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Summary

This expository paper deals with many problems concerning bounded objects arranged

randomly in space. The objects are of rather general shapes and sizes, whilst the random

mechanisms for positioning and orienting them are also fairly general. There are no re-

strictions on the dependence between shapes, sizes, orientations and positions of objects.

The only substantive assumption is that the objects are distributed in a ‘statistically

uniform’ way throughout the whole of the space. We focus on the statistical properties

of features seen in an observation window, itself of general size and shape.

Keywords: Random geometry, integral geometry, geometric statistics, random sets.

Introduction

There has been a resurgence of interest in recent years amongst geometers and proba-

bilists in matters ‘random geometric’. Yet, on the topic of this paper, there remains a

dearth of expository papers suitable for scientists at large, and even for those mathe-

maticians and statisticians unable to invest time on the blend of integral geometry and

probability theory needed. This paper attempts to fill that gap. Although some results

in the paper are original, the chief motivation for writing has been the desire to make

a large number of useful, elegant formulae accessible. Indeed, most of the paper is ‘for-

mula oriented’, suitable for immediate use and easy referral by scientists concerned with

seemingly random structures in space. Only at the end, do technicalities and proofs

dominate. Thus, the paper aims at a different audience than that served by the excellent

theoretical book of Stoyan, Kendall and Mecke (1987) [SK&M].

To achieve maximum accessibility, the mathematical treatment is quite informal. In

particular the objects considered do not have peculiarities of shape, size, connectedness
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or surface roughness which are counter-intuitive. Also, the discussion is confined to

problems in either 1, 2 or 3 dimensions. Whilst a number of results given here have

generalisations in n dimensions we avoid the conceptual overheads and cumbersome

notations that a general treatment requires. Using this approach we lose some unity but

gain considerable usability.

The paper concentrates on results obtainable with only the meagre assumption of

‘statistical uniformity’ in the positions and orientations of the objects. We touch only

briefly upon the situation where the probability model has additional structure, as for

example in the ‘Boolean’ model (the Poisson process of ‘random set theory’). Despite so

few structural assumptions used in most of this paper, there is a rich theory to explore.

The paper deals with everyday concepts, such as areas and perimeters of 2-dimensional

shapes or volumes and surface areas of 3-dimensional bodies. Two less-familiar entities

(the ‘connectivity number’ known as the Euler characteristic and the ‘integral of mean

curvature for 3-d bodies’) are also essential to the theory. They have a rôle in appli-

cations every bit as important as those everyday concepts, so space is devoted to the

building of an intuitive framework for these two entities.

The approach taken in the technical discussion (which concludes the paper) should

interest specialists in the field, for it is different from that presented in SK&M. In some

ways it is more direct, if one accepts the classical and highly intuitive results of Blaschke

and Santaló.

Random object process: informal description

Two dimensional space is the most convenient to fix ideas. So we consider firstly a

‘random object process’ (ROP) in the plane; Figure 1a illustrates such a process with

‘filled’ objects (the curved boundary plus the region contained by it) whilst Figures 1b

and 1c have ‘unfilled’ objects that are just the curves. Bounded objects (sometimes

called ‘bodies’ or ‘grains’) of varying shape are located in a statistically uniform manner

over the plane, with orientations that are also randomly distributed.

Indeed we confine our attention to ROPs which are statistically homogeneous in mean

(SHIM). We define this concept more completely later, but for the moment we understand

the term as follows. If we place an observation window (W say) of given size and shape,

the mean value of anything one cares to observe within W does not depend upon the

position and orientation of W . That is, mean values are invariant under translations and

rotations of W . Of course, the statistical variation from region to region implies, in the

eyes of the physical scientist, heterogeneity of structure not homogeneity, hence our use

of the term statistical homogeneity to convey invariance of mean values.
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Under the SHIM assumption, simple formulae exist for the mean of numerous features

observable in (and near) W . Importantly, these formulae are valid even if the shapes

and sizes of objects are statistically dependent upon the locations, orientations, shapes

and sizes of other objects.

To be specific let us define a space S as the set of possible bounded objects. S may

be quite specific (i.e. all ellipses) or quite general, but in any case the members of S
will be ‘pleasant’. They will be (as sets of R2) closed, bounded, with finite area A and

boundary sufficiently smooth that the perimeter L is finite. Each object in S has a point

which we call the centre (any well defined point will suffice). Emanating from the centre

is a directional arrow which provides a reference direction when objects are randomly

oriented on the plane.

Loosely speaking, we ‘construct’ the ROP by randomly sampling objects from S
(according to a probability distribution defined on S), and placing the centres of these

objects at the points of a planar point process. It is not important how this point process

arose; it is merely a collection of points having the property that the mean number of

points in a window W does not depend on the position or orientation of W . The density

of points (i.e. the mean number in a window of area 1) is denoted by τ . Pathological

collections of points leading to infinite τ are ruled out by the usual regularity conditions

applying to point processes (Daley and Vere-Jones, 1972). The orientation of the objects,

when placed in the plane, are distributed so that the angle between the reference arrow

and the x-axis is uniformly distributed on [0, 2π).

One example of a ROP is known as the Boolean scheme [Hadwiger and Giger (1968),

Kendall and Moran (1963), Matheron (1975), Serra (1982), Stoyan (1979a), A. M.

Kellerer (1983, 1986), H. G. Kellerer (1984)]. In this model, the centre points form

a Poisson point process on the plane, all objects are independently sampled from S and

located with statistically independent orientations. The choice of object from S and its
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orientation are mutually independent and independent of the point process of centres.

The Boolean scheme is the most important statistical model for a ROP, and the

only one which is manageable for certain types of calculation. But the general SHIM

ROP, which is the focus of attention in this paper, has little of the structure of the

Boolean scheme because it requires none of the assumptions of statistical independence

that define the Boolean scheme. (Even the assumption of a Poisson process of centres

in the Boolean scheme is a statement of statistical independence; the independence of

counts in disjoint windows.)

Thus, in our informal ‘construction’ of a ROP, any type of statistical dependence is

acceptable. Examples which lie within our theory are illustrated in Figures 1 and 2.

