoint
it follows that s and r are in same component of t and on the same diagonal. In particular, r is not in the
first row or in the first column of its component in t. As t is standard, the entries in t which are immediately
above or to the left of r are both larger than s and smaller than r. Hence, (c) holds.

Conversely, suppose that i ∈ In satisfies properties (a)–(c). We show by induction on m that im ∈ ImΛ ,
for 1 ≤ m ≤ n. If m = 1 then i1 ∈ I1

Λ by property (a). Now suppose that 1 < m < n and that im ∈ ImΛ . By
induction im = is, for some s ∈ Std(Pm). Let ν = Shape(s). If i ∈ I then (Λ, αi,n) ≤ 1, so the multipartition ν
can have at most one addable i-node. On the other hand, reversing the argument of the last paragraph, using
properties (b) and (c) with r = m+ 1, shows that ν has at least one addable im+1-node. Let A be the unique
addable im+1-node of ν. Then im+1 = it where t ∈ Std(Pm+1) is the unique standard tableau such that
t↓m = s and t(A) = m+ 1. Hence, i ∈ Im+1

Λ as required. �

By Proposition 2.4.3, if i ∈ InΛ then e(i) 6= 0. We use Lemma 2.4.4 to show that e(i) = 0 if i /∈ InΛ. First, a
result that holds for all Λ ∈ P+.
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2.4.5. Lemma. Suppose that Λ ∈ P+, i ∈ In and e(i) 6= 0. Then (Λ, αi1) 6= 0. Moreover, if (Λ, αir ) = 0, for
1 < r ≤ n, then {ir − 1, ir + 1} ∩ {i1, . . . , ir−1} 6= ∅.

Proof. By Definition 2.2.9, e(i) = 0 whenever (Λ, αi1) = 0. To prove the second claim suppose that (Λ, αir ) = 0
and ir ± 1 /∈ {i1, . . . , ir−1}. By induction on r, we may assume that ir 6= is for 1 ≤ s < r. Applying (2.2.3)
r-times,

e(i) = ψ2
r−1e(i) = ψr−1e(i1, . . . , ir, ir−1, ir+1, . . . , in)ψr−1

= · · · = ψr−1 . . . ψ1e(ir, i1, . . . , ir−1, ir+1, . . . , in)ψ1 . . . ψr−1 = 0,

where the last equality follows because (Λ, αir ) = 0. �

2.4.6. Proposition. Suppose that 1 ≤ m ≤ n and that (Λ, αi,m) ≤ 1, for all i ∈ I. Then y1 = · · · = ym = 0
and if i ∈ In then e(i) 6= 0 only if im ∈ ImΛ .

Proof. We argue by induction on r to show that yr = 0 and e(i) = 0 if ir /∈ IrΛ, for 1 ≤ r ≤ m. If r = 1 this is

immediate because y
(Λ,αi1 )
1 e(i) = 0 by Definition 2.2.9 and (Λ, αi1) ≤ 1 by assumption. Suppose then that

1 < r ≤ m.
We first show that e(i) = 0 if ir /∈ IrΛ. By induction, Lemma 2.4.4 and Lemma 2.4.5, it is enough to show

that e(i) = 0 whenever there exists s < r such that is = ir and {ir − 1, ir + 1} ⊆ {is+1, . . . , ir−1}. We may
assume that s is maximal such that is = ir and 1 ≤ s < r. There are several cases to consider.

Case 1. r = s+ 1.
By (2.2.2), e(i) = (ys+1ψs − ψsys)e(i) = ys+1ψse(i), since ys = 0 by induction. Using this identity twice,
reveals that e(i) = ys+1ψse(i) = ys+1e(i)ψs = y2

s+1ψse(i)ψs = y2
s+1ψ

2
se(i) = 0, where the last equality comes

from (2.2.3). Therefore, e(i) = 0 as we wanted to show.

Case 2. s < r − 1 and {ir − 1, ir + 1} ∩ {is+1, . . . , ir−1} = ∅.
By the maximality of s, ir /∈ {is+1, . . . , ir−1}. Therefore, arguing as in the proof of Lemma 2.4.5, there exists
a permutation w ∈ Sr such that e(i) = ψwe(i1, . . . , is, ir, is+1, . . . , ir−1, ir+1, . . . , in)ψw. Hence, e(i) = 0 by
Case 1.

Case 3. s < r − 1 and {ir − 1, ir + 1} ∩ {is+1, . . . , ir−1} = {j}, where j = ir ± 1.
Let t be an index such that it = j = ir ± 1 and s < t < r. Note that if there exists an integer t′ such that
it = it′ and s < t < t′ < r then we may assume that is ∈ {it+1, . . . , it′−1} by Lemma 2.4.4(c) and induction.
Therefore, since s was chosen to be maximal, t is the unique integer such that it = j and s < t < r. Hence,
arguing as in Case 2, there exists a permutation w ∈ Sr such that

e(i) = ψwe(i1, . . . , is−1, is+1, . . . , it−1, is, it, ir, it+1, . . . , ir−1, ir+1, . . . , in)ψw.

For convenience, we identify e(i1, . . . , is, it, ir, . . . , in) with e(i, j, i), where i = is = ir and j = i± 1. Then we
are reduced to showing that e(i, j, i) = 0. Since we have a sequence of length 3 we may assume that e > 3 by
Lemma 2.4.1. By (2.2.4),

e(i, j, i) = ±
(
ψ1ψ2ψ1 − ψ2ψ1ψ2

)
e(i, j, i)

= ±ψ1ψ2e(j, i, i)ψ1 ∓ ψ2ψ1e(i, i, j)ψ2

= ±ψ1ψ2(y3ψ2 − ψ2y2)e(j, i, i)ψ1 ∓ ψ2ψ1(y2ψ1 − ψ1y1)e(i, i, j)ψ2,

where for the last equality we have used (2.2.2) twice. Translating back to our previous notation, y1 and y2

correspond to yt−1 and yt, respectively. By induction, if t < r − 1 then y1 = y2 = y3 = 0, so the displayed
equation becomes e(i) = 0. If t = r−1 then we only know that y1 = y2 = 0, so e(i, j, i) = ±ψ1ψ2y3ψ2(j, i, i)ψ1.
Hence, by (2.2.2),

e(i, j, i) = ±ψ1ψ2(ψ2y2 + 1)e(j, i, i)ψ1 = ±ψ1ψ2e(j, i, i)ψ1 = ±ψ1ψ2ψ1e(i, j, i).

Applying the last equation twice, and then using (2.2.3),

e(i, j, i) = ±ψ1ψ2ψ1e(i, j, i) = ψ1ψ2ψ
2
1ψ2ψ1e(i, j, i)

= ±ψ1ψ2(y2 − y1)ψ2ψ1e(i, j, i) = 0,

where last equation follows because y1 = y2 = 0 by induction. Consequently, e(i) = 0 as we wanted.

Combining Cases 1-3 shows that e(i) 6= 0 whenever {ir − 1, ir + 1} ( {is+1, . . . , ir−1}. Hence, ir ∈ IrΛ as
required.

To complete the proof of the inductive step (and of the proposition), it remains to show that yr = 0. Using
what we have just proved, it is enough to show that yre(i) = 0 whenever ir ∈ IrΛ. If ir−1 = ir ± 1 then, by
induction and (2.2.3),

yre(i) = (yr − yr−1)e(i) = ±ψ2
r−1e(i) = ±ψr−1e(sr−1 · i)ψr−1 = 0,
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where the last equality follows because (sr · i)r /∈ IrΛ by Corollary 2.4.2. If ir−1 6= ir ± 1 then ir−1 /— ir
by Lemma 2.4.4 since ir ∈ IrΛ. Therefore, yre(i) = yrψ

2
r−1e(i) = ψr−1yr−1ψr−1e(i) = 0 since yr−1 = 0 by

induction. This completes the proof. �

Before giving our main application of Proposition 2.4.6 we consider what this result means for the cyclotomic
quiver Hecke algebra of the symmetric group.

2.4.7. Example (Symmetric groups) Suppose that Λ = Λ0 and that 1 < e ≤ n. Then (Λ, αi,e−1) ≤ 1 for all

i ∈ I. Therefore, Proposition 2.4.6 shows that yr = 0 for 1 ≤ r ≤ e− 1 and that e(i) 6= 0 only if ie−1 ∈ Ie−1
Λ .

In addition, we also have ψ1 = 0 because if i ∈ In then ψ1e(i) = e(s1 · i)ψ1 = 0 because if ie−1 ∈ Ie−1
Λ then

(s1 · i)e−1 /∈ Ie−1
Λ .

Translating the proof of Proposition 2.4.6 back to Lemma 2.4.1, the reason why ψ1 = 0 is that if i = it is
the residue sequence of some standard tableau t ∈ Std(Pn) then i1 = 0 and i2 6= 0, so s1 · i can never be a
residue sequence. By the same reasoning, ψ1 is not necessarily zero if Λ has level ` > 1. ♦

We now completely describe the KLR algebras RΛ
n when Λ ∈ P+ and (Λ, αi,n) ≤ 1, for i ∈ I. For

(s, t) ∈ Std2(Pn) define est = ψd(s)−1e(iλ)ψd(t), where iλ = it
λ

.

2.4.8. Theorem. Suppose that Λ ∈ P+ and (Λ, αi,n) ≤ 1, for all i ∈ I. Then RΛ
n is a graded cellular algebra

with graded cellular basis { est | (s, t) ∈ Std2(Pn) } with deg est = 0 for all (s, t) ∈ Std2(Pn).

Proof. By Proposition 2.4.6, yr = 0 for 1 ≤ r ≤ n and e(i) = 0 if i /∈ IΛ
n . In particular, this implies that

ψ1, . . . , ψn−1 satisfy the braid relations for the symmetric group Sn because, by Lemma 2.4.4, if i ∈ InΛ then
(i, i± 1, i) is not a subsequence of i, for any i ∈ I. Therefore, RΛ

n is spanned by the elements ψve(i)ψw, where
v, w ∈ Sw and i ∈ InΛ. Moreover, if j ∈ In then e(j)ψve(i)ψw = 0 unless j = v · i ∈ InΛ. Therefore, RΛ

n is

spanned by the elements { est | (s, t) ∈ Std2(Pn) } as required by the statement of the theorem. Hence, RΛ
n

has rank at most `nn! by Theorem 1.6.7.
Let K be the algebraic closure of the field of fractions of Z. Then RΛ

n (K) ∼= RΛ
n (Z)⊗Z K. By the last

paragraph, the dimension of RΛ
n is at most `nn!. Let rad RΛ

n (K) be the Jacobson radical of RΛ
n (K). For each

λ ∈ Pn, Proposition 2.4.3 constructs an irreducible graded Specht module Sλ. By Lemma 2.4.1, if λ,µ ∈ Pn
and d ∈ Z then Sλ ∼= Sµ〈d〉 if and only if λ = µ and d = 0. Therefore, by the Wedderburn theorem,

`nn! ≥ dim RΛ
n (K)/ rad RΛ

n (K) ≥
∑
λ∈Pn

(dimSλ)2 =
∑
λ∈Pn

|Std(λ)|2 = `nn!.

Hence, we have equality throughout so that { est | (s, t) ∈ Std2(Pn) } is a basis of RΛ
n (K). As the elements

{est} span RΛ
n (Z), and their images in RΛ

n (K) are linearly independent, it follows that {est} is also a basis of
RΛ
n (Z).
It remains to prove that {est} is a graded cellular basis of RΛ

n . The orthogonality of the KLR idempotents
implies that esteuv = δtuesv. Therefore, {est} is a basis of matrix units for RΛ

n . Consequently, RΛ
n is a direct

sum of matrix rings, for any integral domain Z, and {est} is a cellular basis of RΛ
n .

Finally, we need to show that est is homogeneous of degree zero. This will follow if we show that
degψre(i) = 0, for 1 ≤ r < n and i ∈ InΛ. In fact, this is already clear because if i ∈ InΛ then ir 6= ir+1, by
Lemma 2.4.4, and if ir+1 = ir ± 1 then ψre(i) = 0 by Corollary 2.4.2 and Proposition 2.4.6. �

By definition, esteuv = δtvesv. Let Matd(Z) be the ring of d × d matrices over Z. Hence, the proof of
Theorem 2.4.8 also yields the following.

2.4.9. Corollary. Suppose that Z is an integral domain and that (Λ, αi,n) ≤ 1, for all i ∈ I. Then

RΛ
n (Z) ∼=

⊕
λ∈Pn

Matsλ(Z),

where sλ = # Std(λ) for λ ∈ Pn.

Another consequence of Theorem 2.4.8 is that the KLR relations simplify dramatically in the semisimple
case.

2.4.10. Corollary. Suppose that Z is an integral domain and that Λ ∈ P+ with (Λ, αi,n) ≤ 1, for all i ∈ I.
Then RΛ

n is the unital associative Z-graded algebra generated by ψ1, . . . , ψn−1 and e(i), for i ∈ InΛ, subject to
the relations ∑

i∈InΛ
e(i) = 1, e(i)e(j) = δije(i),

ψrψr+1ψr = ψr+1ψrψr+1, ψrψs = ψsψr, if |r − s| > 1,

ψre(i) =

{
e(sr · i)ψr, if ir+1 6= ir ± 1,

0, if ir+1 = ir ± 1,
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for i, j ∈ In and all admissible r and s. Moreover, RΛ
n is concentrated in degree zero.

As a final application, we prove Brundan and Kleshchev’s graded isomorphism theorem in this special case.

2.4.11. Corollary. Suppose that Z = K is a field and that (Λ, αi,n) ≤ 1, for all i ∈ I. Then RΛ
n
∼= H Λ

n .

Proof. By Corollary 2.4.10 and Theorem 1.6.7, there is a well-defined homomorphism Θ : RΛ
n −→ H Λ

n

determined by

e(is) 7→ Fs and ψre(i
s) 7→ 1

αr(s)

(
Tr +

1

ρQ(s)

)
Fs,

for s ∈ Std(Pn) and 1 ≤ r < n. By definition, Θ is injective so it is an isomorphism by Theorem 2.4.8. �

We emphasize that it is essential to work over a field in Corollary 2.4.11 because Corollary 2.4.9 says that
RΛ
n is always a direct sum of matrix rings whereas if n > 1 this is only true of H Λ

n when it is defined over a
field.

These results suggest that RΛ
n should be considered as the “idempotent completion” of the algebra H Λ

n

obtained by adjoining idempotents e(i), for i ∈ In. We will see how to make sense of the idempotents
e(i) ∈H Λ

n for any i ∈ In in Theorem 3.1.1 and Lemma 4.2.2 below.

2.5. The nil-Hecke algebra. Still working just with the relations we now consider the shadow of the
nil-Hecke algebra in the cyclotomic KLR setting. For the affine KLR algebras the nil-Hecke algebras case has
been well-studied [67,114]. For the cyclotomic quotients (in type A) the story is similar.

For this section fix i ∈ I and set β = nαi and Λ = nΛi. Following (2.2.6), set RΛ
β = e(i)RΛ

n e(i), where

i = iβ = (in). Then RΛ
β is a direct summand of RΛ

n and, moreover, it is a non-unital subalgebra with identity

element e(i). As RΛ
β contains only one idempotent, ψr = ψre(i) and ys = yse(i). Therefore, RΛ

β is the unital
associative graded algebra generated by ψr and ys, for 1 ≤ r < n and 1 ≤ s ≤ n, with relations

yn1 = 0, ψ2
r = 0, yrys = ysyr,

ψryr+1 = yrψr + 1, yr+1ψr = ψryr + 1,

ψrψs = ψsψr if |r − s| > 1, ψrys = ysψr if s 6= r, r + 1,

ψrψr+1ψr = ψr+1ψrψr+1.

The grading on RΛ
β is determined by degψr = −2 and deg ys = 2. Some readers will recognize this presentation

as defining as a cyclotomic quotient of the nil-Hecke algebra of type A [81]. Note that the argument from
Case 3 of Lemma 2.3.1 shows that y`r = 0 for 1 ≤ r ≤ `.

Let λ = (1|1| . . . |1) ∈ Pβ . Then the map t 7→ d(t) defines a bijection between the set of standard
λ-tableaux and the symmetric group Sn. For convenience, we identify the standard λ-tableaux with the
set of (non-standard) tableaux of partition shape (n) by concatenating their components. In other words, if

d = d(t) then t = d1 d2
. . .dn , where d = d1 . . . dn is the permutation written in one-line notation.

If v, s ∈ Std(λ) then write sB· v if s B v and `(d(v)) = `(d(s)) + 1. To make this more explicit write t ≺v m
if t is in an earlier component of v than m – that is, t is to the left of m in v. Then the reader can check that
sB· v if and only if there exist integers 1 ≤ m < t ≤ n such that s = v(m, t), m ≺v t and if m < l < t then
either l ≺v m or t ≺v l.

2.5.1. Example Suppose that n = 6. Let v = 4 6 5 3 1 2 and take t = 3. Then{
3 6 5 4 1 2 , 4 6 3 5 1 2 , 4 6 5 2 1 3 , 4 6 5 1 3 2

}
is the set of λ-tableaux { s | s = v(3, r)B· v for 1 ≤ r ≤ n }. ♦

We can now state the main result of the section.

2.5.2. Proposition. Suppose that β = nαi and Λ = nΛi, for i ∈ I. Then there is a unique graded RΛ
β -module

Sλ with homogeneous basis {ψs | s ∈ Std(λ) } such that degψs =
(
n
2

)
− 2`(d(s)) and

ψsψr =

{
ψs(r,r+1), if s B s(r, r + 1) ∈ Std(λ),

0, otherwise,

ψvyt =
∑

1≤k<t
u=v(k,t)B· u

ψu −
∑
t<s≤n

u=v(k,t)B· v

ψu,

for s, v ∈ Std(λ), 1 ≤ r < n and 1 ≤ t ≤ n. Moreover, if Z is a field then Sλ is irreducible.
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Proof. The uniqueness is clear. To show that Sλ is an RΛ
β -module we check that the action respects the

relations of RΛ
β . By definition, if v ∈ Std(λ) then ψv = ψtλψd(v) and ψvψ

2
r = 0 since ψvψr = 0 if v(r, r+ 1) B v.