Figure 1c shows a ROP where the objects must not overlap. Clearly all aspects of this

process are inter-dependent. Figure 2a shows circular disks arranged to be touching;

Figure 2b illustrates a process of convex polygons constrained to form a mosaic. (See

Ambartzumian (1970, 1974a), Cowan (1978, 1980) and Mecke (1980, 1983) for a general

theory of homogeneous mosaics and Miles (1964, 1970), Gilbert (1967) and Maillardet

(1982) for specially structured mosaics). Alternatively, Figure 2b may be viewed as a line-

segment process, the segments being constrained to meet each other at ‘junctions’. This

is in contrast to the line-segment process in Figure 2c which is a Boolean scheme. (The

general homogenous line-segment process is studied in Cowan (1979) whilst Coleman

(1972) discusses the Boolean scheme of line segments. Intermediate cases are discussed

by Santaló (1977) and Parker and Cowan (1976)).) Of course, the pattern in Figure 2c

might also be viewed as a process of non-crossing line segments if we think of the original

segments cutting each other into sub–segments. Viewed in such a way, the sub-segment

process is not a Boolean scheme.

Although our theory envisages an uncountably infinite collection of general shapes

and sizes in S, some authors have specialised S by allowing it to contain just one ele-
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ment, or more generally, to comprise a finite number of objects of fairly general shape

(Berman, 1977). Another approach, used by Fava and Santaló (1978), allows S to com-

prise one general shaped object, s say, together with all contractions and dilations of

s; size variation without shape variation (Figure 3a). Hadwiger and Giger (1968) con-

sider S as the class of all bounded convex sets (see Figure 3b) whilst Ambartzumian

(1974b, 1977), Mecke and Stoyan (1980), Stoyan (1981), Stoyan, Mecke and Pohlmann

(1980) and Mecke (1981a) have specialised S to contain only fibres (Figure 3c). Math-

eron (1975), when discussing collections of objects, deals mainly with bounded convex

shapes. In many of these studies a Boolean scheme is also assumed.

Objects of ‘infinite extent’ have been considered in a number of studies, in particu-

lar full-length lines and thickened lines [Miles (1964, 1973), Davidson (1974), Solomon

(1978)]. In these studies, however, the mathematical framework differs considerably from

ours. A difficulty exists if one tries to use objects of ‘infinite extent’ using our approach,

because if such objects were ‘centred’ at the points of a stationary point process of den-

sity τ , every observation window would be crossed by an infinite number of objects. Our

assumption of bounded objects eliminates these cases from the discussion.

For the most part it is natural to think of objects as ‘connected’ in a topological sense,

an object made of many disconnected parts being viewed as multiple objects. But there

can be cases where there is a defined nexus between the parts, and then it can be useful

to consider just a single, multi-part, disconnected object within S. Figure 4a shows a

ROP comprised of two-part objects, namely pairs of circles. Dotted lines, themselves

not part of the object, indicate the pairing.

Whilst it seems unnecessary to consider multi-part objects, there is a good reason

for doing so. Consider Figure 1a, made up of one-piece objects. One object has an

intersection with the window W made up of two disconnected parts. Thus, even with

one-piece objects, there arises a need for some ‘disconnectedness concept’ to describe the
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patterns seen in a window (unless the objects and the window are all convex). In setting

up the simple topological concept to describe pattern disconnectedness, one finds that it

is economical to allow the objects themselves to be multi-part and disconnected.

The Euler characteristic, χ

The Euler characteristic (sometimes called Euler-Poincaré characteristic) is an integer

which summarises the topological character of a set. It is a kind of ‘connectivity number’.

For a two dimensional set (at least for an extremely rich class of 2-d sets sufficient for

our purposes), χ is simply defined as the number of disconnected pieces of the set minus

the number of holes (see Figures 5a and 5b).

Clearly, χ quantifies the disconnectedness of objects in S, but it also provides a

topological parameter for sets with holes. If χ proves to be the appropriate topological

parameter for our objects [and it does, Hadwiger (1957)] then we can allow the objects in
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S to have holes. Is there any value in this? Firstly, the generalisation allows one to study

a process like that shown in Figure 4b, where the objects are circular annuli. Of course,

if the annuli are made arbitrarily thin we have a process of circular boundaries. Figure

2a could thus be treated as a ROP of circles rather than ‘filled’ disks. Indeed all our

examples could be viewed as processes of closed curves, rather than of ‘filled’ objects.

They would have area zero, Euler characteristic zero and a distribution of perimeter

lengths. (Note the perimeter of a curve is defined, as we see later, to be twice the

length.) Secondly, the mechanism for generating the ROP sometimes leads naturally to

objects having holes. Consider a random continuous surface, for example, the realisation

of a statistically homogeneous Gaussian process (that is, a Gaussian distributed random

variable defined at each point in the plane with imposed continuity and homogeneity).

This might model the height of land in an undulating countryside. If we flood all the land

below a certain altitude, we form a ROP comprising land islands with internal sea-level

lakes (though for some unsmooth Gaussian processes, the islands will have boundaries so

rough that perimeters are infinite). Adler (1981) gives the average Euler characteristic

of these ‘islands’ as part of his study on random Gaussian surfaces. Thirdly, when we

discuss later the 3-dimensional ROP, it is of interest to question the nature of pattern on

a planar section. (That is, consider the 3-dimensional viewing window as a rectangular

prism which can be made arbitrarily thin and of arbitrarily large lateral extent.) Clearly

the pattern on the section is a 2-d ROP, one where objects may contain holes even if the

3-d objects are themselves connected and without holes. Only a convexity assumption

on the 3-d objects guarantees 2-d objects without holes.

So there is sufficient motivation for the study of objects with holes. Also, in the

patterns that result from a ROP, we see ‘clumps’ (of objects), many clumps having holes.

The patterns of wet circles seen when raindrops begin to fall on a dry path illustrate

these ‘clumps’ with their dry ‘holes’. (In the context of Boolean schemes (though not

raindrops), A. M. Kellerer (1983) derives the Euler characteristic of the ‘wet’ region

within a window W .)