In particular, this implies that the action of ψ1 . . . , ψn−1 on Sλ respects the braid relations of Sn and that ψv

has the specified degree. Further, note that if uB· v then `(d(v)) = `(d(u)) + 1 so that degψu = degψv + 2.
By the last paragraph, the action of RΛ

β is compatible with the grading on Sλ, but we still need to check

the relations involving y1, . . . , yn. First consider ψvyryt = ψvytyr, for 1 ≤ r, t ≤ n and v ∈ Std(λ). If r = t
there is nothing to prove so suppose r 6= t. By definition,

ψvytyr =
∑
uB· v

∑
sB· u

εt(v, u)εr(u, s)ψs,

for appropriate choices of the signs εt(v, u) and εr(u, s). Suppose that ψs appears with non-zero coefficient in
this sum. Then we can write u = v(m, t) and u = v(l, r), for some l,m such that sB· uB· v. If l 6= m then the
permutations (m, t) and (l, r) commute. As the lengths add, we also have that sB· v(l, r)B· v. Therefore, ψs

appears with the same coefficient in ψvytys and ψvyryt. If l = m then s B u D v only if m is in between r
and t in v. That is, either r ≺v m ≺v t or t ≺v m ≺v r. However, this implies that either s 6B· u or u 6B· v, so
that ψs does not appear in either ψvyryt or in ψvytyr. Hence, the actions yr and yt on Sλ commute.

Similar, but easier, calculations with tableaux show that the action on Sλ respects the three relations
ψryt = ytψr, ψryr+1 = yrψr + 1 and yr+1ψr = ψryr + 1. To complete the verification of the relations in RΛ

β

it remains to show that ψvy
n
1 = 0, for all v ∈ Std(λ). This is clear, however, because ψvy1 is equal to a linear

combination of terms ψs where 1 appears in an earlier component of s than it does in v.
Finally, it remains to prove that Sλ is irreducible over a field. First we need some more notation. Let

tλ = n ··· ··· 2 1 and set wλ = d(tλ). Then wλ is the unique element of longest length in Sn. Recall from

§1.4, that d′(t) is the unique permutation such that t = tλd
′(t) and, moreover, d(t)d′(t)−1 = wλ with the

lengths adding. Therefore, if `(d(s)) ≥ `(d(t)) then ψsψ
?
d′(t) = δstψtλ .

We are now ready to show that Sλ is irreducible. Suppose that x =
∑

s rsψs is a non-zero element
of Sλ. Let t be any tableau such that rt 6= 0 and `(d(t)) is minimal. Then, by the last paragraph,
xψ?d′(t) = rtψtλ , so ψtλ ∈ xRΛ

β . We have already observed that y1 acts by moving 1 to an earlier component.

Therefore, ψtλy
n−1
1 = (−1)n−1ψtλ,1 , where tλ,1 = 1 n ··· 3 2 . Similarly, ψtλy

n−1
1 yn−2

2 = (−1)2n−3ψtλ,2 ,

where tλ,2 = 1 2 n ··· 3 . Continuing in this way shows that ψtλy
n−1
1 yn−2

2 . . . yn−1 = (−1)
1
2n(n−1)ψtλ . Hence,

xRΛ
β = Sλ, so that Sλ is irreducible as claimed. �

The proof of Proposition 2.5.2 shows that yn−1
1 yn−2

2 . . . yn−1 is a non-zero element of Sλ. Using the relations,
and a bit of ingenuity, it is possible to show that {ψwya1

1 . . . yann | w ∈ Sn and 0 ≤ ar ≤ n− r, for 1 ≤ r ≤ n }
is a basis of RΛ

β . Alternatively, it follows from [20, Theorem 4.20] that dim RΛ
β = (n!)2. Hence, we obtain the

following.

2.5.3. Corollary. Suppose that β = nαi and Λ = nΛi, for i ∈ I. Let λ = (1|1| . . . |1) and for s, t ∈ Std(λ)

define ψst = ψ?d(s)e(i
λ)yλψd(t), where iλ = it

λ

and yλ = yn−1
1 yn−2

2 . . . yn−1. Then {ψst | s, t ∈ Std(λ) } is a

graded cellular basis of RΛ
β .

The basis of the Specht module Sλ in Proposition 2.5.2 is well-known because it is really a disguised
version of the basis of Schubert polynomials of the coinvariant algebra of the symmetric group Sn [83, 94].
The coinvariant algebra Cn is the quotient of the polynomial ring Z[x] = Z[x1, . . . , xn] by the symmetric
polynomials in x1, . . . , xn of positive degree. Identify xr with its image in Cn, for 1 ≤ r ≤ n. Then Cn is free
of rank n!. As we have quotiented out by a homogeneous ideal, Cn inherits a grading from Z[x], where we set
deg xr = 2 for 1 ≤ r ≤ n. There is a well-defined action of RΛ

β on Cn where yr acts as multiplication by xr,
and ψr acts as a divided difference operator :

f(x)ψr = ∂rf(x) =
f(x)− f(sr · x)

xr − xr+1
,

where x = (x1, . . . , xn) and sr · x = (x1, . . . , xr+1, xr, . . . , xn) for 1 ≤ r < n. Here we are secretly thinking of
RΛ
β as being a quotient of the nil-Hecke algebra, where this action is well-known.

For d ∈ Sn define σd = (xn−1
1 xn−2

2 . . . xn−1)ψw0d. Then {σd | d ∈ Sn } is the basis of Schubert polyno-
mials of Cn. The Specht module is isomorphic to Cn as an RΛ

β -module, where an isomorphism is given by
ψt 7→ σd′(t). To see this it is enough to know that the Schubert polynomials satisfy the identity

∂rσd =

{
σsrd, if `(srd) = `(d)− 1,

0, otherwise.

Now observe that by the last paragraph of the proof of Proposition 2.5.2, if t ∈ Sn then

ψt = ψtλψd(t) = ψtλy
n−1
1 yn−1

2 . . . yn−1ψd(t).
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Hence, our claim follows by identifying ψtλ with the polynomial 1 ∈ Cn.
Finally, we remark that the formula for the action of y1, . . . , yn in Proposition 2.5.2 is a well-known corollary

of Monk’s rule; for example see [94, Exercise 2.7.3].

3. Isomorphisms, Specht modules and categorification

In the last section we proved that the algebras RΛ
n and H Λ

n are isomorphic when (Λ, αi,n) ≤ 1, for all
i ∈ I. This section starts with Brundan and Kleshchev’s Graded Isomorphism Theorem: RΛ

n
∼= H Λ

n , for all
Λ ∈ P+. Then we start to investigate the consequences of this result for both algebras.

3.1. Brundan and Kleshchev’s Graded Isomorphism Theorem. One of the most fundamental results
for the cyclotomic Hecke algebras H Λ

n is Brundan and Kleshchev’s spectacular isomorphism theorem.

3.1.1. Theorem (Graded Isomorphism Theorem [19,114]). Suppose that Z = F is a field, v ∈ K has quantum
characteristic e and that Λ ∈ P+. Then there is an isomorphism of algebras RΛ

n
∼= H Λ

n .

Suppose that F is a field of characteristic p > 0 and that e = pf , where f > 1. Then F cannot contain an
element v of quantum characteristic e, so Theorem 3.1.1 says nothing about the quiver Hecke algebra RΛ

n (F ).
As a first consequence of Theorem 3.1.1, by identifying H Λ

n and RΛ
n we can consider H Λ

n as a graded
algebra.

3.1.2. Corollary. Suppose that Λ ∈ P+ and Z = F is a field. Then there is a unique grading on H Λ
n such

that deg e(i) = 0, deg yr = 2 and degψse(i) = −cis,is+1
, for 1 ≤ r ≤ n, 1 ≤ s < n and i ∈ In.

Brundan and Kleshchev prove Theorem 3.1.1 by constructing family of isomorphisms RΛ
n −→ H Λ

n ,
together with their inverses, and then painstakingly checking that these isomorphisms respect the relations
of both algebras. Their argument starts with the well-known fact that H Λ

n decomposes into a direct sum
of simultaneous generalized eigenspaces for the Jucys-Murphy elements L1, . . . , Ln. These eigenspaces are
indexed by In, so for each i ∈ In there is an element e(i) ∈H Λ

n , possibly zero, such that e(i)e(j) = δije(i).
We describe these idempotents explicitly in Lemma 4.2.2 below.

Translating through Definition 1.1.1, Brundan and Kleshchev’s isomorphism is given by e(i) 7→ e(i) and

yr 7→
∑
i∈In

v−ir
(
Lr − [ir]v

)
e(i), and ψs 7→

∑
i∈In

(
Ts + Ps(i)

) 1

Qs(i)
e(i),

for 1 ≤ r ≤ n, 1 ≤ s < n and i ∈ In. We are abusing notation by identifying the KLR generators with their
images in H Λ

n . Here, Pr(i) and Qr(i) are certain rational functions in yr and yr+1 which are well-defined
because (Lt − [it]v)e(i) is nilpotent in H Λ

n , for 1 ≤ t ≤ n. The inverse isomorphism is given by e(i) 7→ e(i),

Lr 7→
∑
i∈In

(
viryr + [ir]v

)
e(i) and Ts 7→

∑
i∈In

(
ψsQs(i)− Ps(i)

)
e(i),

for 1 ≤ r ≤ n, 1 ≤ s < n and i ∈ In.
Rouquier [114, Corollary 3.20] has given a quicker proof of Theorem 3.1.1 by first showing that the

(non-cyclotomic) quiver Hecke algebra Rn is isomorphic to the (extended) affine Hecke algebra of type A.
Following [52] we sketch another approach to Theorem 3.1.1 in §4.2 below.

The following easy but important application of Theorem 3.1.1 was a surprise (at least to the author!).

3.1.3. Corollary. Suppose that Z = F is a field and that v, v′ ∈ F are two elements of quantum characteristic e.
Let Λ ∈ P+. Then H Λ

n (F, v) ∼= H Λ
n (F, v′).

Proof. By Theorem 3.1.1, H Λ
n (F, v) ∼= RΛ

n (F ) ∼= H Λ
n (F, v′). �

Consequently, up to isomorphism, the algebra H Λ
n depends only on e, Λ and the field F . Therefore, because

H Λ
n is cellular, the decomposition matrices of H Λ

n depend only on e, Λ and p, where p is the characteristic
of F . In the special case of the symmetric group, when Λ = Λ0, this weaker statement for the decomposition
matrices was conjectured in [97, Conjecture 6.38].

When F = C it is easy to prove Corollary 3.1.3 because there is a Galois automorphism of Q(v), as an
extension of Q, which interchanges v and v′. It is not difficult to see that this automorphism induces an
isomorphism H Λ

n (F, v) ∼= H Λ
n (F, v′). This argument fails for fields of positive characteristic because such

fields have fewer automorphisms.
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3.2. Graded Specht modules. As we noted in §2.1, if we impose a grading on an algebra A then it is not
true that every (ungraded) A-module has a graded lift, so there is no reason to expect that graded lifts of the

Specht modules Sλ exist in general. Of course, graded Specht modules do exist and this section describes one
way to define them.

Recall from §1.5 that the ungraded Specht module Sλ, for λ ∈ Pn, has basis {mt | t ∈ Std(λ) }. By

construction, Sλ = mtλH Λ
n . Brundan, Kleshchev and Wang [23] proved that Sλ has a graded lift essentially

by declaring that mtλ should be homogeneous and then showing that this induces a grading on the Specht
module Sλ = mtλRΛ

n .
Partly inspired by [23], Jun Hu and the author [49] showed that H Λ

n is a graded cellular algebra. The
graded cell modules constructed from this cellular basis coincide exactly with those of [23]. Perhaps most
significantly, the construction of the graded Specht modules using cellular algebra techniques endows the
graded Specht modules with a homogeneous bilinear form of degree zero.

Following Brundan, Kleshchev and Wang [23, §3.5] we now define the degree of a standard tableau. Suppose
that µ ∈ Pn. For i ∈ I let Addi(µ) be the set of addable i-nodes of µ and let Remi(µ) be its set of removable
i-nodes. If A is an addable or removable i-node of µ define

dA(µ) = # {B ∈ Addi(µ) | A < B } −# {B ∈ Remi(µ) | A < B } ,
dA(µ) = # {B ∈ Addi(µ) | A > B } −# {B ∈ Remi(µ) | A > B } ,
di(µ) = # Addi(µ)−# Remi(µ).

(3.2.1)

If t is a standard µ-tableau then its codegree and degree are defined inductively by setting codege t = 0 =
dege t if n = 0 and if n > 0 defining

codege t = codege t↓(n−1) + dA(µ) and dege t = dege t↓(n−1) + dA(µ),

where A = t−1(n). When e is fixed write codeg t = codege t and deg t = dege t.
Implicitly, all of these definitions depend on the choice of multicharge κ. The definition of the (co)degree

of standard tableaux due to Brundan, Kleshchev and Wang [23], however, the underlying combinatorics dates

back to Misra and Miwa [104] and their work on the crystal graph and Fock space representations of Uq(ŝle).
Recall that we fixed a reduced expression for each permutation w ∈ Sn. In §1.4 for each tableau t ∈ Std(λ)

we have defined permutations d′(t), d(t) ∈ Sn by tλd
′(t) = t = tλd(t).

3.2.2. Definition ( [49, Definitions 4.9 and 5.1]). Suppose that µ ∈ Pn. Define non-negative integers dµ1 , . . . , d
µ
n

and d1
µ, . . . , d

n
µ recursively by requiring that

d1
µ + · · ·+ dkµ = codeg(tµ↓k) and dµ1 + · · ·+ dµk = deg(tµ↓k),

for 1 ≤ k ≤ n. Now set iµ = itµ , iµ = it
µ

, yµ = y
d1
µ

1 . . . y
dnµ
n and yµ = y

dµ1
1 . . . y

dµn
n . For (s, t) ∈ Std2(µ) define

ψ′st = ψ?d′(s)e(iµ)yµψd′(t) and ψst = ψ?d(s)e(i
µ)yµψd(t),

where ? is the unique (homogeneous) anti-isomorphism of RΛ
n which fixes the KLR generators.

3.2.3. Example Suppose that e = 3, Λ = Λ0 + Λ2 and µ = (7, 6, 3, 2|4, 3, 1), with multicharge κ = (0, 2).
Then

tµ =


1 2 3 4 5 6 7

8 9 10 11 12 13

14 15 16

17 18

19 20 21 22

23 24 25

26

 and tµ =


9 13 17 20 22 24 26

10 14 18 21 23 25

11 15 19

12 16

1 4 6 8

2 5 7

3

 .

The reader may check that e(iµ) = e(01201202012011200120121200). We have coloured the nodes in tµ which
have column index divisible by e or have residue 2, which is the residue of 19 in=tµ19. This should convince
the reader that yµ = y2

3y
2
6y8y10y11y13y15y16y21y25. Using similar colourings for tµ, and reading right to left,

yµ = y2
3y4y7y11y15y19. ♦

3.2.4. Example Let β = nαi and Λ = nΛi, for some i ∈ I, so that RΛ
β is the nil-Hecke algebra RΛ

β of §2.5.

Let λ = (1|1| . . . |1). Then yλ = yn−1
1 . . . y2

n−2yn−1. Hence, the basis {ψst} of RΛ
β coincides with that of

Corollary 2.5.3. ♦

3.2.5. Example As in Example 2.2.7, in general, the basis element ψst depends on the choices of reduced
expressions that we have fixed for the permutations d(s) and d(t). For example, suppose that Λ = 2Λ0+Λ1, κ =

(0, 1, 0) and µ = (1|1|1) and consider the standard µ-tableaux tµ =
(

1
∣∣ 2

∣∣ 3
)

and tµ =
(

3
∣∣ 2

∣∣ 1
)
.

Then d(tµ) = 1 and d(tµ) = (1, 3) = s1s2s1 = s2s1s2 has two different reduced expressions. Let ψtµtµ =
Draft version as of October 5, 2013



24 ANDREW MATHAS

ψ1ψ2ψ1e(i
µ)yµψ1ψ2ψ1 and ψ̂tµtµ = ψ2ψ1ψ2e(i

µ)yµψ2ψ1ψ2. Then the calculation in Example 2.2.7 implies
that

ψ̂tµtµ = ψtµtµ + ψtµtµ + ψtµtµ + ψtµtµ .

This is probably the simplest example where different reduced expressions leads to different ψ-basis elements,
but examples occur for almost all RΛ

n . This said, in view of Proposition 2.4.3, ψst is independent of the choice
of reduced expressions for d(s) and d(t) whenever (Λ, αi,n) ≤ 1, for all i ∈ I. The ψ-basis can be independent
of the choice of reduced expressions even when RΛ

n is not semisimple. For example, this is always the case
when e > n and ` = 2 by [50, Appendix]. These algebras are typically not semisimple. ♦

3.2.6. Theorem (Hu-Mathas [49, Theorem 5.8]). Suppose that Z = F is a field. Then

{ψst | (s, t) ∈ Std2(Pn) }
is a graded cellular basis of RΛ

n with ψ?st = ψts and degψst = deg s + deg t, for (s, t) ∈ Std2(Pn).

Using the theory of graded cellular algebras from §2.1, we obtain graded Specht modules from Theorem 3.2.6.
By [49, Corollary 5.10] the graded Specht modules {Sλ | λ ∈ Pn } attached to the ψ-basis coincide with
those constructed by Brundan, Kleshchev and Wang [23]. When (Λ, αi,n) ≤ 1 it is not hard to show that these
Specht modules coincide with those we constructed in Proposition 2.4.3 above. Similarly, for the nil-Hecke
algebra considered in §2.5, the graded Specht module Sλ, with λ = (1|1| . . . |1), is isomorphic to the graded
module constructed in Proposition 2.5.2. Moreover, on forgetting the grading Sλ coincides exactly with the
ungraded Specht module Sλ constructed in §1.5, for λ ∈ Pn.

If λ ∈ Pn he graded Specht module Sλ has basis {ψt | t ∈ Std(λ) }, with degψt = deg t. The reader should
be careful not to confuse ψt ∈ Sλ with ψd(t) ∈ RΛ

n ! Hence, using Theorem 3.2.6 we recover [20, Theorem 4.20]:

dimq S
λ =

∑
t∈Std(λ)

qdeg t =⇒ dimq H Λ
n =

∑
(s,t)∈Std(λ)

qdeg s+deg t =
∑
λ∈Pn

(
dimq S

λ
)2
.