Window formulae

Suppose the objects selected from S have mean area µA, mean perimeter µL and mean

Euler characteristic µχ. Denote the area, perimeter and Euler characteristic of the ob-

servation window W by A, L and χ. Let N(W ) be the number of objects which intersect

W . For each such object s, one can measure certain quantities (such as area of overlap

with W ) and sum the measurements over the N(W ) objects. For example, using the

notation that ∂s and ∂W represent the boundaries of s and W respectively, let

A(W ) =
∑

(area of s ∩W )

7



Li(W ) =
∑

(length of ∂s inside W )

L∂(W ) =
∑

(length of ∂W covered by s) (1)

L(W ) =
∑

(perimeter of s ∩W ) = Li(W ) + L∂(W )

χ(W ) =
∑

(Euler characteristic of s ∩W ).

Provided neither the window W nor the objects sampled from S are fibres or have

fibrous components, we have the following simple formulae for mean values.

EA(W ) = τAµA, (2)

ELi(W ) = τAµL, (3)

EL∂(W ) = τLµA, (4)

EL(W ) = τ(AµL + LµA), (5)

E χ(W ) = τ [Aµχ + χµA +
1

2π
LµL], (6)

where τ is the density of the point process of centres. In particular, if each object is

connected and without holes, with W likewise (implying χ = µχ = 1), then (6) simplifies.

In the special case of convex W and convex shaped objects, χ(W ) = N(W ). So under

these convexity conditions

EN(W ) = τ [A+ µA +
1

2π
LµL]. (7)

It is useful to note that A,L and χ denote characteristics of ’dimension’ 2, 1 and 0 respec-

tively, as do µA, µL and µχ. We see that the multiple of τ in (6) contains dimensionally

consistent terms. Formulae (2)–(5) also have appropriate dimensions.

As an example, consider a random process of filled rectangles observed within the

circular field (radius r) of a microscope. Formulae (2), (3), (4), and (7) apply with

A = πr2, L = 2πr and µL = 2(µa+µb), where µa and µb are mean side lengths (longer and

shorter respectively) of the rectangles. Using obvious notations for standard deviations

and correlation coefficients, µA = ρabσaσb +µaµb. Though it is not my intention to dwell

on issues of statistical estimation, it is obvious that observed values of N(W ), A(W ),

Li(W ) and L∂(W ) in such an example provide some information about τ , µA and µL if

these need to be estimated.

Of course if W is a grid of k distinct points, then (6) helps show that E χ(W ) = kτµA

for the general ROP, since A = L = 0 and χ = k.

Fibres and fibrous components

The formulae above need some qualification if either W or the objects are fibres (i.e.

curves of zero thickness) or have fibrous components. This includes the case where they
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comprise a closed curve without the region it encloses. The easiest way to use the basic

formulae correctly in such cases is by giving the fibre a small thickness ∆, applying the

formula and then taking ∆ → 0. Figure 6 shows some objects of this type and the

∆–modified form.

This device forces us to use a notion of ‘perimeter of a fibre’ which is a little counter-

intuitive. The perimeter of a thickened fibre of length ` is approximately 2(` + ∆),

ignoring minor curvature effects themselves of order ∆, so the unthickened fibre has

perimeter equal to lim∆→0 2(` + ∆) or 2`, twice its length. Thus, if the line-segments

of Figure 2c have mean lengths µ`, then µL = 2µ`, µχ = 1 and µA = lim∆→0 ∆µ` = 0.

Thus (6) implies

E χ(W ) = τ [A+ Lµ`/π] (8)

and, if W is convex, this is also the formula for EN(W ). Formula (8) also applies to the

curved fibres of Figure 3c, but since these are not convex, EN(W ) 6= E χ(W ). Of course,

if W is fibrous too, with length `, (8) becomes E χ(W ) = 2τ`µ`/π, where χ is now the

number of intersection points. As another example, consider Figures 1, 2a and 3b as

processes of closed curves of mean length µ`. Now µA = 0, µL = 2µ` and µχ = 0. So

E χ(W ) = τLµ`/π. Of course, whilst the shapes in 3b are convex, the closed boundary

curves are not, so here EN(W ) 6= E χ(W ).

Clumps

Note that it is necessary to be able to distinguish overlapping objects in order to deter-

mine the geometric entities such as A(W ) and L(W ). If one cannot do this (for example,

if all the objects in a ROP were a common colour), one must be content with mea-

surements (such as areas or perimeters) on ‘clumps’ of objects. Thus, in cases where
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mean clump size is finite1, we envisage a ROP of non-overlapping ‘clumps’ having its

own parameters, τ ∗, µ∗A, µ∗L and µ∗χ say, as statistical descriptors of the clumps. If these

*-parameters are used in (2)–(6), we obtain expectations of total clump area, perimeter

and Euler characteristic within W .

An obvious question is the relationship between (τ ∗, µ∗A, µ∗L, µ∗χ) and (τ , µA, µL, µχ).

Without further assumptions concerning the dependence structure of shapes and posi-

tions, nothing can be said about the relationship. Even in the case of Boolean schemes,

there are unsolved problems concerning this relationship though, with a rearrangement

of some results of A. M. Kellerer (1983), one can show that τ ∗µ∗A = 1 − exp(−τµA),

τ ∗µ∗L = τµL exp(−τµA) and τ ∗µχ = τAexp(−τµA)[µχ − τµ2
L/4π]. Clearly another rela-

tion, for τ ∗ say, is needed, but none is available. It is obvious that τ = n̄τ ∗, where n̄ is

the mean number of objects per clump, but there are no examples where n̄ is known.

Additional window formulae

Here we present more window formulae. These involve the boundaries of either W , the

objects s or both. Initially we look at the case where neither W nor the objects are

fibrous.

Let

χ(∂W ) =
∑

(Euler characteristic of s ∩ ∂W ), (9)

χ∂(W ) =
∑

(Euler characteristic of ∂s ∩W ), (10)

χ∂(∂W ) =
∑

(Euler characteristic of ∂s ∩ ∂W ), (11)

where the summation is over all objects which intersectW . Note that χ∂(W ) = χ(∂W ) =
1
2
χ∂(∂W ). To find E χ(∂W ), consider ∂W as another observation window, called W ∗

say. As such it has A∗ = 0, L∗ = 2L and χ∗ = 0. Thus from (6), E χ(W ∗) = τLµL/π.

Therefore

E χ(∂W ) = Eχ∂(W ) =
1

2
E χ∂(∂W ) = τLµL/π. (12)

If the s in (9) or the W in (10) are themselves fibrous of length `, then the L in (12)

equals 2`. But the W in (9) or (11) and the s in (10) or (11) are never taken to be

fibrous, for it is confusing to talk of ‘boundaries of fibres’.

1This clause in bold font was overlooked in the original paper, but it is a necessary addition to render

the discussion of clumps correct.
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One-dimensional processes

A random object process on the line is defined in an analogous manner. The objects,

which are simply intervals or collections of disconnected intervals are ‘centred’ on points

which are arranged in a statistically homogeneous manner on the line. In one dimension,

we denote the density of points by λ. The ‘content’ of an object is the sum of lengths

for its disconnected pieces, whilst its Euler characteristic (now denoted by η) is simply

the number of pieces (there being no concept of holes). The mean content of objects

is µC and mean Euler characteristic µη, whilst the (possibly disconnected) window W

has content C and Euler characteristic η. Let C(W ) =
∑

(content of s within W ) and

define η(W ), η(∂W ) and η∂(W ) by analogy with (1), (9) and (10) respectively. The

appropriate window formulae are

Eη(W ) = λ(Cµη + ηµC) (13)

EC(W ) = λCµC

Eη(∂W ) = 2ληµC

Eη∂(W ) = 2λCµη.

The ‘clumping’ relationships are λ∗µ∗η = λµηexp(−λµC) and λ∗µ∗C = 1− exp(−λµC). If

one specifies that µη = 1, then µ∗η = 1 and a complete set of relationships can be found

[including n̄, the mean number of objects per clump equalling exp(λµC)].

Line transects of 2-dimensional processes

A two-dimensional ROP observed along a line transect yields a one-dimensional ROP.

To find the properties of the transect ROP, consider W as an ` × ∆ rectangle in the

plane. Then as ∆ → 0, Eχ(W ) → τ(µA + `µL/π) using the two-dimensional formula,

(6). But (13) shows that if W is an interval of length `, Eη(W ) = λ(`µη + µC), in terms

of one-dimensional features. Thus λµη = τµL/π and λµC = τµA. If the objects in 2-d

are convex, these formulae simplify to λ = τµL/π and

µC = πµA/µL. (14)

Thus, in this case, the transect process comprises intervals placed at centres whose mean

density λ is proportional to the mean perimeter of the planar objects. The intervals

have mean length µC , proportional to the ratio of mean areas to mean perimeters. In

the non-convex case, the objects on the line transect may be multi-part, and one can

show that the parts are intervals of mean length πµA/µL.
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Extended window formulae: 2 dimensions

In this section some new formulae for the statistical features of objects which intersect

W are presented. Let I(W ) be the number of objects whose centres lie within W and

I(W,a, `) be the number of these objects with area ≤ a and perimeter ≤ `. It is the full

area and perimeter of such an object which concerns us here, even though the object

may extend beyond the window W . ¿From the definitions of the ROP, we have that

EI(W ) = τA and

EI(W,a, `) = τAGAL(a, `) (15)

where GAL is the ‘joint distribution function’ of area and perimeter for the objects in S.

Thus by observing the totality of all objects with centres in W we obtain a sample

of areas and lengths which is unbiased. On the other hand, bias occurs if we observe the

full areas and perimeters of the N(W ) objects which intersect W (the ‘hitting objects’).

This is not unexpected, since ‘large’ objects are more likely than ‘small’ objects to hit

W . We see however that the aspect of largeness which influences bias depends on the

context. The nature of bias can be examined for convex W and convex objects. Let

N(W,a, `) be the number of hitting objects with area ≤ a and perimeter ≤ `. One can

show (with convexity assumptions) that

EN(W,a, `) = τ [AGAL(a, `) +

∫ a

o

∫ `

0
(x+ yL/2π)dGAL(x, y)]. (16)

Let HAL(a, `) = EN(W,a, `)/EN(W ). From (7) and (16), HAL has properties of a joint

distribution function. In a certain sense (discussed later), HAL is the joint distribution

of areas and perimeters for hitting objects. We have

HAL(a, `) =
AGAL(a, `) +

∫ a
0

∫ `
0 (x+ yL/2π)dGAL(x, y)

A+ µA + LµL/2π
. (17)

When areas and perimeters have a joint density, gAL say, the joint probability density of

areas and perimeters of hitting objects is

hAL(a, `) =
(A+ a+ `L/2π)gAL(a, `)

A+ µA + LµL/2π
. (18)

The marginal probability densities are

hA(a) =
[2π(A+ a) + LµL|a]gA(a)

2π(A+ µA) + LµL
(19)

hL(`) =
[2π(A+ µA|`) + `L]gL(`)

2π(A+ µA) + LµL
(20)

where µL|a and µA|` denote conditional expectations. The means of these distributions

are extremely interesting. The mean area of the hitting objects is

µA +
(2πσA + LρALσL)σA
2π(A+ µA) + LµL

(21)
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whilst the mean perimeter is

µL +
(LσL + 2πρALσA)σL
2π(A+ µA) + LµL

, (22)

where σ2
A and σ2

L are variances and ρAL is the correlation coefficient between areas and

perimeters. The bias is clearly evident when there is variability of object sizes.

It is easy to show, using (18), that if W is a disk of radius r then limr→∞ hAL = gAL.

As expected, bias disappears for large ‘rotund’ windows. But large elongated windows

behave differently. Let W be a ∆× x rectangle. Then as x→∞,

hAL(a, `) → π∆ + `

π∆ + µL
gAL(a, `)

hA(a) →
π∆ + µL|a
π∆ + µL

gA(a)

hL(`) → π∆ + `

π∆ + µL
gL(`) .