In essence, Theorem 3.2.6 is proved in much the same way that Brundan, Kleshchev and Wang [23]
constructed a grading on the Specht modules: we proved that the transition matrix between the ψ-basis and
the Murphy basis of Theorem 1.5.1 is triangular. In order to do this we needed the correct definition of the
elements yµ, which we discovered by first looking at the one dimensional two-sided ideals of H Λ

n (which
are necessarily homogeneous). We then used Brundan and Kleshchev’s Graded Isomorphism Theorem 3.1.1,
together with the seminormal forms (Theorem 1.6.7), to show that e(iµ)yµ 6= 0. This established that the
basis of Theorem 3.2.6 is a graded cellular basis. Finally, the combinatorial results of [23] are used to determine
the degree of ψ-basis elements.

Following the recipe in §2.1, for µ ∈ Pn define Dµ = Sµ/ radSµ, where radSµ is the radical of the
homogeneous bilinear form on Sµ. This yields the classification of the graded irreducible H Λ

n -modules.
The main point of the next result is that the labelling of the graded irreducible H Λ

n -modules agrees with
Corollary 1.5.2.

3.2.7. Corollary ( [20, Theorem 5.13], [49, Corollary 5.11]). Suppose that Λ ∈ P+ and that Z = F is a
field. Then {Dµ〈d〉 | µ ∈ KΛ

n and d ∈ Z } is a complete set of pairwise non-isomorphic graded H Λ
n -modules.

Moreover, (Dµ)~ ∼= Dµ and Dµ is absolutely irreducible, for all µ ∈ KΛ
n .

The KLR algebra Rn is always Z-free, however, it is not clear whether the same is true for the cyclotomic
KLR algebra RΛ

n . To prove this you cannot use the Graded Isomorphism Theorem 3.1.1 because this result
holds only over a field. Using some extremely sophisticated diagram calculus calculations, Li [85] proved the
following.

3.2.8. Theorem (Li [85]). Suppose that Λ ∈ P+. Then the quiver Hecke algebra RΛ
n (Z) is free as a Z-module

of rank `nn!. Moreover, RΛ
n (Z) is a graded cellular algebra with graded cellular basis {ψst | (s, t) ∈ Std2(Pn) }.

Therefore, RΛ
n is free over any commutative ring and any field is a splitting field for RΛ

n . Moreover, the
graded Specht modules, together with their homogeneous bilinear forms, are defined over Z. The integrality
of the graded Specht modules can also be proved using Theorem 3.6.2 below.

The next result lists some important properties of the ψ-basis.

3.2.9. Proposition. Suppose that (s, t) ∈ Std2(Pn) and that Z is an integral domain. Then:

a) [49, Lemma 5.2] If i, j ∈ In then ψst = δi,isδj,ite(i)ψste(j).

b) [50, Lemma 3.17] Suppose that ψst and ψ̂st are defined using different reduced expressions for the
permutations d(s), d(t) ∈ Sn. Then there exist auv ∈ Z such that

ψ̂st = ψst +
∑

(u,v)I(s,t)

auvψuv,

where auv 6= 0 only if iu = is, iv = it and deg u + deg v = deg s + deg t.
Draft version as of October 5, 2013



GRADED CYCLOTOMIC HECKE ALGEBRAS OF TYPE A 25

c) [51, Corollary 3.11] If 1 ≤ r ≤ n then there exist buv ∈ Z such that

ψstyr =
∑

(u,v)I(s,t)

buvψuv,

where buv 6= 0 only if iu = is, iv = it and deg u + deg v = deg s + deg t + 2.

Part (a) follows quickly using the relations in Definition 2.2.1 and the definition of the ψ-basis. In contrast,
parts (b) and (c) are proved by using Theorem 3.1.1 to reduce an analogous properties of seminormal bases.
With part (c), it is fairly easy to show that buv 6= 0 only if u D s. The difficult part is showing that buv 6= 0
only if v D t. Again, this is done using seminormal bases.

Finally, we note that Theorem 3.2.8 implies that e(i) 6= 0 in RΛ
n if and only if i ∈ InΛ = { it | t ∈ Std(Pn) },

generalizing Proposition 2.4.6. In fact, if F is a field and H Λ
n (F ) ∼= RΛ

n (F ) then it is shown in [49, Lemma 4.1]
that the non-zero KLR idempotents are a complete set of primitive (central) idempotents in the Gelfand-Zetlin
algebra Ln(F ) and that Ln(F ) = 〈y1, . . . , yn, e(i) | i ∈ In〉. It follows that Ln(F ) is a positively graded
commutative algebra with one dimensional irreducible modules indexed by InΛ, up to shift. It would be
interesting to find a (homogeneous) basis of Ln(F ). The author would also like to know whether RΛ

n is
projective as an Ln-module.

3.3. Blocks and dual Specht modules. This section shows that the blocks of H Λ
n are graded symmetric

algebras and it proves a corresponding statement relating the graded Specht modules and their graded duals.
Theorem 1.8.1 describes the block decomposition of H Λ

n so, by Theorem 3.1.1, it also describes the block
decomposition of RΛ

n . As in (2.2.6), let

RΛ
β = RΛ

n eβ , where eβ =
∑
i∈Iβ

e(i).

It follows from Definition 2.2.1 that eβ is central in RΛ
n , so RΛ

β = eβRΛ
n eβ is a two-sided ideal of RΛ

n . Let

Q+
n = Q+

n (Λ) = {β ∈ Q+ | eβ 6= 0 } in RΛ
n . Similarly, let Pβ = {λ ∈ Pn | iλ ∈ Iβ } = {λ ∈ Pn | βλ = β }.

Combining Theorem 3.2.8, Theorem 3.1.1 and Corollary 1.8.2 we obtain the following.

3.3.1. Theorem. Suppose that Λ ∈ P+. Then RΛ
n =

⊕
β∈Q+

n
RΛ
β is the decomposition of RΛ

n into indecompos-

able two-sided ideals. Moreover, RΛ
β is a graded cellular algebra with cellular basis {ψst | (s, t) ∈ Std2(Pβ) }

and weight poset Pβ.

By virtue of Theorem 3.2.8, the block decomposition of RΛ
n holds over Z, even though we cannot talk about

the blocks as linkage classes of simple modules in this case. Compare with Theorem 2.4.8 in the semisimple
case.

Suppose that A is a graded Z-algebra. Then A is a graded symmetric algebra if there exists a
homogeneous non-degenerate trace form τ :A−→Z. That is, τ(ab) = τ(ba) and if 0 6= a ∈ A then there exists
b ∈ A such that τ(ab) 6= 0. The map τ is homogeneous of degree d if τ(a) 6= 0 only if deg a = −d.

Fix β ∈ Q+. The defect of β is the non-negative integer

def β = (Λ, β)− 1

2
(β, β) =

1

2

(
(Λ,Λ)− (Λ− β,Λ− β)

)
.

If λ ∈ Pn set def λ = def βλ (see Corollary 1.8.2). If λ ∈ P1,n is a partition then def λ is equal to its e-weight;
see, for example, [34, Proposition 2.1] or the proof of [82, Lemma 7.6].

The definitions readily imply the following fundamental relationship connecting degrees, codegrees and
defects.

3.3.2. Lemma. Suppose that λ ∈ Pn.

a) [23, Lemma 3.11] If A ∈ Addi(λ) then dA(λ) + 1 + dA(λ) = di(λ) and def(λ+A) = def λ + di(λ)− 1.
b) [23, Lemma 3.12] If s ∈ Std(λ) then deg s + codeg s = def λ.

In Definition 3.2.2 we defined two sets of elements {ψst} and {ψ′st} in RΛ
n . Just as there are two versions of

the Murphy basis {mst} which are built from the trivial and sign representations of H Λ
n [99], respectively,

there are two versions of the ψ-basis. By [49, Theorem 6.17], {ψ′st | (s, t) ∈ Std2(Pn) } is also a graded cellular
basis of H Λ

n with weight poset (Pn,E) and with degψ′st = codeg s + codeg t. We warn the reader that we are
following the conventions of [50], rather than the notation of [49]. See [50, Lemma 3.15 and Remark 3.12] for
the translation.

The bases {ψst} and {ψ′uv} of RΛ
n are dual in the sense that if (s, t), (u, v) ∈ Std2(Pβ) then, by [51,

Theorem 6.17],

(3.3.3) ψstψ
′
ts 6= 0 and ψstψ

′
uv 6= 0 only if it = iu and u D t.
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Let τ be the usual non-degenerate trace form on H Λ
n [18, 93]. In general, τ is not homogeneous, however, it

can be written as a sum of homogeneous components. Let τβ be the homogeneous component of τ of degree
−2 def β. By [51, Theorem 6.17], τβ(ψstψ

′
st) 6= 0. Therefore, τβ is non-degenerate and we obtain the following.

3.3.4. Theorem (Hu-Mathas [49, Corollary 6.18]). Suppose that β ∈ Q+
n . Then RΛ

β a graded symmetric
algebra with homogeneous trace form of degree −2 def β.

It would be better to have an intrinsic definition of τβ for RΛ
n (Z). Webster [127, Remark 2.27] has given a

diagrammatic description of a trace form on an arbitrary cyclotomic KLR algebra. It is unclear to the author
how these two forms on RΛ

n are related.
The basis {ψ′st} is a graded cellular basis of H Λ

n so it defines another collection of graded cell modules.
The dual graded Specht module Sλ is the graded cell module indexed by λ ∈ Pβ and determined by the
ψ′-basis. The dual Specht module Sλ has basis {ψ′t | t ∈ Std(λ) }, with degψ′t = codeg t, so

dimq Sλ =
∑

t∈Std(λ)

qcodeg t.

We can identify Sλ〈codeg tλ〉 with (ψ′tλtλ + H ′Cλ
n )H Λ

n , where H ′Cλ
n is the two-sided ideal of H Λ

n spanned

by ψ′st where (s, t) ∈ Std2(µ) for some multipartition µ such that λ B µ. Similarly, we can identify Sλ〈deg tλ〉
with (ψtλtλ + H Bλ

n )H Λ
n . Therefore, by (3.3.3) there is a non-degenerate pairing

{ , } :Sλ〈deg tλ〉 × Sλ〈codeg tλ〉−→Z

given by {a+ H Bλ
n , b+ H ′Cλ

n } = τβ(ab?). Hence, using Lemma 3.3.2, we obtain:

3.3.5. Corollary (Hu-Mathas [49, Proposition 6.19]).
Suppose that λ ∈ Pn. Then Sλ ∼= S~

λ 〈def λ〉 and Sλ = (Sλ)~〈def λ〉.

This result holds for the Specht modules defined over Z by Theorem 3.2.8 or by [75, Theorem 7.25].
There is an interesting a byproduct of the proof of Corollary 3.3.5. In the ungraded setting the Specht module

Sλ is isomorphic to the submodule of H Λ
n generated by an element mλTwλ

m′λ; see [31, Definition 2.1 and
Theorem 2.9]. By [49, Corollary 6.21], mλTwλ

m′λ is homogeneous and, in fact, ψtλtλψwλ
ψ′tλtλ = mλTwλ

m′λ.

Moreover, ψtλtλψwλ
ψ′tλtλRΛ

n
∼= Sλ〈def λ + codeg tλ〉.

3.4. Induction and restriction. The cyclotomic Hecke algebra H Λ
n is naturally a subalgebra of H Λ

n+1, and

H Λ
n+1 is free as an H Λ

n -module, by (1.1.2). This gives rise to the usual induction and restriction functors.
These functors can be decomposed into the i-induction and i-restriction functors, for i ∈ I, by projecting onto
the blocks of these two algebras. As we will see, these functors are implicitly built into the graded setting.

Recall that I = Z/eZ and Λ ∈ P+. For each i ∈ I define

en,i =
∑
j∈In

e(j ∨ i) ∈ RΛ
n+1.

The relations for RΛ
n+1 in Definition 2.2.1 imply that en,i is an idempotent and that

∑
i∈I en,i =

∑
i∈In+1 e(i)

is the identity element of RΛ
n+1.

3.4.1. Lemma. Suppose that i ∈ I and that Z is an integral domain. Then there is a (non-unital) embedding
of graded algebras RΛ

n ↪→ RΛ
n+1 given by

e(j) 7→ e(j ∨ i), yr 7→ en,iyr and ψs 7→ en,iψs,

for j ∈ In, 1 ≤ r ≤ n and 1 ≤ s < n. This map induces an exact functor

i-Ind : Rep(RΛ
n )−→Rep(RΛ

n+1);M 7→M ⊗RΛ
n
en,iR

Λ
n+1.

Moreover, Ind =
⊕

i∈I i-Ind is the graded induction functor from Rep(RΛ
n ) to Rep(RΛ

n+1).

Proof. The images of the homogeneous generators of RΛ
n under this embedding commute with en,i, which

implies that this map defines a non-unital degree preserving homomorphism from RΛ
n to RΛ

n+1. This map is
an embedding by Theorem 3.2.8. The remaining claims follow because, by definition, en,i is an idempotent
and

∑
i∈I en,i is the identity element of RΛ

n+1. �

The i-induction functor i-Ind functor is obviously a left adjoint to the i-restriction i-Res functor which
sends an RΛ

n+1-module M to en,iM = M ⊗RΛ
n+1

RΛ
n+1en,i. A much harder fact is that these functors are

two-sided adjoints.

3.4.2. Theorem (Kashiwara [64, Theorem 3.5]). Suppose i ∈ I. Then (Ei, Fi) is a biadjoint pair.
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Kashiwara proves this theorem for all cyclotomic quiver Hecke algebras such that the associated Cartan
matrix is symmetrizable. We are cheating by stating this result now because its proof builds upon Kang and
Kashiwara’s proof that the cyclotomic quiver Hecke algebras of arbitrary type categorify the integrable highest
weight modules of the corresponding quantum group [62]. Theorem 3.4.2 was conjectured by Khovanov-
Lauda [67] and Rouquier [114].

We want to describe these functors on the graded Specht modules. This result generalizes the well-
known (ungraded) branching rules for the symmetric group [54, Example 17.16] and the cyclotomic Hecke
algebras [10,102,118].

Recall the definition of the integers dA(λ) and dA(λ) from (3.2.1).

3.4.3. Theorem. Suppose that Z is an integral domain and λ ∈ Pn.

a) [51, Main theorem] Let A1 < A2 · · · < Az be the addable i-nodes of λ. Then i-IndSλ has a graded
Specht filtration

0 = I0 ⊂ I1 ⊂ · · · ⊂ Iz = i-IndSλ,

such that Ij/Ij−1
∼= Sλ+Aj 〈dAj (λ)〉,

b) [23, Theorem 4.11] Let By < · · · < B2 < B1 be the removable i-nodes of λ. Then i-ResSλ has a
graded Specht filtration

0 = R0 ⊂ R1 ⊂ · · · ⊂ Ry = i-ResSλ,

such that Rj/Rj−1
∼= Sλ−Bj 〈dBj (λ)〉, for 1 ≤ j ≤ y.

c) [51, Corollary 4.6] Let Az < · · · < A2 < A1 be the addable i-nodes of λ. Then i-IndSλ has a graded
Specht filtration

0 = I0 ⊂ I1 ⊂ · · · ⊂ Iz = i-IndSλ,

such that Ij/Ij−1
∼= Sλ+Aj 〈dAj (λ)〉, for 1 ≤ j ≤ z.

The corresponding statement for the restriction of the dual graded Specht modules follows easily using
Corollary 3.3.5. As we do not need this we leave it as an exercise for the reader.

Part (b) was proved first using a standard argument based on properties of the graded cellular basis of Sλ.
Part (a), which was conjectured by Brundan, Kleshchev and Wang [23, Remark 4.12], is proved by extending
some elegant ideas of Ryom-Hansen [118] to the graded setting using results from [49].

3.5. Grading Ariki’s Categorification Theorem. We now relate the graded representation theory of

the Hecke algebras H Λ
n with the representation theory of the quantum group Uq(ŝle) by lifting Ariki’s

Categorification Theorem to the graded setting. This allows us to give a new proof of Brundan and
Kleshchev’s theorem that the cyclotomic KLR algebras categorify the integrable highest weight modules

of Uq(ŝle). Our main tools are Ariki’s categorification theorem, the graded branching rules of Theorem 3.4.3
and the Fock space and canonical basis combinatorics.

Throughout this section we assume that the Hecke algebras H Λ
n are defined over a field F , for n ≥ 0. In

the end we will assume that F is a field of characteristic zero, however, almost all of the results in this section
hold over any field F .

Recall that Uq(ŝle) is the quantum group over Q(q) associated with the quiver Γe. Therefore, Uq(ŝle) is
generated by elements Ei, Fi and K±i , for i ∈ I, subject to the quantum Serre relations [88, §3.1].

Let P =
⋃
n≥0 Pn, KΛ =

⋃
n≥0KΛ

n and set A = Z[q, q−1]. The combinatorial Fock space FΛ
A is the

free A-module with basis the set of symbols { |λ〉 | λ ∈ P }. Let FΛ
Q(q) = FΛ

A ⊗A Q(q). Then, FΛ
Q(q) is an

infinite dimensional Q(q)-vector space. We consider { |λ〉 | λ ∈ P } as a basis of FΛ
Q(q) by identifying |λ〉 and

|λ〉 ⊗ 1Q(q).

3.5.1. Theorem (Hayashi [47]). Suppose that Λ ∈ P+. Then FΛ
Q(q) is an integrable Uq(ŝle)-module with

Uq(ŝle)-action determined by

Ei|λ〉 =
∑

B∈Remi(λ)

qdB(λ)|λ−B〉 and Fi|λ〉 =
∑

A∈Addi(λ)

q−d
A(λ)|λ+A〉,

and Ki|λ〉 = qdi(λ)|λ〉, for all i ∈ I and λ ∈ Pn.

Hayashi [47] considered only the special case when Λ = Λ0. The general case follows easily from this using

the coproduct of Uq(ŝle) because the definitions imply that FΛ
Q(q)
∼= F

Λκ1

Q(q) ⊗ · · · ⊗F
Λκ`
Q(q) as a Uq(ŝle)-module.

The crystal and canonical bases of the higher level Fock spaces were studied in [60,104,124].

For each dominant weight Λ ∈ P+ let L(Λ) = Uq(ŝle)vΛ be the integrable highest weight module of high

weight Λ, where vΛ is a highest weight vector of weight Λ. It follows from Theorem 3.5.1 that L(Λ) ∼= Uq(ŝle)|0〉
as Uq(ŝle)-modules, where 0 = (0|0| . . . |0) ∈ P0 is the empty multipartition of level `.
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Let Rep(H Λ
n ) be the category of finitely generated graded H Λ

n -modules and let ProjA(H Λ
n ) be the category

of finitely generated projective graded H Λ
n -modules. Let [Rep(H Λ

n )] and [Proj(H Λ
n )] be the Grothendieck

groups of these categories. If M is a finitely generated H Λ
n -module let [M ] be its image in [Rep(H Λ

n )] or,
abusing notation slightly, in [Proj(H Λ

n )] if M is projective.

3.5.2. Definition. Suppose that µ ∈ KΛ
n . Let Y µ be the projective cover of Dµ in Rep(H Λ

n ).

Then { [Dµ] | µ ∈ KΛ
n } is a basis of [Rep(H Λ

n ) and { [Y µ] | µ ∈ KΛ
n } is a basis for Proj(H Λ

n ). We use
the notation Y µ because these modules are special cases of the graded lifts of the Young modules constructed
in [98]; see [50, §5.1] and [92, §2.6]. By Corollary 2.1.5, [Pµ] =

∑
λ dλµ(q)[Sλ] in [Rep(H Λ

n )] .
Consider [Rep(H Λ

n )] and [Proj(H Λ
n )] as A-modules by letting q act as the grading shift functor: [M〈d〉] =

qd[M ], for d ∈ Z. Set

[RepΛ
A] =

⊕
n≥0

[Rep(H Λ
n )] and [ProjΛA] =

⊕
n≥0

[Proj(H Λ
n )].

Extending scalars, let [RepΛ
Q(q)] = [RepΛ

A]⊗A Q(q) and [ProjΛQ(q)] = [ProjΛA]⊗A Q(q).

3.5.3. Proposition. Suppose that Λ ∈ P+. Then the i-induction and i-restriction functors of [RepΛ
Q(q)](H

Λ
n )

induce isomorphisms [ProjΛQ(q)]
∼= L(Λ) ∼= [RepΛ

Q(q)] of Uq(ŝle)-modules.

Proof. Recall that dq is the graded decomposition matrix of H Λ
n and dTq is its transpose. Define linear maps

[ProjΛQ(q)] FΛ
Q(q)

[RepΛ
Q(q)]

dTq

dqcq

where dTq ([Y µ]) =
∑

λ dλµ(q)|λ〉, dq(|λ〉) =
∑

µ dλµ(q)[Dµ] and where cq = dTq ◦ dq is the Cartan map. We

claim that that these maps can be made into Uq(ŝle)-module homomorphisms.
The i-induction and i-restriction functors are exact, for i ∈ I. Therefore, they send projective modules to

projectives and they induce vector space endomorphisms of the Grothendieck groups [RepΛ
Q(q)] and [ProjΛQ(q)].

By Theorem 3.4.3, and Lemma 3.3.2(a) for the first formula,

[i-IndSλ〈1− di(λ〉] =
∑

A∈Addi(λ)

qdA(λ)+1−di(λ)[Sλ+A] =
∑

A∈Addi(λ)

q−d
A(λ)[Sλ+A],

[i-ResSλ] =
∑

B∈Remi(λ)

qdB(λ)[Sλ−B ].

Identifying Ei with i-Res and qFiK
−1
i with i-Ind, the vector space maps dq and dTq become well-defined

Uq(ŝle)-module homomorphisms by Theorem 3.5.1. By construction, the Uq(ŝle)-modules [RepΛ
Q(q)] and

[ProjΛQ(q)] are both cyclic, being generated by [P 0] = [S0] = [D0]. As L(Λ) ∼= Uq(ŝle)|0〉 is irreducible, the
proposition follows. �

By Theorem 2.1.4(c), the graded decomposition matrix dq =
(
dλµ(q)

)
is invertible over A with inverse

eq =
(
eλµ(q)

)
. Therefore, we can consider { [Sλ] | λ ∈ KΛ } to be an A-basis of either Grothendieck group,

where we abuse notation by identifying [Sµ] in [ProjΛQ(q)] with (dTq )−1|µ〉) =
∑

λ eλµ(q)[Y λ], for µ ∈ KΛ.

Let Uq(ŝle)A be Lusztig’s A-form of Uq(ŝle). Theorem 3.5.1 implies that Uq(ŝle)A acts on the A-submodule

of FΛ
A of FΛ

Q(q). In particular, there are well-defined actions of the divided powers E
(k)
i and F

(k)
i on FΛ

A , for

i ∈ I an k ≥ 0. By Proposition 3.5.3, [RepΛ
A] and [ProjΛA] are both Uq(ŝle)A-modules.

The bar involution on A = Z[q, q−1] is the unique Z-linear map such that q = q−1. A semilinear map

of A-modules is a Z-linear map θ :M−→N such that θ(f(q)m) = f(q)θ(m), for all f(q) ∈ A and m ∈M .

There is a natural pairing ( , ) : [ProjΛA]× [RepΛ
A]−→A that is determined by

([P ], [M ]) = dimq HomH Λ
n

(P,M),

for graded H Λ
n -modules P and M with P projective. This pairing is sesquilinear in the sense that it is

semilinear in the first variable and A-linear in the second. By definition, if λ,µ ∈ KΛ then ([Pλ], [Dµ]) = δλµ.
By biadjointness (Theorem 3.4.2), or a direct calculation using Theorem 3.4.3,

(i-Ind[P ], [M ]) = ([P ], i-Res[M ]) and (i-Res[P ], [M ]) = ([P ], i-Ind[M ]).
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Therefore, ( , ) is a Shapovalov form in the sense of [20, (3.39)].
Recall that M~ = HomF (M,F ) is the contragredient dual of the graded H Λ

n -module M . Similarly, if P
is a graded projective H Λ

n -module define P# = HomH Λ
n

(P,H Λ
n ). In both cases the H Λ

n -action is given by

(f · h)(m) = f(mh?), for h ∈H Λ
n , m ∈M and f ∈M~ or f ∈ P#. These dualities induce semilinear linear

involutions on [RepΛ
Q(q)] and [ProjΛQ(q)], which are given by

[P ]# = [P#], and [M ]~ = [M~]

for M ∈ Rep(H Λ
n ) and P ∈ Proj(H Λ

n ).
We can now show that the Specht modules and dual Specht modules are dual bases with respect to the

Shapovalov form. if λ,µ ∈ KΛ then

([Sλ], [Sµ~]) =
∑
σ

eσλ(q)([Pσ], [Sµ]~) =
∑
σ,τ

eσλ(q) dµτ (q)([Pσ], [Dτ ])

=
∑
σ

dµσ(q) eσλ(q) = δλµ.
(3.5.4)

Equivalently, ([Sλ], [Sµ]) = δλµq
− def µ by Corollary 3.3.5. In particular, the form ( , ) is non-degenerate. The

Shapovalov form justifies our making the identifications [ProjΛA] = L(Λ)A and [RepΛ
A] = L(Λ)∗A.

Importantly, the involutions ~ and # commute with the action of Uq(ŝle)
−
A.

3.5.5. Lemma. The involutions # and ~ on [ProjΛA] and [RepΛ
A], respectively, commute with the action of Fi,

for i ∈ I.

Proof. It is enough to check that Fi commutes with # and ~ on the Specht modules in [ProjΛA] and [RepΛ
A].

Now,

Fi[S
λ]~ = q− def λFi[Sλ], by Corollary 3.3.5,

= q− def λ
∑

A∈Addi(λ)

q−d
A(λ)[Sλ+A], by Theorem 3.4.3(c),

=
∑

A∈Addi(λ)

q−d
A(λ)+di(λ)−1−def(λ+A)[Sλ+A], by Lemma 3.3.2(a),

=
∑

A∈Addi(λ)

qdA(λ)−def(λ+A)[Sλ+A], by Lemma 3.3.2(a),

=
( ∑
A∈Addi(λ)

q−d
A(λ)[Sλ+A]

)~
, by Corollary 3.3.5,

= (Fi[S
λ])~.

Essentially the same argument shows that Fi[S
λ]# = (Fi[S

λ])#. �

Similarly, ~ and # commute with Ei, for i ∈ I.
The following result is well-known and easily verified. See, for example, [20, Lemma 2.5].

3.5.6. Lemma. Suppose [P ] ∈ [ProjΛA] and [M ] ∈ [RepΛ
A]. Then ([P ]#, [M ]) = ([P ], [M ]~).

The effect of the involutions # and ~ on [ProjΛA] and [RepΛ
A] is particularly nice.

3.5.7. Lemma. Suppose that λ ∈ KΛ. Then [Y λ]# = [Y λ], [Dλ]~ = [Dλ],

[Sλ]# = [Sλ] +
∑

µ∈KΛ
n

µBλ

aλµ(q)[Sµ] and [Sλ]~ = [Sλ] +
∑

µ∈KΛ
n

λBµ

aλµ(q)[Sµ],

for some Laurent polynomials aλµ(q), aλµ(q) ∈ A.

Proof. That [Dµ]~ = [Dµ] is immediate by Corollary 3.2.7. Using Lemma 3.5.6, this implies that [Y µ]# = [Y µ].
Finally, by Theorem 2.1.4,

[Sλ]~ =
(∑

λDµ

dλµ(q)[Dµ]
)~

=
∑

µ∈KΛ
n

λDµ

dλµ(q−1)[Dµ]

=
∑

ν∈KΛ
n

λDν

( ∑
µ∈KΛ

n
νDµDλ

dλµ(q−1)eµν(q)
)

[Sν ]
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as claimed. Writing [Sλ] =
∑

µ eµλ(q)[Pµ], essentially the same argument shows that [Sµ]# can be written
in the required form. Alternatively, use Lemma 3.5.6. �

The triangularity of the action of ~ and # on [RepΛ
A] and [ProjΛA], respectively, has the following easy but

important consequence.

3.5.8. Proposition. There exist bases {Bλ | λ ∈ KΛ } and {Bλ | λ ∈ KΛ } of [ProjΛA] and [RepΛ
A], respec-

tively, which are uniquely determined by the properties (Bλ)# = Bλ and (Bλ)~ = Bλ

Bλ = [Sλ] +
∑

µ∈KΛ
n

µBλ

bλµ(q)[Sµ] and Bλ = [Sλ] +
∑

µ∈KΛ
n

λBµ

bλµ(q)[Sµ]

for polynomials bλµ(q), bλµ(q) ∈ δλµ + qZ[q]. Moreover, if λ,µ ∈ KΛ then

(Bλ, Bµ) =
∑

σ∈KΛ

λDσDµ

bλσ(q)bσµ(q) = δλµ.

Proof. The existence and uniqueness of these two bases follows immediately from Lemma 3.5.7 by a standard
argument known as Lusztig’s Lemma [88, Lemma 24.2.1]. For completeness, we quickly sketch a common
variation on this argument for the basis {Bµ}.

Fix a multipartition µ ∈ KΛ
n , for some n ≥ 0, and suppose that Bµ and B′µ are two elements of [ProjΛA]

with the required properties. Then Bµ − B′µ is ~-invariant. By assumption we can write Bµ − B′µ =∑
λBµ b

′
λµ(q)[Sλ], for some polynomials b′λµ(q) ∈ Z[q]. Since these coefficients are polynomials, Lemma 3.5.7

forces Bµ −B′µ = 0, proving uniqueness.

To prove existence, we argue by induction on dominance. If µ is minimal in KΛ
n then we can set

Bµ = [Sµ] = Dµ by Lemma 3.5.7. If µ ∈ KΛ
n is not minimal with respect to dominance then set B′µ = [Dµ].

Then (B′µ)~ = B′µ and B′µ = [Sµ] +
∑

µBν b
′
µν(q)[Sν ], for some Laurent polynomials b′µν(q) ∈ Z[q, q−1]. If

b′µν(q) ∈ qZ[q] for all µ B ν then we can set Bµ = B′µ. Otherwise, find µ B ν minimal with respect to
dominance such that b′µν(q) /∈ qZ[q]. Using induction, define B′′µ = B′µ − pµν(q)Bν , where pµν(q) is the

unique Laurent polynomial such that pµν(q) = pµν(q) and b′µν(q)− pµν(q) ∈ qZ[q]. Then (B′′µ)~ = B′′µ and
the coefficient of [Sν ] in B′′µ belongs to qZ[q]. Continuing in this way, a finite number of steps will construct
an element Bµ with the required properties.

Turning to the inner products, if λ,µ ∈ KΛ then, since ([Sσ], [Sτ ]~) = δστ by (3.5.4),

(Bλ, Bµ) = (Bλ, B~
µ ) =

∑
σDλ

∑
τEµ

bλσ(q) bτµ(q)([Sσ], [Sτ ]~)

=
∑

λDσBµ

bλσ(q) bσµ(q).

In particular, (Bλ, Bµ) ∈ δλµ + q−1Z[q−1]. On the other hand, (Bλ, Bµ) = (Bλ#, Bµ) = (Bλ, B~
µ ) =

(Bλ, Bµ) by Lemma 3.5.6, Therefore, (Bλ, Bµ) = δλµ as this is the only bar invariant polynomial in
δλµ + q−1Z[q−1]. �

By Lemma 3.5.5, the action of Fi on [RepΛ
A] and [ProjΛA], for i ∈ I, commutes with # and with ~.

(In the language of [20, §3.1], # and ~ are compatible bar-involutions). It follows that the basis {Bµ} is
Lusztig’s canonical basis [87, §14.4], or Kashiwara’s upper global basis [63], of L(Λ) and {Bµ} is the
dual canonical basis, or the lower global basis.

3.5.9. Proposition. Suppose that F is an arbitrary field and that n ≥ 0. Then the following are equivalent:

a) Bµ = [Y µ], for all µ ∈ KΛ
n .

b) Bµ = [Dµ], for all µ ∈ KΛ
n .

c) dλµ(q) ∈ δλµ + qN[q], for all λ ∈ Pn and µ ∈ KΛ
n .

Proof. In the Grothendieck groups, [Dλ] = [Sλ] +
∑

λBµ eλµ(q)[Sµ] and [Y λ] = [Sλ] +
∑

µBλ dλµ(q)[Sµ].

Moreover, by Lemma 3.5.7, [Y µ]# = [Y µ] and [Dµ]~ = [Dµ], for µ ∈ KΛ
n . By definition, dλµ(q) ∈ N[q, q−1]

and eq = d−1
q . Therefore, dλµ(q) ∈ δλµ + qN[q] for all λ,µ, if and only if eλµ(q) ∈ δλµ + qZ[q] for all λ,µ.

Hence, the proposition is immediate from Proposition 3.5.8. �

We can now state Ariki’s celebrated Categorification Theorem. By specializing q = 1 the quantum group

Uq(ŝle)A ⊗Q becomes the Kac-Moody algebra U(ŝle). Let L1(Λ) be the irreducible integrable highest weight

U(ŝle)-module of high weight Λ. The canonical bases of L1(Λ) are obtained by specializing q = 1 in the
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canonical bases of L(Λ)A. Forgetting the grading in the results above, RepΛ

Q
∼= L1(Λ) ∼= ProjΛQ, where

RepΛ

Q =
⊕

n Rep(H Λ
n)⊗Z Q and ProjΛQ =

⊕
n Proj(H Λ

n)⊗Z Q.

3.5.10. Theorem (Ariki’s Categorification Theorem [2, Theorem 4.4]).
Suppose that F is a field of characteristic zero. Then the canonical basis of L1(Λ) coincides with the basis of

(ungraded) projective indecomposable H Λ
n -modules { [Y λ] | λ ∈ KΛ } of ProjΛQ.

For a detailed proof of this important result see [4, Theorem 12.5]. For a overview and historical account of
Ariki’s theorem see [41]. For a proof in the degenerate case see [21, Theorem 3.10].

Combining Theorem 3.5.10 with Proposition 3.5.9 we obtain the main result of this section.

3.5.11. Corollary (Brundan and Kleshchev [20, Theorem 5.14]). Suppose that F is a field of characteristic

zero. Then the canonical basis of L(Λ) coincides with the basis { [Y λ] | λ ∈ KΛ } of [ProjΛQ(q)]. In particular,

dλµ(q) ∈ δλµ + qN[q], for all λ,µ ∈ KΛ.

When Λ is a weight of level 2 and e =∞ this was first proved by Brundan and Stroppel [24, Theorem 9.2].
For extensions of this result to cyclotomic quiver Hecke algebras of arbitrary type see [62,84,115,127].

Corollary 3.5.11 implies that the graded decomposition numbers dλµ(q) = [Sλ : Dµ]q = bλµ(q) are
parabolic Kazhdan-Lusztig polynomials. Explicit formulas are given in [92, Lemma 2.46]. When e =∞ see
also [50, Theorem 7.8] and [18, Theorem 3.1].

For the canonical basis {Bµ} it is immediate that bλµ(q) ∈ Z[q] are polynomials, however, it is a deep fact
that their coefficients are non-negative integers. In contrast, it is immediate that dλµ(q)N[q, q−1] but it is
a deep fact that they are polynomials rather than Laurent polynomials. Thus, the difficult result changes
from positivity of coefficients to positivity of exponents in the graded setting. In fact, it is also true when
F = C that the inverse graded decomposition numbers eλµ(−q) = bλµ(−q) are polynomials with non-negative
integer coefficients. This is perhaps best explained by passing to the Koszul dual of the corresponding graded
cyclotomic Schur algebras [6, 50,121] using [50,92].

Brundan and Kleshchev’s proof of Corollary 3.5.11 is quite different to the one given here. They have to
work quite hard to define triangular bar involutions on L(Λ) whereas we have done this by exploiting the
representation theory of H Λ

n . The catch is that Brundan and Kleshchev have an explicit description of their
bar involutions, which they can compute with, whereas we have no hope of working with our bar involution
unless we already know the graded decomposition matrices. On the other hand, our approach works for any
multicharge κ.