If ∆ → 0, we recover results for line transect sampling. Thus the objects ‘hit’ by

a line transect are ‘perimeter biassed’ with mean perimeter µL + σ2
L/µL, mean area

µA + ρALσAσL/µL and

hAL(a, `) = `gAL(a, `)/µL, (23)

hA(a) = µL|agA(a)/µL,

hL(`) = `gL(`)/µL.

Cauchy’s classical formula states that the mean projection of a 2-d convex body onto

a randomly oriented line is 1/π times its perimeter. This explains the bias in favour

of objects with large perimeter, because an object’s chance of being hit is proportional

to its projected length on a line orthogonal to the randomly-oriented transect. Perime-

ter biassing, together with another geometric result from the 19th century provide an

alternative justification for (14). Crofton showed that the mean length of a random

chord of a convex set is π times the ratio of area to perimeter. Thus µC of (14) equals∫ ∫
(πa/`)hAL(a, `)da d`, which equals πµA/µL from (23).

If W collapses to a single point, (18)–(22) show that the sampling is now ‘area’

biassed, a well known phenomenon. Areas and perimeters have means µA + σ2
A/µA and

µL + ρALσAσL/µA respectively with joint density agAL(a, `)/µA.

We now consider a different type of ‘extended window formula’. Let YA(W ) be the

sum of areas for all objects hitting W and YL(w) be the sum of perimeters. Under

convexity assumptions, one can show that

EYA(W ) = τ [AµA + σ2
A + µ2

A +
L

2π
(ρALσAσL + µAµL)]
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EYL(W ) = τ [AµL + ρALσAσL + µAµL +
L

2π
(σ2

L + µ2
L)].

These formulae contrast with (2) and (3), where the sums use only areas and perimeters

interior to W .

Extended window formulae: 1 dimension

Using obvious notation, the analogous results are EI(W ) = λC,EI(W, c) = λCGC(c) in

general, whilst under convexity assumptions

HC(c) =
CGC(c) +

∫ c
0 xdGC(x)

C + µC
,

hC(c) =
(C + c)gC(c)

C + µC

with the mean content of hitting objects being µC + σ2
C/(C + µC). When W is a point

and hence C = 0, the well-known ‘length’ biassing is demonstrated. Also

EYC(W ) = λ[CµC + σ2
C + µ2

C ].

Some basic geometry and topology

As a preliminary to the discussion of 3-dimensional ROPs, certain notions about the

geometry and topology of 3-dimensional bodies must be mentioned. Our texts for this

are Santaló (1976), Matheron (1975), A.D. Aleksandrov (1963) and Hadwiger (1957).

We have seen that in two dimensions the important features of a body are area A,

perimeter L and Euler characteristic χ. It is perhaps surprising that the curvature κ

at points around the boundary does not enter the argument. In fact it does, but only

in an integrated form. For bodies, such as those in Figures 5a and 5b where curvature

is uniquely defined at all boundary points, the integral of curvature over the whole

boundary equals 2πχ. (For this purpose, adopt the convention that curvature is positive

at points like A and B in Figure 5a and negative at points like C and D.) For a convex

body with corners as in Figure 5c, the result is still 2πχ provided that the integral is

first taken over the ‘δ-extended body’ with δ then taken to zero. The ‘δ-extended body’

is defined as the union of all circular disks of radius δ, the centres of which are points

of the original body (Figure 5c). This commonly used technique ‘rounds’ corners in a

way suitable for calculation of the integral. With non-convex bodies, δ-extension will not

‘round’ corners that are re-entrant and may introduce new corners (Figure 5d). Then,

other ‘corner-rounding’ devices must be used (e.g. Figure 5e). (Of course, the result,

which is essentially the Gauss-Bonnet theorem in the plane, is usually stated in terms
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of the angles at the corners, but corner rounding is a notion easily extended to higher

dimensions.)

So in two dimensions the integral of curvature plays a role as the topological in-

variant 2πχ. In three dimensions there are two important integrals of curvature; one is

proportional to a topological invariant (which is the three dimensional Euler characteris-

tic called ϕ), the other an important parameter denoted by M . A point Q on the surface

∂D of a 3-dimensional body D is deemed ‘regular’ if it has a unique tangent plane T . A

plane H orthogonal to T cuts ∂D, forming a plane curve with well defined curvature κ

at Q. Each such H yields a curvature κ. The maximum and minimum values of κ are

known as the ‘principal curvatures’ and denoted by κ1 and κ2. It turns out that their

planes, H1 and H2 respectively, are always mutually orthogonal and that for a plane H
at angle α to H1 the corresponding κ is κ1 cos2 α + κ2 sin2 α. Thus the ‘mean curvature

at Q’ over all planes H is (κ1 + κ2)/2. The ‘integral of mean curvature’ over all points

Q on the surface ∂D is denoted by M . It is a quantity as fundamentally important for

the body D as its volume V and surface area S.

For bodies with edges and corners (i.e. not all points Q regular) the integral is first

taken over a version of D with rounded edges and corners. Some values of M for common

bodies are given in Table 1, others can be found in Santaló (1976, p. 229). The method

of δ-extension adequately copes with edges and corners for bodies2 in Table 1.

Body M S V

Ball, radius r 4πr 4πr2 4πr3/3

Cylinder,height h,

radius r

π(h+ πr) 2πr(h+ r) πr2h

Rectangular prism,

sides a, b, c

π(a+ b+ c) 2(ab+ bc+ ca) abc

Cone, height h, radius r π2r + πh− πh tan−1(h/r) πr2 + πr(h2 + r2)
1
2 πr3h/3

Hemi-ball, radius r 2πr(1 + π/4) 3πr2 2πr3/3

Cylinder with hemi-

ball caps

π(h+ 4r) 2πr(h+ 2r) πr2(h+ 4r/3)

Torus, circle radius a re-

volved about axis at dis-

tance b from its centre

2π2b 4π2ab 2π2a2b

Table 1: Integral of mean curvature, M , surface area S and volume V for some

common 3-dimensional solid bodies.