To complete the proof of Corollary 3.5.11, Brundan and Kleshchev lift Grojnowski’s elegant approach [46]
to the representation theory of H Λ

n to the graded setting. As a result they obtain graded analogues of
Kleshchev’s modular branching rules [16, 70, 71] which, under categorification, correspond to the action of
the crystal operators on the crystal graph of L(Λ); see [20, Theorem 4.12]. By invoking Ariki’s theorem
they deduce an analogue of Corollary 3.5.11, although possibly with different labelling of the simple modules.
Finally, they then prove that the labelling of the irreducible H Λ

n -modules coming from the branching rules
agrees with the labelling in Corollary 1.5.2; compare with [5, 7].

We have not yet given an explicit description of the labelling of the (graded) irreducible H Λ
n -modules

because, by definition, KΛ
n = {µ ∈ Pn | Dµ 6= 0 }. Extending (3.2.1), given nodes A,C ∈ Remi(λ) define

dCA = # {B ∈ Addi(λ) | A < B < C } −# {B ∈ Remi(λ) | A < B < C } .

Following Misra and Miwa [104] (and Kleshchev [69]), a removable i-node A is normal if dA ≤ 0 and dCA < 0
whenever C ∈ Remi(λ) and A < C. A normal i-node A is good if A ≤ B whenever B is a normal i-node.
Write λ good−−−→ µ if µ = λ+A for some good node A. Misra and Miwa [104, Theorem 3.2] show that the crystal
graph of L(Λ)A, considered as a submodule FΛ

A , is the graph with vertex set

L Λ
0 = {µ ∈ P | µ = 0 or λ good−−−→ µ for some λ ∈ L Λ

0 } ,

and with labelled edges λ i−→ µ whenever µ is obtained from λ by adding a good i-node, for some i ∈ I.

3.5.12. Corollary (Ariki [3]). Suppose that F is an arbitrary field and that µ ∈ Pn. Then KΛ = L Λ
0 . That

is, if µ ∈ Pn then Dµ
F 6= 0 if and only if µ ∈ L Λ

0 .

Proof. If F is a field of characteristic zero then KΛ = L Λ
0 by Corollary 3.5.11, Proposition 3.5.9 and the

definition of crystal graphs. If F is a field of positive characteristic then a straightforward modular reduction
argument shows that Dµ

F 6= 0 only if Dµ
C 6= 0, for µ ∈ Pn (compare with §3.7 below). So, KΛ ⊆ L Λ

0 . By
Proposition 3.5.3, the number of irreducible H Λ

n -modules depends only on e, and in particular not on F , so
KΛ = L Λ

0 as required. �

Draft version as of October 5, 2013



32 ANDREW MATHAS

3.6. Homogeneous Garnir relations. We have now seen that RΛ
n is a graded cellular algebra and, as a

consequence, that there exist graded lifts of the Specht modules for arbitrary Λ ∈ P+. However, at this point
we cannot really compute inside the graded Specht modules because we do not know how to write basis
elements indexed by non-standard tableaux in terms of standard ones. This section shows how to do this.
First we need some combinatorics.

Fix a multipartition λ and a node A = (l, r, c) ∈ λ. A (row) Garnir node of λ is any node A = (l, r, c)
such that (l, r + 1, c) ∈ λ. The (e,A)-Garnir belt is the set of nodes

BA = { (l, r, c) ∈ λ | r ≥ c and ed r−c+1
e e ≤ λ(l)

r − c+ 1 }
∪ { (l, r + 1, c) ∈ λ | r ≤ c and c ≥ ed c−r+1

e e } .
Let bA = #BA/e and write bA = aA + cA where eaA is the number of nodes in BA in row (l, r). Let DA be

the set of minimal length right coset representatives of SaA×ScA in SbA ; see, for example, [97, Proposition 3.3].
When e =∞ these definitions should be interpreted as BA = ∅, bA = 0 = aA = cA and DA = 1.

Suppose A is a Garnir node of λ. The rows of λ are indexed by pairs (l, r), corresponding to row r in µ(l)

where 1 ≤ l ≤ ` and r ≥ 1. Order the row indices lexicographically. Let tA be the λ-tableau which agrees
with tµ for all numbers k < tµ(A) = tµ(l, r, c) and k > tµ(l, r + 1, c) and where the remaining entries in rows
(l, r) and (l, r + 1) are filled in increasing order from left to right first along the nodes in row (l, r + 1) which
are in the first c columns but not in BA, then along the nodes in row (l, r) of BA followed by the nodes in
row (l, r + 1) of BA, and then along the remaining nodes in row (l, r).

3.6.1. Example As Garnir belts are contained in consecutive rows of the same component, the general case
can be understood by looking at a two-rowed partition (of level one), so we consider the case e = 3, λ = (14, 6)
and A = (1, 1, 4). Then

tA =
1 2 3 5 6 7 8 9 10 11 12 13 17 18

4 14 15 16 19 20

The lines in tA show how the (3, A)-Garnir belt decomposes into a disjoint union of “e-bricks”. In general, bA
is equal to the number of e-bricks in the Garnir belt and aA is the number of e-bricks in its first row. In this
case, bA = 4 and aA = 3. Therefore, DA = {1, s3, s3s2, s3s2s1}. ♦

Let kA = tA(A) be the number occupying A in tA. For 1 ≤ r < bA define

wAr =

kA+re−1∏
a=kA+e(r−1)

(a, a+ e).

The elements {wAr | 1 ≤ r < bA } generate a subgroup of Sn that is isomorphic to SbA via the map wAr 7→ sr,
for 1 ≤ r < bA. Set iA = itA . If d ∈ DA choose a reduced expression d = sr1 . . . srk for d and define

τAd = e(iA)(ψwAr1
+ 1) . . . (ψwArk

+ 1) ∈ RΛ
n .

The elements τAd of RΛ
n seem to be very special and deserving of further study. They are homogeneous

elements in RΛ
n of degree zero which are independent of all choices of reduced expressions. Moreover,

by [75, Theorem 4.13], the elements { τAr | 1 ≤ r < bA } satisfy the braid relations and they generate a copy
of SbA inside RΛ

n !

3.6.2. Theorem (Kleshchev, Mathas and Ram [75, Theorem 6.23]). Suppose that λ ∈ Pn and that Z is an
integral domain. The graded Specht module Sλ

Z of RΛ
n (Z) is isomorphic to the graded RΛ

n -module generated
by a homogeneous element vtµ of degree deg tµ subject to the relations:

a) vtµe(i) = δiiλvtµ .
b) vtµys = 0, for 1 ≤ s ≤ n.
c) vtµψr = 0 whenever r and r + 1 are in the same row of tµ, for 1 ≤ r < n.
d)
∑
d∈DA

vtµψtAτ
A
d = 0, for all Garnir nodes A ∈ λ.

There is an analogous description of the dual Specht modules Sµ in terms of column Garnir relations [75, §7].
The relations in part (d) are the homogeneous Garnir relations. These relations are a homogeneous

form of the well-known Garnir relations of the symmetric group [54, Theorem 7.2]. Relations (a)–(c) already
appear in [23] and, in terms of the cellular basis machinery, they are a consequence of Proposition 3.2.9. The
most difficult part of the proof of Theorem 3.6.2 is showing that the τd satisfy the braid relations. This is
proved using the Khovanov-Lauda diagram calculus which was briefly mentioned in §2.2. Like Theorem 3.2.8
this result holds over an arbitrary ring. To prove that the graded module defined by the presentation in
Theorem 3.6.2 has the correct rank the constructions of the graded Specht module Sλ over a field from
Theorem 3.2.6, from [23,49], are used.

One of the main points of Theorem 3.6.2 is that it makes it possible to do calculations in the graded Specht
modules defined over an arbitrary ring. Prior to Theorem 3.6.2 the only way to compute inside the graded
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Specht modules was, in effect, to use the isomorphism RΛ
n
∼−→H Λ

n of Theorem 3.1.1 to work in the ungraded

setting then use the inverse isomorphism H Λ
n

∼−→ RΛ
n to get back to the graded setting. This made it difficult

to keep track of, and to exploit, the grading on Sλ — and it was only possible to work with Specht modules
defined over a field.

Theorem 3.6.2 also gives the relations for Sλ as an Rn-module. From this perspective Theorem 3.6.2 can
be used to give another construction of the graded Specht modules. For α, β ∈ Q+ let Rα,β = Rα ⊗Rβ .
Definition 2.2.1 implies that there is a non-unital embedding Rα,β ↪→ Rα+β which maps e(i)⊗ e(j) to e(i∨ j),
where i ∨ j is the sequence obtained by concatenating i and j. Under this embedding the identity element
of Rα,β maps to

eα,β =
∑

i∈Iα, j∈Iβ
e(i ∨ j).

Definition 2.2.1 implies that Rα+β is free as an Rα,β-module, so the functor

Indα+β
α,β (M �N) = (M �N)eα,β ⊗Rα,β

Rα+β

is a left adjoint to the natural restriction map. Iterating this construction, given β1, . . . , β` ∈ Q+ and Rβk

modules Mk, for 1 ≤ k ≤ `, define

M1 ◦ · · · ◦M` = Indβ1+···+β`
β1,...,β`

(M1 � · · ·�M`).

The definition of the graded Specht modules by generators and relations in Theorem 3.6.2 makes the
following result almost obvious. This description of the Specht modules is part of the folklore of these algebras
with several authors [21,126] using it as the definition of Specht modules.

3.6.3. Corollary (Kleshchev, Mathas and Ram [75, Theorem 8.2]). Suppose that λ(k) ∈ P1,βk , for βk ∈ Q+

and 1 ≤ k ≤ `, so that λ ∈ Pβ, where β = β1 + · · ·+ β`. Then there is an isomorphism of graded RΛ
n -modules

(and graded Rn-modules),

Sλ〈deg tλ
(1)

+ · · ·+ deg tλ
(`)

〉 ∼= (Sλ
(1)

◦ · · · ◦ Sλ
(`)

)〈deg tλ〉,

where on the right hand side Sλ
(k)

is considered as an Rβk -module, for 1 ≤ k ≤ `.

A second application of Theorem 3.6.2 is a generalization of James’ famous result [54, Theorem 8.15] for
symmetric groups which describes what happens to the Specht modules when they are tensored with the sign
representation. First some notation.

Following [75, §3.3], for i ∈ In let −i = (−i1, · · · − in) ∈ In. Recalling the multicharge κ from §1.2,
set κ′ = (−κ`, . . . ,−κ1) and let Λ′ = Λ(κ′) ∈ P+. Similarly, if β =

∑
i aiαi ∈ Q+ let β′ =

∑
i∈I aiα−i.

Inspecting Definition 2.2.9, there is a unique isomorphism of graded algebras

(3.6.4) sgn : RΛ
β −→RΛ′

β′ ; e(i) 7→ e(−i), yr 7→ −yr, and ψs 7→ −ψs,

for all admissible r and s and i ∈ Iβ . The involution sgn induces an equivalence of categories Rep(RΛ′

β′ ) −→
Rep(RΛ

β ) which sends an RΛ′

β′ -module M to the RΛ
β -module Msgn, where the RΛ

β -action is twisted by sgn.

3.6.5. Corollary (Kleshchev, Mathas and Ram [75, Theorem 8.5]). Suppose that µ ∈ Pβ, for β ∈ Q+. Then

Sµ ∼= (Sµ′)
sgn and Sµ

∼= (Sµ′)sgn as RΛ
β -modules.

In [75] this is proved by checking the relations in Theorem 3.6.2. As noted in [50, Proposition 3.26], this
can be proved more transparently by noting that, up to sign, the involution sgn maps the ψ-basis of RΛ

n to

the ψ′-basis of RΛ′

β′ . Some care must be taken with the notation here. For example, if µ ∈ Pβ then µ′ ∈ Pβ′ .
See [50, §3.7] for more details.

We give an application of these results to the graded decomposition numbers. First, by Corollary 3.5.12
if µ ∈ KΛ

n there exists i ∈ In and a sequence of multipartitions µ0 = 0,µ1, . . . ,µn = µ in KΛ such that
µk+1 is obtained from µk by adding a good ik-node, for 0 ≤ k < n. It follows from the modular branching
rules [20, Theorem 4.12], and properties of crystal graphs, that there exists a unique sequence of multipartitions
m(µ0) = 0,m(µ1), . . . ,m(µn) = µ such that m(µk+1) is obtained from m(µk) by adding a good −ik-node

and m(µk+1) ∈ KΛ′

k+1, for 1 ≤ k ≤ n. The Mullineux conjugate of µ is the multipartition m(µ). Thus,

Dm(µ) is a non-zero irreducible RΛ′

β′ -module. We emphasize that the RΛ′

β′ -module Dm(µ) is defined using the

ψ-basis of RΛ′

β′ and hence the crystal theory used in §3.5, with respect to the multicharge κ′.

3.6.6. Theorem. Suppose that µ ∈ KΛ
β , for β ∈ Q+. Then (Dm(µ))sgn ∼= Dµ as RΛ

β -modules.

Proof. As sgn is an equivalence of categories, (Dm(µ))sgn ∼= Dν〈d〉 for some ν ∈ KΛ
β and d ∈ Z by Corol-

lary 3.2.7. Since sgn is homogeneous, by Theorem 2.1.4(a),

dimq(Dm(µ))sgn = dimqD
m(µ) = dimDm(µ) = dim(Dm(µ))sgn,
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so that d = 0 and (Dm(µ))sgn ∼= Dν . To show that ν = µ it is now enough to work in the ungraded setting.
Therefore, we can either use the modular branching rules of [5, 46], or their graded counterparts from [20,
Theorem 4.12], together with what is by now an almost standard argument due to Kleshchev [70, Theorem 4.7],
to show that ν = µ. �

As we have defined it, sgn induces an equivalence Rep(RΛ′

β′ ) −→ Rep(RΛ
β ). As sgn is an involution, we also

write sgn : Rep(RΛ
β )−→Rep(RΛ′

β′ ) for the inverse equivalence. With this small abuse of language, the last

two results can be written as (Sλ)sgn ∼= Sλ′ and (Dµ)sgn ∼= Dm(µ) as RΛ′

β′ -modules, for λ ∈ Pβ and µ ∈ KΛ
β .

3.6.7. Corollary. Suppose that F is a field and that λ ∈ Pβ and µ ∈ KΛ
n . Then dµµ(q) = 1, dm(µ)′µ(q) = qdef µ

and dλµ(q) 6= 0 only if m(µ) D λ D µ. Moreover, if F = C then 0 < deg dCλµ(q) < def µ whenever

m(µ) B λ B µ.

Proof. Suppose that λ ∈ Pβ and µ ∈ KΛ
β . Then

[Sλ : Dµ]q = [(Sλ)sgn : (Dµ)sgn]q

= [Sλ′ : Dm(µ)]q, by Corollary 3.6.5 and Theorem 3.6.6,

= qdef µ[(Sλ′)~ : Dm(µ)]q, by Corollary 3.3.5,

= qdef µ[Sλ′ : Dm(µ)]q, by Theorem 2.1.4(a) and §3.5.

By Theorem 2.1.4(c), if τ ∈ KΛ
n and σ ∈ Pn then dττ (1) = 1 and dλµ(q) 6= 0 only if λ D µ. Therefore,

dm(µ)′µ(q) = qdef µdm(µ)m(µ) = qdef µ and dλµ(q) 6= 0 only if m(µ)′ D λ D µ. The argument so far is valid
over any field. Now suppose that F = C. Then dλµ(q) ∈ δλµ + q[N], by Corollary 3.5.11, so the remaining
statement about the degrees of the graded decomposition numbers follows. �

Corollary 3.6.7 was conjectured by Fayers [38]. He was interested in this property of the graded decomposition
numbers in characteristic zero because it leads to a more efficient algorithm for computing the graded
decomposition numbers dλµ(q), for λ ∈ Pn and µ ∈ KΛ

n . (When e > n a very fast algorithm is given
in [50, §5].)

3.7. Graded adjustment matrices. All of the results in this section have their origin in the work of
James [55] and Geck [40] on adjustment matrices. Brundan and Kleshchev have given two different approaches
to graded decomposition matrices in [19, §6] and [20, §5.6]. In this section we give third cellular algebra
approach. Even though our definitions and proofs are different, it is easy to see that everything in this section
is equivalent to definitions or theorems of Brundan and Kleshchev — or to graded analogues of results of
James and Geck.

Before we introduce the adjustment matrices, let A[In] be the free A-module generated by In. The
q-character of a finite dimensional Rn-module M is

ChqM =
∑
i∈In

dimqMi · i ∈ A[In],

where Mi = Me(i), for i ∈ In. For example, Chq S
λ =

∑
t∈Std(λ) q

deg(t) · it.

3.7.1. Theorem ( [67, Theorem 3.17]). Suppose that Z is a field. Then the map

Chq : [Rep(Rn)]−→A[In]; [M ] 7→ ChqM

is injective.

As every RΛ
n -module can be considered as an Rn-module by inflation, it follows that the restriction of Chq

to [Rep(RΛ
n )] is still injective. Extend the map ~ to A[In] by defining

(∑
i fi(q) · i

)~
=
∑

i fi(q) · i. Then

(Chq[M ])~ = Chq[M
~], for all M ∈ Rep(RΛ

n ).
In this section we compare representations of cyclotomic KLR algebras over different fields. Write Sλ

Z for
the graded Specht module of the algebra RΛ

n (Z) defined over the ring Z, for λ ∈ Pn. Similarly, if F is a field
and µ ∈ KΛ

n let Dµ
F be the corresponding graded irreducible RΛ

n (F )-module. If K is an extension of F then
Dµ
K
∼= Dµ

F ⊗F K since Dµ
F is absolutely irreducible by Theorem 2.1.4.

Suppose that µ ∈ Pn. By Theorem 3.2.8, or by Theorem 3.6.2, the graded Specht module Sµ
Z is defined over Z

and Sµ
Z
∼= Sµ

Z ⊗Z Z for any commutative ring Z. The graded Specht module Sµ
Z has basis {ψt | t ∈ Std(µ) }

and it comes equipped with a Z-valued bilinear form 〈 , 〉 which is determined by

(3.7.2) 〈ψs, ψt〉ψtλ = ψsψttλ = ψsψ
?
d(t)y

µe(iλ),

where yµ ∈ RΛ
n is given in Definition 3.2.2. Following (1.3.3), define the radical of Sµ

Z to be

radSµ
Z = {x ∈ Sµ

Z | 〈x, y〉 = 0 for all y ∈ Sµ
Z } .
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In fact, by (3.7.2), radSµ
Z = {x ∈ Sµ

Z | xa = 0 for all a ∈ (RΛ
n )Dµ }.

3.7.3. Definition. Suppose that µ ∈ Pn. Let Dµ
Z = Sµ

Z / radSµ
Z .

By definition, radSµ
Z is a graded submodule of Sµ

Z , so Dµ
Z is a graded RΛ

n (Z)-module. Hence, Dµ
Z ⊗Z Z is

a graded RΛ
n (Z)-module for any ring Z.

The following result should be compared with [19, Theorem 6.5].

3.7.4. Theorem. Suppose that µ ∈ Pn. Then radSµ
Z is a Z-lattice in radSµ

Q and Dµ
Z is a Z-lattice in Dµ

Q.

Consequently, Dµ
Q = Dµ

Z ⊗Z Q and ChqD
µ
Z = ChqD

µ
Q .

Proof. Fix an ordering Std(µ) = {t1, . . . , tz} of Std(µ) and let Gµ
Z = (〈ψs, ψt〉) be the Gram matrix of Sµ

Z . As
Z is a principal ideal domain, by the Smith normal form there exists a pair of bases {ar} and {bs} of Sµ

Z such
that (〈ar, bs〉) = diag(d1.d2, . . . , dz) for some non-negative integers such that d1|d2| . . . |dz, where dr = 0 only
if ds = 0 for all s ≥ r. That is, d1, . . . , dz are the elementary divisors of the Gram Matrix Gµ

Z . As the form is
homogeneous, we may assume that the bases {ar} and {bs} are homogeneous with deg ar = deg tr = −deg br.
Moreover, in view of Proposition 3.2.9(a), we can also assume that are(i) = δitr ,iar and bse(i) = δits ,ibs, for
1 ≤ r, s ≤ z and i ∈ In. Comparing with the definitions above, it follows that { ar | dr = 0 } is a basis of
radSµ

Z and that { ar + radSµ
Z | dr = 0 } is a basis of Dµ

Z . All of our claims now follow. �

For an arbitrary field F , it is usually not the case that Dµ
F is isomorphic to Dµ

Z ⊗Z F as an RΛ
n (F )-module.

Indeed, if F is a field of characteristic p > 0 then the argument of Theorem 3.7.4 shows that

dimF D
µ
F = { 1 ≤ r ≤ z | dr 6≡ 0 (mod p) } ≤ rankZ D

µ
Z = dimQD

µ
Q ,

with equality if and only if all of the non-zero elementary divisors of Gµ
Z are coprime to p.

3.7.5. Definition (cf. Brundan and Kleshchev [20, §5.6]). Suppose that F is a field. For λ,µ ∈ KΛ
n define

Laurent polynomials aFλµ(q) ∈ N[q, q−1] by

aFλµ(q) =
∑
d∈Z

[Dλ
Z ⊗Z F : Dµ

F 〈d〉] q
d.

The matrix aFq =
(
aFλµ(q)

)
is the graded adjustment matrix of RΛ

n (F ).

Recall that dλµ(q) is a graded decomposition number of RΛ
n . When want to emphasize the base field F

then we write dFλµ(q) = [Sλ
F : Dµ

F ]q and dFq =
(
dFλµ(q)

)
. Note that e is always fixed.

3.7.6. Theorem (cf. Brundan and Kleshchev [20, Corollary 5.11, Theorem 5.17]). Suppose that F is a field.
Then:

a) If λ,µ ∈ KΛ
n then aFλλ(1) = 1 and aFλµ(q) 6= 0 only if λ D µ. Moreover, aFλµ(q) = aFλµ(q).

b) We have, dFq = dQ
q ◦ aFq . That is, if λ ∈ Pn and µ ∈ KΛ

n then

[Sλ
F : Dµ

F ]q = dFλµ(q) =
∑

ν∈KΛ
n

dQλν(q)aFνµ(q).

Proof. By construction, every composition factor of Dλ
Z ⊗ F is a composition factor of Sλ

F , so the first two
properties of the Laurent polynomials aFλµ(q) follow from Theorem 2.1.4. By Theorem 3.7.4, the adjustment

matrix induces a well-defined map of Grothendieck groups aFq : [Rep(RΛ
n (Q))]−→ [Rep(RΛ

n (F ))] given by

aFq
(
[Dλ

Q]
)

= [Dλ
Z ⊗ F ] =

∑
µ∈KΛ

n

aFλµ(q)[Dµ
F ].

Taking q-characters, ChqD
λ
Q =

∑
µ a

F
λµ(q) ChqD

µ
F . Applying~ to both sides gives ChqD

λ
Q =

∑
µ a

F
λµ(q) ChqD

µ
F .

Therefore, aFλµ(q) = aFλµ(q) by Theorem 3.7.1, completing the proof of part (a). For (b), since Sλ
F
∼= Sλ

Z ⊗Z F ,

[Sλ
F ] = aFq

(
[Sλ

Q ]
)

= aFq

( ∑
ν∈KΛ

n

dQλν(q)[Dν
Q]
)

=
∑

ν∈KΛ
n

∑
µ∈KΛ

n

dQλν(q)aFνµ(q)[Dµ
F ].

Comparing the coefficient of [Dµ
F ] on both sides completes the proof. �

Corollary 3.5.11 determines the graded decomposition numbers of the cyclotomic Hecke algebras in
characteristic zero. There are several different algorithms for computing the graded decomposition numbers
in characteristic zero [38, 43, 50, 76, 82, 124]. To determine the graded decomposition numbers in positive
characteristic it is enough to compute the adjustment matrices of Theorem 3.7.6. The simplest case will be
when aFλµ(q) = δλµ, for all λ,µ ∈ KΛ

n . Unfortunately, we currently have no idea when this happens. Two

failed conjectures for when aFq is the identity matrix are discussed in Example 3.8.4 and Example 3.8.5 below.
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3.8. Gram determinants and graded adjustment matrix examples. The graded cellular basis of
RΛ
n = RΛ

n (Z) given by Theorem 3.2.8 (or Theorem 3.6.2), defines a Z-valued homogeneous symmetric bilinear
form on the graded Specht modules Sλ, for λ ∈ Pn. Using Theorem 3.6.2 it is possible to calculate this form.
In general, the homogeneous bilinear form is difficult to compute, however, it gives a lot of information about
the Specht modules and the simple modules of RΛ

n .
By (1.3.2), if s, t ∈ Std(λ) then the inner product 〈ψs, ψt〉 can be computed inside the Specht module Sλ

using (3.7.2). This section computes the Gram matrices Gλ
Z =

(
〈ψs, ψt〉

)
in several examples.

3.8.1. Example (Semisimple algebras) Suppose that (Λ, αi,n) ≤ 1, for all i ∈ I. Let λ ∈ Pn and s, t ∈ Std(λ).
Then 〈ψs, ψt〉 = δst because is = it if and only if s = t by Lemma 2.4.1. Hence, Gλ

Z is the identity matrix for
all λ ∈ Pn. ♦

3.8.2. Example (Nil-Hecke algebras) Suppose that Λ = nΛi and β = nαi, for some i ∈ I. Let λ =
(1|1| . . . |1) ∈ Pn, as in §2.5, and suppose s, t ∈ Std(λ) then 〈ψs, ψt〉ψtλ = ψsψ

?
t y
n−1
1 yn−2

2 . . . yn−1, by (3.7.2)
and Example 3.2.4. By Proposition 2.5.2, ψsψ

?
t = ψu, where u = sd(t)−1, if `(d(u)) = `(d(s)) + `(d(t)) and

otherwise ψsψ
?
t = 0. On the other hand, by the last paragraph of the proof of Proposition 2.5.2, or simply

by counting degrees, ψuy
n−1
1 yn−2

2 . . . yn−1 = 0 if u 6= tλ and ψtλy
n−1
1 yn−2

2 . . . yn−1 = (−1)n(n−2)/2ψλ
t . Hence,

〈ψs, ψt〉 = δst′ , where t′ = tλd
′(t) is the tableau that is conjugate to t. Hence, Gλ

Z is (−1)n(n−2)/2 times the
anti-diagonal identity matrix. ♦

3.8.3. Example Suppose e = 2, Λ = Λ0 and λ = (2, 2, 1). Then Std(λ) contains the five tableaux:

t1 = tλ t2 t3 t4 t5

t
1 2
3 4
5

1 3
2 5
4

1 3
2 4
5

1 2
3 5
4

1 4
2 5
3

d(t) 1 s2s4 s2 s4 s2s4s3
deg t 2 −2 0 0 0
it 01100 01100 01100 01100 01010

We want to compute the Gram matrix Gλ
Z =

(
〈ψs, ψt〉

)
of SλZ . Now 〈ψt, ψt〉 6= 0 only if is = it, by

Proposition 3.2.9(a), and if deg s+ deg t = 0 since the bilinear form is homogeneous of degree zero. Hence, the
only possible non-zero inner products are

〈ψt1 , ψt2〉 = 〈ψtλ , ψtλψ2ψ4〉 = 〈ψtλψ4, ψtλψ2〉 = 〈ψt4 , ψt2〉
together with 〈ψt2 , ψt2〉, 〈ψt4 , ψt4〉 and 〈ψt5 , ψt5〉. By (2.2.3), if a ∈ {2, 4} then

〈ψtλψa, ψtλψa〉 = 〈ψtλψ
2
a, ψtλ〉 = ±〈ψtλ(ya − ya+1), ψtλ〉 = 0,

since ψtλyr = 0, for 1 ≤ r ≤ 5. To compute the remaining inner products we have to go back to the definition
of the bilinear form (3.7.2). By Definition 3.2.2, yλ = y2y4 so

〈ψt1 , ψt2〉ψtλ = ψtλψ2ψ4y2y4 = ψtλψ2y2ψ4y4 = ψtλ(y3ψ2 + 1)(y5ψ4 + 1) = ψtλ ,

by Proposition 3.2.9(c). Hence, 〈ψt1 , ψt2〉 = 1 = 〈ψt3 , ψt4〉. Finally, using (2.2.3),

〈ψt5 , ψt5〉ψtλ = ψtλψ2ψ4ψ
2
3ψ2ψ4y2y4 = ψtλψ2ψ4(2y3y4 − y2

3 − y2
4)ψ2ψ4y2y4.

Now vtλψ2y3 = vtλ(y2ψ1 + 1) = vtλ and, similarly, vtλy4ψ4 = −vtλ . Consequently vtλψ2ψ4y
2
a = 0, for a = 3, 4,

so that ψtλψ2ψ4ψ
2
3 = −2ψtλ . Similarly 〈ψt5 , ψt5〉 = −2. Therefore, the Gram matrix of S(2,2,1) is

GλZ =


0 1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 −2


Consequently, the elementary divisors of GλZ are 1, 1, 1, 1, 2. Therefore, if v = −1 and Z = Q then SλQ = Dλ

Q is

irreducible, as is easily checked using Corollary 1.7.6. Now suppose that v = 1 and Z = F2, so that H Λ
n
∼= F2S5.

Then the calculation of GλZ shows that the Specht module Sλ is reducible with dimF2 D
λ
F2

= 4 < 5 = dimQD
λ
Q.

It follows that if e = p = 2 then D(15) is also a composition factor of Sλ, so aF2

(2,2,1),(15) = 1. ♦

3.8.4. Example Kleshchev and Ram [78, Conjecture 7.3] made a conjecture which, in type A, is equivalent
to saying that the adjustment matrices aFq of the (cyclotomic) KLR algebras are trivial when e = ∞.
Williamson [128] has given an example which shows that, in general, this is not true. Williamson’s example
comes from geometry [65], however, when it is translated into the language that we are using here it corresponds
to a statement about the simple module Dµ, for µ = (2|2|1|1|3|3|2|2), for the cyclotomic quiver Hecke algebra
RΛ

16 with e = ∞ and Λ = 2Λ1 + 2Λ2 + 2Λ3 + 2Λ4. Fix the multicharge κ = (4, 4, 3, 3, 2, 2, 1, 1) and set
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i = (4, 5, 3, 4, 2, 3, 4, 5, 2, 3, 1, 2, 3, 4, 1, 2). So yµ = y1y9y15y19. There are 5 standard µ-tableaux of degree zero
with residue sequence i, namely:

t `(d(t))(
4 8 | 1 2 | 13 | 3 | 5 6 7 | 9 1014 | 1516 | 1112

)
23(

1 2 | 4 8 | 13 | 3 | 9 1014 | 5 6 7 | 1516 | 1112
)

28(
4 8 | 1 2 | 13 | 3 | 9 1014 | 5 6 7 | 1112 | 1516

)
28(

4 8 | 1 2 | 10 | 3 | 9 1314 | 5 6 7 | 1516 | 1112
)

31(
4 8 | 1 2 | 3 | 13 | 9 1014 | 5 6 7 | 1516 | 1112

)
31

The Gram matrix for this component of the Specht module Sµ is
0 0 −1 −1 0
0 0 −1 −1 0

−1 −1 0 −1 −1
−1 −1 −1 0 −1
0 0 −1 −1 0

 .

Calculating this matrix is non-trivial because the lengths of the permutations d(t) are reasonably large. This
matrix was computed using the authors’ implementation of the graded Specht modules in Sage [122]. Brundan,
Kleshchev and McNamara [22, Example 2.16] obtain exactly the same matrix, up to a permutation of the
rows and columns, as part of the Gram matrix for the homogeneous bilinear form of the corresponding proper
standard module for Rn.

The elementary divisors of this matrix are 1, 1, 2, 0, 0, so the dimension of Dµe(i) is 2 in characteristic 2
and 3 in all other characteristics. Consequently, the dimension of Dµ, and hence the adjustment matrix aFq
for RΛ

16(F ), depends on the characteristic of F — as was first proved by Williamson geometrically. ♦

3.8.5. Example Consider the case when Λ = Λ0, so that H Λ
n is the Iwahori-Hecke algebra of the symmetric

group. The James conjecture [55, §4] says that if F is a field of characteristic p > 0 and λ, µ ∈ Pn then
aλµ(q) = δλµ if ep > n. A natural strengthening of this conjecture is that the adjustment matrix of RΛ

β is
trivial whenever def β < p. For the symmetric groups, the condition def β < p exactly corresponds to the case
when the defect group of the block RΛ

β is abelian.

The James conjecture is known to be true for blocks of weight at most 4 [36,37,55,112]. Moreover, for every
defect w ≥ 0 there exists a Rouquier block of defect w for which the James conjecture holds [56]. Starting
from the Rouquier blocks, there was some hope that the derived equivalences of Chuang and Rouquier [26]
could be used to prove the James conjecture for all blocks.

Notwithstanding all of the evidence in favour of the James conjecture, it turns out that the conjecture
is wrong! Again, Williamson [129, §6] has cruelly (or kindly, depending on your perspective) produced
counterexamples to the James conjecture. At the same time he also found counterexamples to the Lusztig
conjecture [86] for SLn. These examples rely upon Williamson’s recent work with Elias which gives generators
and relations for the category of Soergel bimodules [32]. As of writing, the smallest known counterexample
to the James conjecture occurs in a block of defect 561 in F839S467874. It is unlikely that Williamson’s
counterexample can be verified using the techniques that we are describing here. ♦

Brundan and Kleshchev [20, §5.6] remarked that aFλµ(q) ∈ N in all of the examples that they had computed.

They asked whether this might always be the case. The next examples show that, in general, aFλµ(q) /∈ N.

3.8.6. Example (Evseev [33, Corollary 5]) Suppose that e = 2, Λ = Λ0 and let λ = (3, 22, 12) and µ = (19).
Take F = F2 to be a field of characteristic 2 and let aFq = (aλµ(q)) be the adjustment matrix.

As part of a general argument Evseev shows that aλµ(q) = q + q−1. In fact, this is not hard to see directly.
Comparing the decomposition matrix for F2S9 given by James [54] with the graded decomposition matrices

when e = 2 given in [97], shows that dQλµ = 0, dF2

λµ = 2, and that aλµ(1) = 2. Now Dµ
F2

= Dµ
F2
e(iµ) is one

dimensional, so any composition factor of SλF2
that is isomorphic to Dµ

F2
〈d〉, for some d ∈ Z, must be contained

in SλF2
e(iµ). There are exactly six standard λ-tableau with residue sequence iµ, namely:

deg t 1 1 1 1 1 −1

t
1 6 9
2 7
3 8
4
5

1 4 9
2 5
3 8
6
7

1 4 5
2 7
3 8
6
9

1 2 3
4 7
5 8
6
9

1 4 7
2 5
3 6
8
9

1 4 7
2 5
3 8
6
9

Draft version as of October 5, 2013



38 ANDREW MATHAS

As Dµ is one dimensional, and concentrated in degree zero, it follows that aF2

λµ = dF2

λµ(q) = q + q−1. We can

see a shadow of the adjustment matrix entry in the Gram matrix of Sλ
Z e(i

µ) which is equal to
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 4
0 0 0 0 0 −2
0 0 0 0 0 2
0 0 4 −2 2 0


The elementary divisors of this matrix are 2, 2, 0, 0, 0, 0, with the 2’s in degrees ±1. Therefore, the graded
dimension of Dλ

F2
e(iµ) decreases by q + q−1 in characteristic 2. ♦

3.8.7. Example Motivated by the runner removable theorems of [25, 58] and Example 3.8.6, take e = 3,
F = F2, λ = (3, 24, 13) and µ = (114). (The partitions λ and µ are obtained from the corresponding partitions
in Example 3.8.6 by conjugating, adding an empty runner, and then conjugating again.) Again, we work over
F2 and consider the corresponding adjustment matrices.

Calculating with Specht [95] we find that dQλµ = 0 and that dF2

λµ = 2 . Once again, it turns out that
there are exactly six λ-tableaux with 3-residue sequence iµ, with five of these having degree 1 and one having
degree −1. (Moreover, the Gram matrix of Sλe(iµ) exactly matches the Gram matrix given in Example 3.8.6.)