The integral of κ1κ2, the product of principal curvatures at Q, over ∂D (with due

2In this Table and in other parts of the original paper, I used the words ‘solid sphere’, or just ’sphere’

with ‘solid’ implied, instead of the better word ‘ball’. In this revised version, ‘ball’ has been used in

some places.
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allowance for edges and corners using ‘corner rounding’) yields a multiple ϕ say, of 4π.

ϕ equals 1 for the ball and its topological equivalents and k for a multi-part object made

up of k such bodies. The structure of ‘holes’ within D influences ϕ. Holes are made up

of ‘cavities’ and ‘tunnels’.

We speak of holes like those inside a good Swiss cheese as simple cavities. A connected

body with x simple cavities has ϕ = 1 + x. Alternatively, if a hole is drilled through

a ball, we speak of a simple tunnel. A ball with x simple non-intersecting tunnels has

ϕ = 1 − x. Thus a torus is like a ball with one simple tunnel and has ϕ = 0, whilst a

solid figure-of-eight is like a ball with two simple tunnels and has ϕ = −1. Complicated

tunnel systems can be made by the sequential addition of tunnels, each of which must

have two ends. The tunnel ends may both be on the surface (as with a simple tunnel),

but in general the ends may be another tunnel, a cavity or the surface. Each additional

tunnel decreases ϕ by 1. A labyrinth of tunnels can be analysed by counting the number

of sequentially added tunnels. Cavities can also be quite complicated, but there is a neat

rule. View the cavity in ‘inverted mode’; treat void space (and the interface surface) as

solid and solid as void. Calculate the Euler characteristic, ϕ∗ say, for the inverted mode

object. For the original body the effect on ϕ due to a cavity is the addition of ϕ∗. For

example, a ball with x torus-shaped cavities and y figure-of-eight cavities has ϕ = 1− y.

There remains the contingency that the tunnels (which are the elements of tunnel

networks) may have a complicated cross-section, for example, an annulus. It is usually

not difficult to establish ϕ for these cases, but the methods are ad hoc. Finally we note

that ϕ for the surface ∂D is twice that of the body D, since ∂D is topologically equivalent

to D with a D-shaped cavity.

Classical Statistical Geometry

We now have the full complement of geometric and topological features for objects: η

and C in 1 dimension; χ, L and A in 2; ϕ, M , S and V in 3. In general, if the space

has dimension k, there are k + 1 fundamental numbers describing entities of dimension

0, 1, 2, ...k. This section shows the interplay between these 9 quantities in numerous

problems of statistical geometry, in a manner which underpins the results already pre-

sented for 1 and 2 dimension and those yet to come in 3 dimensions. They deal with

projections of objects (Cauchy-Kubota formulae), sections of objects (Crofton formu-

lae), δ-extensions (Steiner formulae) and the links between the Euler characteristics in

different dimensions. We give a comprehensive account of these, partly because they are

essential for our central theme, partly to emphasise that the less-familiar entities such as

χ, ϕ and M play a vital rôle in random geometry, and partly to present the ‘projection

and section’ formulae in a novel way (using the language of statistical sampling instead
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of concepts from ‘invariant measure theory’).

A random diameter of a ‘ball’ (circular filled disk in R2, solid sphere in R3) is found

by sampling a point P uniformly distributed on the ball’s boundary and drawing a line

through the centre O. For a solid sphere in R3, a random equatorial plane is found by

first sampling a random diameter and taking the plane orthogonal to it through O. In

R2, a random ‘transect’ of the disk is found by sampling a point Q uniformly distributed

on a random diameter and taking the line through Q orthogonal to OQ. In R3, a random

‘line probe’ of the solid sphere is defined similarly, except that Q is uniformly distributed

on a random equatorial plane. A random ‘section’ of the solid sphere is defined as the

plane orthogonal to OQ when Q is uniformly distributed on a random diameter.

For a general body D, random transects, line probes and sections are defined by

enclosing D within a ball (Figure 7a), sampling a random transect (etc.) of the ball and,

in the event E that it cuts D, taking it as D’s random transect (etc). Pairs (P,Q) are

sampled until E occurs.

Also defined for general D is the projection onto a random diameter (Figure 7b) or,

for D in R3, a random equatorial plane. It is here that the Cauchy-Kubota formulae

apply. For connected D in R2, the projection onto a random diameter has mean content

E(C) = Lh/π

= L/π (D convex)

where L and Lh are the perimeters of D and its convex hull respectively. Projections of

connected D in R3 onto a random diameter yield

E(C) = Mh/2π

= M/2π (D convex) (24)
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whilst projections onto a random equatorial plane yield3

E(A) = S/4 (D convex)

E(L) = M/2. (D convex)

For a convex D, (24) shows that E(C), often called the ‘mean caliper diameter of D’, is

proportional to M .

We now deal with random transects, line probes and sections of D, in particular

the nature of their intersection with D. If r is the radius of the enclosing ball and D

is a connected body in the appropriate dimension, then the probability of E is Lh/2πr

(transects), S/4πr2 (probes of convex D) and Mh/4πr (sections). For a random transect

of a connected D in R2, E(η|E) = L/Lh and E(C|E) = πA/Lh. For a random probe

of a convex D in R3, E(C|E) = 4V/S, whilst for a random section of a connected D,

E(χ|E) = M/Mh, E(A|E) = 2πV/Mh and E(L|E) = π2S/(2Mh). We refer to as these

as ‘Crofton formulae’, though Crofton’s attention was restricted to transects of convex

domains in R2.

A general class of geometric results concerning δ-extensions are referred to as Steiner

formulae. For convex D [and certain types of more general shapes, Hadwiger (1957)],

these formulae relate the properties Cδ, Aδ, Lδ, Vδ, Sδ,Mδ for the δ-extension to those

of D itself. Briefly (where dimension is obvious) Cδ = C + 2δ, Aδ = A + Lδ + πδ2,

Lδ = L+ 2πδ, Vδ = V + Sδ +Mδ2 + 4πδ3/3, Sδ = S + 2Mδ + 4πδ2 and Mδ = M + 4πδ.

Lastly, we consider the links, established by Hadwiger (1957), between ϕ, χ and η.