Hence, exactly as in Example 3.8.6, aF2

λµ(q) = q + q−1 = dF2

λµ(q).
As the runner removable theorems compare blocks for different e over the same field we cannot expect to

find an example of a non-polynomial adjustment matrix entry in odd characteristic in this way. Nonetheless,
it seems fairly certain that non-polynomial adjustment matrix entries exist for all e and all p > 0.

Evseev [33, Corollary 5] gives three other examples of adjustment matrix entries which are equal to q + q−1

when e = p = 2. All of them have similar analogues when e = 3 and p = 2. Finally, if we try adding further
empty runners to the partitions λ and µ, so that e ≥ 4, then the corresponding adjustment matrix entry is
zero. Interestingly, all of these partitions have weight 4. ♦

4. Seminormal bases and the KLR grading

In this final section we link the KLR grading on RΛ
n with the semisimple representation theory of H Λ

n

using the seminormal bases. We start by showing that by combining information from all of the KLR gradings
for different cyclic quivers leads to an integral formula for the Gram determinants of the ungraded Specht
modules.

4.1. Gram determinants and graded dimensions. In Theorem 1.7.3 we gave a “rational” formula for
the Gram determinant of the ungraded Specht modules Sλ, for λ ∈ Pn. We now give an integral formula for
these determinants and give both a combinatorial and a representation theoretic interpretation of this formula.

Suppose that the Hecke parameter v from Definition 1.1.1 is an indeterminate over Q and consider an
integral cyclotomic Hecke algebra H Λ

n over the field Z = Q(v) where Λ ∈ P+ such that (Λ, αi,n) ≤ 1, for all
i ∈ I. Then H Λ

n is semisimple by Corollary 1.6.11.

4.1.1. Definition. Suppose that λ ∈ Pn. For e ≥ 2 and i ∈ Ine define

dege,i(λ) =
∑

t∈Stdi(λ)

dege t,

where Stdi(λ) = { t ∈ Std(λ) | it = i }. Set dege(λ) =
∑

i∈Ine
dege,i(λ). For p a positive prime set Degp(λ) =∑

k≥1 degpk(λ).

By definition, dege(λ),Degp(λ) ∈ Z. For e > 0 let Φe(x) be the eth cyclotomic polynomial in the
indeterminate x.

4.1.2. Theorem (Hu-Mathas [52, Theorem 3]). Suppose that Λ ∈ P+ and (Λ, αi,n) ≤ 1, for all i ∈ I. Let
λ ∈ Pn. Then

detGλ =
∏
e>1

Φe(v
2)dege(λ).

Consequently, if v = 1 then detGλ =
∏

p prime

pDegp(λ).

Proving this result is not hard: it amounts to interpreting Definition 1.6.6 in light of the KLR degree
functions on Std(λ). There is a power of v in the statement of this result in [52]. This is not needed here
because we have renormalised the quadratic relations in the Hecke algebra given in Definition 1.1.1.

The Murphy basis is defined over Z[v, v−1]. Therefore, detGλ ∈ Z[v, v−1] and Theorem 4.1.2 implies that
dege(λ) ≥ 0 for all λ ∈ Pn and e ≥ 2. In fact, [52, Theorem 3.24] gives an analogue of Theorem 4.1.2 for the

determinant of the Gram matrix restricted to Sλe(i), suitably interpreted, and the following is true:
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4.1.3. Corollary ( [52, Corollary 3.25]).
Suppose that e ≥ 2, λ ∈ Pn and i ∈ Ine . Then dege,i(λ) ≥ 0.

The definition of the integers dege,i(λ) is purely combinatorial, so it should be possible to give a combinatorial
proof of this result. It may be possible to do this using Theorem 3.4.3, however, as we now explain, we think
that this is difficult.

Fix an integer e ≥ 2 and a dominant weight Λ ∈ P+ and consider the Hecke algebra H Λ
n over a field F . If

λ ∈ Pn then, by definition,

Chq S
λ =

∑
µ∈KΛ

n

dλµ(q) ChqD
µ ∈ A[In].

Let ∂ :A[In] −→ Z[In] be the linear map given by ∂(f(q) · i) = f ′(1)i, where f ′(1) is the derivative of
f(q) ∈ A evaluated at q = 1. Then ∂ Chq S

λ =
∑

i dege,i(λ) · i. The KLR idempotents are orthogonal, so

dimqD
µ
i = dimqD

µ
i since (Dµ)~ ∼= Dµ. Therefore, ∂ ChqD

µ = 0. Hence, applying ∂ to the formula for

Chq S
λ shows that

(4.1.4)
∑
i∈In

dege,i(λ) · i = ∂ Chq S
λ =

∑
i∈In

∑
µ∈KΛ

n

d′λµ(1) dimDµ
i · i.

Consequently, dege,i =
∑

µ d
′
λµ(1) dimDµ

i . So far we have worked over an arbitrary field. If F = C then

dλµ(q) ∈ N [q], by Proposition 3.5.8, so that d′λµ(1) ≥ 0. Therefore, dege,i(λ) ≥ 0 as claimed. (In fact, using

Theorem 3.7.6 it is easy to see that the righthand side of (4.1.4) is independent of F , as it must be.)

Theorem 1.7.4 shows that taking the p-adic valuation of the Gram determinant of Sλ leads to the Jantzen
sum formula for Sλ. Therefore, (4.1.4) suggests that

(4.1.5)
∑
k>0

[Jk(Sλ
F )] =

∑
µBλ

d′λµ(1)[Dµ
F ],

where we use the notation of Theorem 1.7.4. That is, Theorem 4.1.2 corresponds to writing the Jantzen sum
formula as a non-negative linear combination of simple modules. In fact, what we have done is not enough
to prove (4.1.5) — to do this it would be enough to prove analogous statements for the Gram determinants
of the Weyl modules of the cyclotomic Schur algebras [29]. Nonetheless, (4.1.5) is true, being proved by
Ryom-Hansen [117, Theorem 1] in level one and by Yvonne [131, Theorem 2.11] in general.

A better interpretation of (4.1.5) is given by the grading filtrations of the graded Specht modules [13, §2.4].

Let ṘΛ
n = HomRΛ

n
(Y, Y ), where Y =

⊕
µ∈KΛ

n
Y µ. Then ṘΛ

n is a graded basic algebra and the functor

Fn : Rep(RΛ
n )−→Rep(ṘΛ

n );M 7→ HomRΛ
n

(Y,M), for M ∈ Rep(RΛ
n ),

is a graded Morita equivalence; see, for example, [50, §2.3-2.4]. Recall that cq =
(
cλµ(q)

)
= dTq ◦ dq is the

Cartan matrix of RΛ
n . By Corollary 2.1.5, cλµ(q) = dimq HomRΛ

n
(Y λ, Y µ) so that

dimq ṘΛ
n =

∑
λ,µ∈KΛ

n

cλµ(q) ∈ N[q, q−1].

Until further notice assume that F = C. Then cλµ(q) ∈ N[q] by Corollary 3.5.11. Therefore, dimq ṘΛ
n ∈ N[q]

so that ṘΛ
n is a positively graded algebra. Let Ṁ =

⊕
d Ṁd be a graded ṘΛ

n -module. The grading filtration

of Ṁ is the filtration Ṁ = Ga(Ṁ) ⊇ Ga+1(Ṁ) ⊇ · · · ⊇ Gz(Ṁ) ⊃ 0, where

Gd(Ṁ) =
⊕
k≥d

Ṁk,

a ≤ z, and dimq Ṁ = maq
a + · · ·+mzq

z for positive integers ma and mz. By definition, Gr(Ṁ) is graded and

it is an ṘΛ
n -module precisely because ṘΛ

n is positively graded. The grading filtration of an Rn-module M is the
filtration given by Gr(M) = F−1

n (Gr(Fn(M))), for r ∈ Z. As [Sλ] =
∑

µ dλµ(q)[Dµ], and dλµ(q) ∈ δλµ+qN[q],

it follows that Sλ = G0(Sλ) and that Gr(S
λ) = 0 for r > def λ by Corollary 3.6.7.

For λ ∈ Pn and µ ∈ KΛ
n write dλµ(q) =

∑
r≥0 d

(r)
λµ q

r, for d
(r)
λµ ∈ N.

4.1.6. Lemma. Suppose that F = C and that λ ∈ Pn. If 0 ≤ r ≤ def λ then

Gr(S
λ)/Gr+1(Sλ) ∼=

⊕
µ∈KΛ

n

(
Dµ〈r〉

)⊕d(r)
λµ .

Proof. This is an immediate consequence of the definition of the grading filtration and Corollary 3.5.11. �
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Comparing this with (4.1.5) suggests that Jr(S
λ) = Gr(S

λ), for r ≥ 0. Of course, there is no reason to

expect that Jr(S
λ) is a graded submodule of Sλ. Nonetheless, establishing a conjecture of Rouquier [82, (16)],

Shan has proved the following when Λ is a weight of level 1.

4.1.7. Theorem (Shan [119, Theorem 0.1]). Suppose that F is a field of characteristic zero, Λ = Λ0, and that

λ ∈ Pn. Then Jr(S
λ) = Gr(S

λ) is a graded submodule of Sλ and [Jr(S
λ)/Jr+1(Sλ) : Dµ〈s〉] = δrsd

(r)
λµ, for

all µ ∈ KΛ
n and r ≥ 0.

Shan actually proves that the Jantzen, radical and grading filtrations of graded Weyl modules coincide for
the Dipper-James v-Schur algebras [28]. This implies the result above because the Schur functor maps Jantzen
filtrations of Weyl modules to Jantzen filtrations of Specht modules. There is a catch, however, because Shan
remarks that it is unclear how her geometrically defined grading relates to the grading on the v-Schur algebra
given by Ariki [6] and hence to the KLR grading on RΛ

n . As we now sketch, Theorem 4.1.7 can be deduced
from Shan’s result using recent work.

Since Shan’s paper cyclotomic quiver Schur algebras have been introduced for arbitrary dominant weights
[6,50,121], thus giving a grading on all of the cyclotomic Schur algebras introduced by Dipper, James and the
author [29]. The key point, which is non-trivial, is that the module categories of the cyclotomic quiver Schur
algebras are Koszul. When e =∞ this is proved in [50] by using Corollary 3.5.11 and [18] to reduce parabolic
category O for the general linear groups, which is known to be Koszul by [12,13]. Maksimau [92] follows the
recipe in [50] to prove Koszulity of Stroppel and Webster’s cyclotomic quiver Schur algebras for arbitrary e by
using [116] to reduce to affine parabolic category O. Maksimau has to work much harder, however, because he
first has to explicitly identify the parabolic Kazhdan-Lusztig polynomials that give the graded decomposition
numbers of RΛ

n .
As the module categories of the cyclotomic quiver Schur are Koszul, an elementary argument [13, Proposi-

tion 2.4.1] shows that the radical and grading filtrations of the graded Weyl modules of these algebras coincide.
By definition, the analogue of Lemma 4.1.6 describes the graded composition factors of the grading (=radical)
filtrations of the graded Weyl modules — compare with [50, Corollary 7.24] when e =∞ and [92, Theorem 1.1]
in general. The graded Schur functors of [50, 92] sends graded Weyl modules to graded Specht modules,
graded simple modules to graded simple RΛ

n -modules (or zero), grading filtrations to grading filtrations and
Jantzen filtrations to Jantzen filtrations. Combining these facts with Shan’s work [119] implies Theorem 4.1.7
when Λ = Λ0. We note that the v-Schur algebras were first shown to be Koszul by Shan, Varagnolo and
Vasserot [120]. It is also possible to match up Shan’s grading on the v-Schur algebras with the gradings
of [6, 121] using the uniqueness of Koszul gradings [13, Proposition 2.5.1]. As these papers use different
conventions, it is necessary to work with the graded Ringel dual.

The obstacle to extending Theorem 4.1.7 to dominant weights Λ ∈ P+ of higher level is in showing that the
Jantzen and radical (=grading) filtrations of the graded Weyl modules of the cyclotomic quiver Schur algebras
coincide. As the cyclotomic quiver Schur algebras are Koszul it is possible that this is straightforward. It
seems to the author, however, that it is necessary to generalize Shan’s arguments [119] to realize the Jantzen
filtration geometrically using the language of [116].

4.2. A deformation of the KLR grading. Following [52], especially the appendix, we now sketch how to
use the seminormal basis to prove that RΛ

n
∼= H Λ

n over a field (Theorem 3.1.1). The aim in doing this is not
so much to give a new proof of the graded isomorphism theorem. Rather, we want to build a bridge between
the KLR algebras and the well-understood semisimple representation theory of the cyclotomic Hecke algebras.
In §4.3 we cross this bridge to construct a new graded cellular basis {Bst} of H Λ

n which is independent of the
choices of reduced expressions that are necessary in Theorem 3.2.6.

Throughout this section we consider a cyclotomic Hecke algebra H Λ
n defined over a field F which has Hecke

parameter v ∈ F× of quantum characteristic e ≥ 2. As in §1.2, the dominant weight Λ ∈ P+ is determined by
a multicharge κ ∈ Z`. We set up a modular system for studying H Λ

n = H Λ
n (F ).

Let x be an indeterminate over F and let O = F [x](x) be the localization of F [x] at the principal

ideal generated by x. Let K = F (x) be the field of fractions of O. Let H O
n be the cyclotomic Hecke

algebra with Hecke parameter t = x + v, a unit in O, and cyclotomic parameters Ql = xl + [κl]t, for
1 ≤ l ≤ `. Then H K

n = H O
n ⊗O K is a split semisimple algebra by Theorem 2.4.8. Moreover, by definition,

H Λ
n = H Λ

n (F ) ∼= H O
n ⊗O F , where we consider F as an O-module by letting x act on F as multiplication

by zero.
As the algebra H K

n is semisimple it has a seminormal basis {fst} in the sense of Definition 1.6.4. With
our choice of parameters, the content functions from (1.6.1) become cZr (s) = t2(c−b)xl + [κl + c − b]t =
t2(c−b)xl+[cZr (s)] if s(l, b, c) = r, for 1 ≤ k ≤ n. Then, Lrfst = cZr (s)fst, for (s, t) ∈ Std2(Pn). By Corollary 1.6.9,
the basis {fst} determines a seminormal coefficient system α = {αr(t) | t ∈ Std(Pn) and 1 ≤ r < n } and a
set of scalars { γt | t ∈ Std(Pn) }.
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For i ∈ In let Std(i) = { s ∈ Std(Pn) | is = i } be the set of standard tableaux with residue sequence i.
Define

(4.2.1) fOi =
∑

t∈Std(i)

Ft.

By definition, fOi ∈H K
n but, in fact, fOi ∈H O

n . This idempotent lifting result dates back to Murphy [105]
for the symmetric groups. For higher level it was first proved in [101]. In [52] it is proved for a more general
rings O.

4.2.2. Lemma ( [52, Lemma 4.4]). Suppose that i ∈ In. Then fOi ∈H O
n .

We will see that fOi ⊗O 1F is the KLR idempotent e(i), for i ∈ In. Notice that 1 =
∑

i f
O
i and, further,

that fOi f
O
j = δijf

O
i , for i, j ∈ In, by Theorem 1.6.7.

As detailed after Theorem 3.1.1, Brundan and Kleshchev construct their isomorphisms RΛ
n
∼−→H Λ

n using
certain rational functions Pr(i) and Qr(i) in F [y1, . . . , yn]. The advantage of working with seminormal forms
is that, at least intuitively, these rational functions “converge” and can be replaced with “nicer” polynomials.
The main tool for doing this is the following result which generalizes Lemma 4.2.2.

Let Mr = 1−t−1Lr+tLr+1 , for 1 ≤ r < n. Then Mrfst = MZr (s)fst, where MZr (s) = 1−t−1cZr (s)+tcZr+1(s).

The constant term of MZr (s) is equal to v2cZr(s)−1[1− cZr (s) + cZr+1(s)]v 6= 0. Consequently, Mr acts invertibly
on fst whenever s ∈ Std(i) and 1− ir + ir+1 6= 0 in I = Z/eZ. This observation is part of the proof of part (a)
of the next result. Similarly, set ρZr (s) = cZr (s)− cZr+1(s). Then ρZr (s) is invertible in O if ir 6= ir+1.

4.2.3. Corollary (Hu-Mathas [52, Corollary 4.6]). Suppose that 1 ≤ r < n and i ∈ In.

a) If ir 6= ir+1 + 1 then
1

Mr
fOi =

∑
s∈Std(i)

1

MZr (s)
Fs ∈H O

n .

b) If ir 6= ir+1 then
1

Lr − Lr+1
fOi =

∑
s∈Std(i)

1

ρZr (s)
Fs ∈H O

n .

The invertibility of Mrf
O
i , when ir 6= ir+1 + 1, allows us to define analogues of the KLR generators of RΛ

n

in H O
n . The invertibility of (Lr − Lr+1)fOi is needed to show that these new elements generate H O

n .
Define an embedding I ↪→ Z; i 7→ ı̂ by letting ı̂ be the smallest non-negative integer such that i = ı̂+ eZ,

for i ∈ I.

4.2.4. Definition. Suppose that 1 ≤ r < n. Define elements ψOr =
∑

i∈In ψ
O
r f
O
i in H O

n by

ψOr f
O
i =


(Tr + t−1) t

2ı̂r

Mr
fOi , if ir = ir+1,

(TrLr − LrTr)t−2ı̂rfOi , if ir = ir+1 + 1,

(TrLr − LrTr) 1
Mr
fOi , otherwise.

If 1 ≤ r ≤ n then define yOr =
∑

i∈In t
−2ı̂r−1(Lr − [̂ır])f

O
i .

We now describe an O-deformation of cyclotomic KLR algebra RΛ
n . This is a special case of one of the

main results of [52] which allows greater flexibility in the choice of the ring O.

4.2.5. Theorem (Hu-Mathas [52, Theorem A]). As an O-algebra, the algebra H O
n is generated by the elements

{ fOi | i ∈ In } ∪ {ψOr | 1 ≤ r < n } ∪ { yOr | 1 ≤ r ≤ n }

subject only to the following relations: ∏
1≤l≤`

κi≡i1 (mod e)

(yO1 − xl − [κl − i1])fOi = 0,

fOi f
O
j = δijf

O
i ,

∑
i∈Inf

O
i = 1, yOr f

O
i = fOi y

O
r ,

ψOr f
O
i = fOsr·iψ

O
r , yOr y

O
s = yOs y

O
r ,

ψOr y
O
r+1f

O
i = (yOr ψ

O
r + δirir+1

)fOi , yOr+1ψ
O
r f
O
i = (ψOr y

O
r + δirir+1

)fOi ,

ψOr y
O
s = yOs ψ

O
r , if s 6= r, r + 1,

ψOr ψ
O
s = ψOs ψ

O
r , if |r − s| > 1,
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(ψOr )2fOi ≡



(y
〈1+ρr(i)〉
r − yOr+1)(y

〈1−ρr(i)〉
r+1 − yOr )fOi , if ir � ir+1,

(y
〈1+ρr(i)〉
r − yOr+1)fOi , if ir → ir+1,

(y
〈1−ρr(i)〉
r+1 − yOr )fOi , if ir ← ir+1,

0, if ir = ir+1,

fOi , otherwise,

(
ψOr ψ

O
r+1ψ

O
r − ψOr+1ψ

O
r ψ
O
r+1

)
fOi =


(y
〈1+ρr(i)〉
r + y

〈1+ρr(i)〉
r+2 − y〈1+ρr(i)〉

r+1 − y〈1−ρr(i)〉
r+1 )fOi , if ir+2 = ir � ir+1,

−t1+ρr(i)fOi , if ir+2 = ir → ir+1,

fOi , if ir+2 = ir ← ir+1,

0, otherwise,

where ρr(i) = ı̂r − ı̂r+1 and y
〈d〉
r = t2dyOr + t−1[d], for d ∈ Z.

In fact, the statement of Theorem 4.2.5 is slightly different to [52, Theorem A]. This is because we are
using a different choice of modular system (K,O, F ) and because Definition 1.1.1 renormalizes the quadratic
relations for the generators Tr of H O

n , for 1 ≤ r < n.
The strategy behind the proof of Theorem 4.2.5 is quite simple: we compute the action of the elements

defined in Definition 4.2.4 on the seminormal basis use this to verify that they satisfy the relations in the
theorem. To bound the rank of the algebra defined by the presentation in Theorem 4.2.5 we essentially count
dimensions. By specializing x = 0, we obtain Theorem 3.1.1 as a corollary of Theorem 4.2.5.

To give a flavour of the type of calculations that were used to verify that the elements in Definition 4.2.4
satisfy the relations in Theorem 4.2.5, for s ∈ Std(i) and 1 ≤ r < n define

(4.2.6) βr(s) =


αr(s)t

2ı̂r

MZr (s)
, if ir = ir+1,

αr(s)ρ
Z
r (s)t−2ı̂r , if ir = ir+1 + 1,

αr(s)ρ
Z
r (s)

MZr (s)
, otherwise,

Then Theorem 1.6.7 easily yields the following.

4.2.7. Lemma. Suppose that 1 ≤ r < n and that (s, t) ∈ Std2(Pn). Set i = is, j = it, u = s(r, r + 1) and
v = t(r, r + 1). Then

ψOr fst = βr(s)fut − δirir+1

1

ρZr (s)
fst.

Moreover, if s(l, b, c) = r then y
〈d〉
r fst = t−1

(
t2(c−b+d−ir)xl + [cZk(s) + d− ı̂r]

)
fst, for 1 ≤ r ≤ n and d ∈ Z.

Armed with Lemma 4.2.7, and Definition 1.6.6, it is an easy exercise to verify that all of the relations in
Theorem 4.2.5 hold in H O

n . For the quadratic relations, Lemma 4.2.7 implies that (ψOr )2fst = 0 if s ∈ Std(i)
and ir = ir+1 whereas if ir 6= ir+1 then (ψOr )2fst = βr(s)βr(u)fst, where u = s(r, r + 1). The quadratic
relations in Theorem 4.2.5 now follow using (4.2.6) and Lemma 4.2.7. For example, suppose that ir → ir+1

and s ∈ Std(i). Pick nodes (l, b, c) and (l′, b′, c′) such that s(l, b, c) = r and s(l′, b′, c′) = r + 1. Then, using
Lemma 4.2.7 and Definition 1.6.6,

(ψOr )2fst = t−2ı̂r+1βr(s)βr(u)fst = t−2ı̂r+1MZr (u)fst

= t−2ı̂r+1

(
1 + t2(c−b)+1xl − t2(c′−′b)−1xl

′
+ t[cZr (s)]− t−1[cZr (u)]

)
fst

= t−1−2ı̂r+1

(
t2(c−b+1)xl − t2(c′−′b)xl

′
+ t2cr+1(s)[1 + cr(s)− cr+1(s)]

)
fst.

On the other hand, using Lemma 4.2.7 again,

(y〈1+ρr(i)〉
r − yOr+1)fst = t−1

(
t2(c−b+1−ı̂r+1)xl − t2(c′−b′−ı̂r+1)xl

′
+ [cZr (s) + 1− ı̂r+1]− [cZr+1(s)− ı̂r+1]

)
fst

= t−1−2ı̂r+1

(
t2(c−b+1)xl − t2(c′−b′)xl

′
+ t2cr+1(s)[1 + cZr (s)− cZr+1(s)]

)
fst

= (ψOr )2fst.

Therefore, (ψOr )2fOi = (y
〈1+ρr(i)〉
r − yOr+1)fOi when ir → ir+1. These calculations are not very pretty, but nor

are they are hard — and they are very effective. The proof of the (deformed) braid relations is similar. As
indicated by Remark 2.2.5, the quadratic relations play a role in the proof of the braid relations.
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4.3. A distinguished homogeneous basis. One of the advantages of Theorem 4.2.5 is that it allows us to
transplant questions about the KLR algebra RΛ

n into the language of seminormal bases. In Definition 1.6.6
we defined a ∗-seminormal basis which provides a good framework for studying the semisimple cyclotomic
Hecke algebras. The algebra H Λ

n comes with two cellular algebra automorphisms, ∗ and ?, where ? is the
unique anti-isomorphism fixing the homogeneous generators and ∗ is the unique anti-isomorphism fixing the
inhomogeneous generators.

4.3.1. Definition (Hu-Mathas [52, §5]). A ?-seminormal coefficient system is a collection of scalars

β = {βr(t) | t ∈ Std(Pn) and 1 ≤ r ≤ n }
such that βr(t) = 0 if v = t(r, r + 1) is not standard, if v ∈ Std(Pn) then βr(v)βr(t) is given by the
product of the particular choice of coefficients in (4.2.6) and if 1 ≤ r < n then βr(t)βr+1(tsr)βr(tsrsr+1) =
βr+1(t)βr(tsr+1)βr+1(tsr+1sr).

Exactly as in Corollary 1.6.9, the ?-seminormal coefficient systems determine ?-seminormal bases {fst}
which, similar to Definition 1.6.4 consist of non-zero elements fst ∈ Hst such that f?st = fts, for (s, t) ∈ Std2(Pn).
The left (and right) the action of ψOr on fst is exactly as in Lemma 4.2.7 but for a general ?-seminormal
coefficient system β.

Definition 4.3.1 gives us extra flexibility in choosing a ?-seminormal basis. By [52, (5.8)] there exists a
?-seminormal basis {fst} such that the ψ-basis of Theorem 3.2.6 lifts to a ψO-basis {ψOst } with the property
that

(4.3.2) ψOst = fst +
∑

(u,v)I(s,t)

ruvfuv,

for some ruv ∈ K. In this way we recover Theorem 3.2.6 and with quicker proof than given initially in [49].
More importantly, by working with H O

n we can improve upon the ψ-basis.

4.3.3. Theorem (Hu-Mathas [52, Theorem 6.2, Corollary 6.3]). Suppose that (s, t) ∈ Std2(Pn). There exists
a unique element BOst ∈H O

n such that

BOst = fst +
∑

(u,v)∈Std2(Pn)
(u,v)I(s,t)

pstuv(x
−1)fuv,

where pstuv(x) ∈ xK[x]. Moreover, {BOst | (s, t) ∈ Std2(Pn) } is a cellular basis of H O
n .

The existence and uniqueness of this basis essentially come down to Gaussian elimination, although for
technical reasons it is necessary to work over the xO-adic completion of O. Proving that {BOst } is cellular is
trickier.

As we will see, because we are using a ?-seminormal basis, the basis {BOst } behaves well with respect to the
KLR grading on H Λ

n . The main justification for using this seminormal basis as a proxy for choosing a “nice”
basis for H Λ

n , a part from the fact that it works, is that Theorem 2.4.8 shows that the natural homogeneous
basis of the semisimple cyclotomic quiver Hecke algebras is a ?-seminormal basis.

In characteristic zero the polynomials pstuv(x) satisfy 0 < deg pstuv(x) ≤ 1
2 (deg u − deg s + deg v − deg t),

whenever (u, v) I (s, t) by [52, Proposition 6.4]. Moreover, if s, t, u, v are all standard tableaux of the same
shape then pstuv(x) = psu(x)ptv(x), where 0 < deg psu(x) ≤ 1

2 (deg u − deg s) and 0 < deg ptv ≤ 1
2 (deg v − deg t)

whenever u B s and v B t, respectively.
As the basis {BOst } is defined over O we can reduce modulo the ideal xO to obtain a basis {BOts ⊗O 1K}

of H Λ
n = H Λ

n (K). This basis is hard to compute and we do not know whether it is homogeneous in general.
Nonetheless, it is possible to construct a homogeneous basis {Bst} of H Λ

n from {BOst }. By definition, if λ ∈ Pn
then Btλtλ is the homogeneous component of BOtλtλ ⊗ 1K of degree 2 deg tλ. In general, for s, t ∈ Std(λ) there

exists homogeneous elements Ds, Dt ∈ H Λ
n such that Bst = D?

sBtλtλDt. In characteristic zero, Bst is the
homogeneous component of BOst ⊗ 1K of degree deg s + deg t, and all other components are of larger degree.
In general, this appears to depend on the characteristic. For any field, by (4.3.2) and Theorem 4.3.3,

(4.3.4) Bts = ψst +
∑

(u,v)I(s,t)

auvψuv,

for some auv ∈ K which are non-zero only if iu = is, iv = it and deg u + deg v = deg s + deg t. Therefore, this
basis resolves the ambiguities of Proposition 3.2.9(b). More importantly, we have the following.

4.3.5. Theorem (Hu-Mathas [52, Theorem 6.9]). Suppose that K is a field. Then {Bst | (s, t) ∈ Std2(Pn) }
is a graded cellular basis of RΛ

n with weight poset (Pn,D), cellular algebra automorphism ? and with degBst =
deg s + deg t, for (s, t) ∈ Std2(Pn). Moreover, if (s, t) ∈ Std2(Pn) then Bst + H Bλ

n depends only on s and t
and not on the choice of reduced expressions for the permutations d(s), d(t) ∈ Sn.
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By construction, the basis {Bst depends on the field F . Moreover, if F is a field of positive characteristic
then Bst depends upon the choice of the elements Ds and Dt, which are uniquely determined modulo H Bλ

n .
This is why Bst + H Bλ

n is uniquely determined by s and t.

4.4. A conjecture. The construction of the basis {BOst } of H O
n in Theorem 4.3.3, together with the degree

constraints on the polynomials pstuv(x) in characteristic zero, are reminiscent of the Kazhdan-Lusztig basis [66].
We do not have an analogue of the bar involution, however, a possible replacement for this is that the basis
elements Bst are homogeneous. Motivated by this analogy with the Kazhdan-Lusztig basis we now define
analogues of cell representations for the B-basis.

As the basis {Bst} of Theorem 4.3.5 is graded cellular we obtain a new homogeneous basis {Bt | t ∈ Std(λ) }
of the graded Specht module Sλ. Define the pre-order �B on Std(λ) to be the transitive closure of the
relation �̇B where t�̇Bv if there exists a ∈ RΛ

n such that Bta =
∑

s rsBs with rv 6= 0. (So �B is reflexive and
transitive but not anti-symmetric.) Let ∼B be the equivalence relation on Std(λ) determined by �B so that
t ∼B v if and only if t �B v �B t. For example, tλ �B t �B tλ, for all t ∈ Std(λ).

Let Std[λ] be the set of ∼B-equivalence classes in Std(λ). The set Std[λ] is partially ordered by �B,
where T �B V if t �B v for some t ∈ T and v ∈ V. Write T �B v if t �B v for some t ∈ T and T �B v if
T �B v and v /∈ T. Define Sλ

T� to be the vector subspace of Sλ with basis {Bv | T �B v }. Similarly, let Sλ
T�

be the vector space with basis {Bv | T �B v }. The definition of �B ensures that Sλ
T� and Sλ

T� are both

graded H Λ
n -submodules of Sλ and that Sλ

T� ( Sλ
T�. Therefore, Sλ

T = Sλ
T�/S

λ
T� is a graded H Λ

n -module. By

choosing any total order of Std[λ] which is compatible with �B it is easy to see that Sλ has a filtration with
subquotients being precisely the modules Sλ

T , for T ∈ Std[λ].
For λ ∈ Pn let Tλ = { t ∈ Std(λ) | t ∼B tλ }. In view of (3.7.2), if s, t ∈ Std(λ) and 〈Bs, Bt〉 6= 0 then

s ∼B tµ ∼B t so that s, t ∈ Tλ. Therefore, dimDλ ≤ |Tλ|. Of course, if λ /∈ KΛ
n then this bound is not sharp

because Dλ = 0 whereas |Tλ| ≥ 1.

4.4.1. Conjecture. Suppose that F is a field of characteristic zero and that λ ∈ Pn. Then Sλ
T is an irreducible

H Λ
n -module, for all T ∈ Std[λ].

Conjecture 4.4.1 is not supported by a great deal of evidence. It is easy to check that the conjecture
is true in the trivial cases considered in Example 3.8.1 and Example 3.8.2. With considerably more effort,
using [24, Lemma 9.7] and results of [50, Appendix], it is possible to verify the conjecture when Λ is a
weight of level 2 and e > n. In all of these cases, the conjecture can be checked because Bst = ψst, for all
(s, t) ∈ Std2(Pn).

As discussed in [52, §3.3], and is implicit in (4.1.4), by fixing a composition series for Sλ and using a
Gaussian elimination argument, it is possible to construct a basis {Ct} of Sµ such that each module appearing
in the composition series has a basis which is contained in {Ct} and such that if t ∈ Std(λ) then Ct = ψt plus
a linear combination of “higher terms” with respect to some total order on Std(λ). This defines a partition of
Std(λ) = X1 t · · · tXz, where the tableaux in the set Xk are in bijection with a basis of the kth composition
factor. That is, we have defined an equivalence relation on Std(λ), which is associated with a composition
series, so that the analogue of Conjecture 4.4.1 holds for this equivalence relation. Our conjecture is an
optimistic attempt to make this equivalence relation on Std(λ) explicit and canonical.

If T ⊆ Std(λ) define Chq T =
∑

t∈T q
deg t · it ∈ A[In]. Then, by definition, Chq S

λ
T = Chq T.

4.4.2. Proposition. Let F be a field of characteristic zero and assume that Conjecture 4.4.1 holds.

a) Suppose that µ ∈ KΛ
n . Then Dµ ∼= Sλ

Tµ . Consequently, ChqD
µ = Chq T

µ.
b) For each T ∈ Std[λ], for λ ∈ Pn, there exists a unique (νT, dT) ∈ KΛ

n×N such that Chq T = qdT ChqD
νT .

Moreover,

dλµ(q) =
∑

T∈Std[λ]
νT=µ

qdT .

Proof. By Corollary 3.2.7, Dµ 6= 0 since µ ∈ KΛ
n . The irreducible module Dµ is generated by Btµ + radSµ =

ψtµ + radSµ, so Dµ ∼= Sµ
Tµ since both modules are irreducible by Conjecture 4.4.1 For part (b), Sλ

T
∼= Dν〈d〉,

for some ν ∈ KΛ
n and d ∈ Z, because Sλ

T is irreducible by Conjecture 4.4.1. Therefore, Chq S
λ
T = qd ChqD

ν .
The uniqueness of (νT, dT) = (ν, d) ∈ KΛ

n × Z follows from Theorem 3.7.1 and Theorem 2.1.4. Moreover,
d ≥ 0 by Corollary 3.5.11. As every composition factor of Sλ is isomorphic to Sλ

T for some T ∈ Std[λ] the
formula for dλµ(q) is now immediate. �

Proposition 4.4.2 shows that Conjecture 4.4.1 encodes closed formulas for the characters and graded
dimensions of the irreducible H Λ

n -modules and for the graded decomposition numbers of H Λ
n . For this

result to really be useful we need to both verify Conjecture 4.4.1 and to explicitly determine the equivalence
relation ∼B . Our last result is a small step in this direction.
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4.4.3. Lemma. Suppose that s, t ∈ Std(λ) and that t = s(r, r + 1) such that isr+1 6= isr ± 1, where 1 ≤ r < n
and λ ∈ Pn. Then s ∼B t.

Proof. It follows from (4.3.4), and Theorem 3.6.2, Bsψr = ψt +
∑

u auψu = Bt +
∑

u buBu, where au, bu ∈ F
are non-zero only if `(d(u)) < `(d(s)). Therefore, s �B t. If isr+1 6= itr then e(is)ψ2

r = 1 by (2.2.3), so it follows
that s ∼B t.

Now consider the more interesting case when isr+1 = isr or, equivalently, isr = itr. Then, using (2.2.2),

Btyr+1 =
(
Bsψr −

∑
u

buBu

)
yr+1 = Bs(yrψr + 1)−

∑
u

buBuyr+1.

In view of Proposition 3.2.9(c), Bs appears on the righthand side with coefficient 1. Hence, t �B s implying
that s ∼B t as claimed. �

The B-basis, and hence Conjecture 4.4.1 and all of the results in this section (except that dT ∈ Z in
Proposition 4.4.2), make sense over any field. We restrict Conjecture 4.4.1 to fields of characteristic zero
because it would be foolhardy to venture into the realms of positive characteristic without some evidence.
This said, whether or not Conjecture 4.4.1 is true in characteristic zero, we strongly believe that in all
characteristics there exists a “canonical” graded cellular basis {Cst} of RΛ

n such that the analogous version of
Conjecture 4.4.1 holds for the ∼C equivalence classes.
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