As the line AB in Figure 8a moves up the page remaining parallel with the position

shown, it ‘sweeps’ across the 2-d domain D. As it does so, the η value for the 1-d

transects changes when the sweep passes over various boundary points (marked •). At

those marked E the sweep is ‘entering’ D. Dots marked L signify the sweep ‘leaving’ D.

χ is simply the sum of η-changes at the E points, namely (1− 0) + (1− 2) in Figure 8a.

Changes in the orientation of the sweep leave χ unchanged. The link between ϕ and χ is

based on a sweeping plane XY (seen edge view in Figure 8b). ϕ is the sum of χ-changes

at the E points, namely (1− 0) + (1− 2) + (1− 0).

So we have seen that there is a rich assortment of geometric, topological and statistical

relationships between the nine variables η, C, χ, L,A, ϕ,M, S and V . We are now ready

to consider their role in three-dimensional ROPs.

3In these formulae and those in the next paragraph, I made some mistakes concerning three-

dimensional convex-hulls; these have now been corrected.
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Three-dimensional random object processes

In R3, the centroids of objects have density θ, whilst objects have mean volume µV , mean

surface area µS, mean ‘integral of mean curvature’ µM and mean Euler characteristic µϕ.

As before, assumptions of ‘statistical homogeneity in mean’ apply.

Window formulae in R3

Let W be a window with features V, S,M and ϕ, initially considered as non-fibrous and

non-lamina. With this ‘full-bodied’ assumption applied to the objects too, we define

V (W ) =
∑

(volume of s ∩W )

Si(W ) =
∑

(area of ∂sinside W )

S∂(W ) =
∑

(area of ∂W covered by s)

S(W ) =
∑

(surface area of s ∩W ) = Si(W ) + S∂(W )

Mi(W ) =
∑

(integral of m.c. for ∂s inside W )

M∂(W ) =
∑

(integral of m.c. for ∂W covered by s)

M(W ) =
∑

(integral of m.c. for s ∩W )

ϕ(W ) =
∑

(Euler characteristic of s ∩W ),

where the summation is over all objects which intersect W . We note that M(W ) 6=
Mi(W ) +M∂(W ) since there is a contribution from the edge ∂s ∩ ∂W . We have

EV (W ) = θV µV (25)
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ESi(W ) = θV µS

ES∂(W ) = θSµV

ES(W ) = θ(V µS + SµV ) (26)

EMi(W ) = θV µM

EM∂(W ) = θMµV

EM(W ) = θ(V µM +MµV + π2 SµS/16) (27)

Eϕ(W ) = θ[V µϕ + ϕµV + (SµM +MµS)/4π]. (28)

Note the matching dimensionality of each term in equations like (26), (27) or (28). For

convex objects and convex W , ϕ(W ) = N(W ), the number of objects hitting W , and

then EN(W ) = θ[V + µV + (SµM +MµS)/4π].

In a fashion analogous to (9)–(11) we define

ϕ(∂W ) =
∑

(Euler characteristic of s ∩ ∂W )

ϕ∂(W ) =
∑

(Euler characteristic of ∂s ∩W )

ϕ∂(∂W ) =
∑

(Euler characteristic of ∂s ∩ ∂W )

and note that ϕ∂(∂W ) = 0. Also, from (28) and arguments similar to those used in

establishing (12), Eϕ(∂W ) = θ(4πϕµV +SµM)/2π and Eϕ∂(W ) = θ(4πV µϕ+MµS)/2π.

If the boundaries ∂s and ∂W intersect, ∂s ∩ ∂W takes the form of one (or more) closed

space curves. One can show that the sum of lengths of the space curves for all bodies

intersecting W has expectation πθSµS/4π.

Adaptations for Curved Plates and Fibres

A window that is lamina (eg a curved ‘plate’ or ‘2-d manifold’) in R3 can be viewed as

the limit, as ∆ → 0, of its ∆-thickened version. Thus it has contributions to S and M

from both its sides. The contributions are additive for S, so S is twice the ‘nominal’

area, f say, of the plate. The contributions cancel in the calculation of M , but there is

a contribution of π`/2 from the plate’s rim, assumed to be one (or more) space curve(s)

with total length `. Of course, V is zero and ϕ is determined in the usual way by the

number of parts and the number of holes, all holes being of the ‘tunnel’ type. (Hole

boundaries contribute to the rim). Similar considerations apply for objects which are

plates: µV = 0, µS = 2µf , µM = πµ`/2 with some µϕ.

Subject to these considerations formulae (25) - (28) hold. For example, if W is

a plate and the objects full-bodied, EV (W ) = 0, ES(W ) = 2θfµV , EM(W ) =

πθ(4`µV + πfµS)/8 and

Eϕ(W ) = θ(8πϕµV + 4fµM + π`µS)/8π. (29)
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Due care is needed in interpretations: for example, ES(W ) involves double counting of

the ‘one-sided areas’ of the individual s ∩ W plates. Other window formulae are not

applicable if they involve the concept of ‘boundary of a plate’ (as distinct from its rim).

Similar considerations apply if W or the objects are fibres in R3. If W is a fibre of

length `, it has V = S = 0, M = π`, with ϕ determined by its number of parts. Likewise

if the objects are fibres, µV = µS = 0, µM = πµ` with some µϕ. As an example of the

window formula, we see that W fibrous of length ` implies Eϕ(W ) = θ(ϕµV + `µS/4).

Sections and Probes of 3-d Processes

A section by a reference plane yields a ROP in R2. A probe by a line yields a ROP in

R. To investigate sectioning consider W as a connected flat plate of ‘nominal’ area f ,

rim length ` and ϕ = 1. Matching (29) with (6) we have τµχ = θµM/2π, τµL = θπµS/4

and τµA = θµV . If the 3-d objects are convex, we recover the ‘stereological’ formulae

τ = θµM/2π, µL = π2µS/2µM and µA = 2πµV /µM . Alternatively consider W as a line-

segment of length `. Matching (29) and (13) yields λµη = θµS/4 and λµC = θµV , which

under convexity assumptions on the 3-d objects, yield λ = θ µS/4 and µC = 4µV /µS.

Extended Window Formulae: 3 Dimensions

We give now a range of extended window formulae for convex objects and convex W .

The notation is an obvious extension of the 2-d case. In general EI(W ) = θV and

EI(W,υ, s,m) = θV GV SM(υ, s,m), whilst under the convexity conditions (assumed for

the rest of this section)

HV SM(υ, s,m) =
V GV SM(υ, s,m) +

∫ υ
0

∫ s
0

∫m
0 [x+ (zS + yM)/4π] dGV SM(x, y, z)

V + µV + (SµM +MµS)/4π
,

hV SM(υ, s,m) =
[V + υ + (mS + sM)/4π]gV SM(υ, s,m)

V + µV + (SµM +MµS)/4π
,

hV (υ) =
[4π(V + υ) + SµM |υ +Mµs|v]gV (υ)

4π(V + µV ) + SµM +MµS

hS(s) =
[4π(V + µV |s) + SµM |s + sM ]gS(s)

4π(V + µV ) + SµM +MµS

hM(m) =
[4π(V + µV |m) +mS +MµS|m] gM(m)

4π(V + µV ) + SµM +MµS
.

Formulae for h-type densities depend on the existence of g-type densities. The mean

values for volume, surface area and integral of mean curvature for the objects which ‘hit’
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W are respectively

µV +
(4πσV + SρVMσM +MρV SσS) σV

4π(V + µV ) + SµM +MµS
,

µS +
(4πρV SσV + SρSMσM +MσS) σS

4π(V + µV ) + SµM +MµS
, and

µM +
(4πρVMσV + SσM +MρSMσS) σM

4π(V + µV ) + SµM +MµS
.

Let W be a cylinder of radius r and height ∆. As r →∞ and ∆→ 0 we recover formulae

for the objects which ‘hit’ a planar section.

hV SM(υ, s,m)
r→∞−→ (2π∆ +m) gV SM(υ, s,m)

2∆ + µM
∆→0−→ mgV SM(υ, s,m)/µM . (30)

Thus, objects hit by a section are biassed to be those with large integrals of mean

curvature. It is clear from (24) that this should be so, for the chance that a body is

cut by a plane section is proportional to its projected length on a line orthogonal to the

section. From (30), we see that the hitting objects have mean i.m.c. of µM + σ2
M/µM ,

mean surface area µS + ρSMσSσM/µM and mean volume µV + ρVMσV σM/µM .

By taking W as a cylinder of radius ∆ and height h and letting h → ∞ and ∆ →
0, we recover results for probe sampling. Now hV SM(υ, s,m) → s gV SM(υ, s,m)/µS,

demonstrating that such objects are ‘surface area biassed’. Likewise if W is a point, the

results are seen to be ‘volume biassed’.

To conclude this section we note the analogous ‘Y -formulae’.

EYV (W ) =
θ

4π
[4π(V µV + σ2

V + µ2
V ) + S(ρVMσV σM + µV µM) +M(ρV SσV σS + µV µS)]

EYS(W ) =
θ

4π
[4π(V µS + ρV SσV σS + µV µS) + S(ρSMσSσM + µSµM) +M(σ2

S + µ2
S)]

EYM(W ) =
θ

4π
[4π(V µM + ρVMσV σM + µV µM) + S(σ2

M + µ2
M) +M(ρSMσSσM + µSµM)]

The Extended Formulae Qualified

The distribution functions H, examples of which commence with (17), are not exact

results in the context of the general ROP. If the window W is large, however, the H-

formulae can be used with confidence. The functions H are defined by ratios of ex-

pectations, when the true distributions are expectations of ratios, given the event E
that at least one object intersects W . For example in a 2-d ROP, the probability that

an object randomly sampled from those that hit W has area ≤ a and perimeter ≤ `

given E is E[N(W,a, `)/N(W ) | E ] which is approximately equal to HAL(a, `) when W
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is large enough. An ergodic assumption is needed to formalise the ‘large W ’ approxi-

mation (Miles, 1961; Cowan, 1978). When the process is Boolean it can be shown (see

Cowan, 1979, Lemma 2) that this probability equals HAL(a, `) exactly for all W . The

H-formulae like (17) are therefore presented in the knowledge that they are exact for

Boolean schemes and asymptotically appropriate in general ROPs. They are like the de-

mographic formulae from the theory of age-dependent branching processes, where ratios

of expectations are also used successfully as approximations.

Technical Discussion

We conclude with a brief outline of methods for proof of these formulae and further

discussion of the literature. Each object is defined by the position x ∈ Rn of its centre,

its orientation t defined by a point on the surface of the unit ball Bn in Rn and its

‘shape and size’ s ∈ S. Thus the random object process is defined as a random point

process on the space Z = Rn × ∂Bn × S. This ‘associated’ point process (APP) has

the usual regularity properties of ‘almost-sure orderliness’ and ‘finite expected count in

bounded subsets’. Let B(Z) be the class of Borel sets of Z (any sensible topology on S,

and hence on Z, will suffice without restricting our theory in any practical way). For

each U ∈ B(Z), define K(U) as the number of points of the APP within U . Define T as

the group of translations in Rn and let R be the group of rotations in Rn expressed as

motions on the surface ∂Bn. Any T ∈ T and R ∈ R can be defined on Z; if z ∈ Z is the

point (x, t, s) then Tz = (Tx, t, s) and Rz = (x,Rt, s). Thus TU and RU are defined

for U ∈ B(Z). A random object process is deemed statistically homogeneous in mean

(SHIM) if EK(U) = EK(TU) = EK(RU) for all motions T ∈ T and R ∈ R.

It is clear that the representation

EK(U) =
∫
U

EK(dz) (31)

holds in general. Noteworthy is the fact that under the SHIM assumption, EK(.) is a

product measure on (Z,B(Z)). Normally we associate product measures with assump-

tions of independence but no such assumption is needed here. Invariance of EK(·) for

motions in the Rn × ∂Bn subspace of Z with s held fixed is sufficient.

The proof is based on a very simple lemma proved earlier (Cowan, 1979), but because

the ‘factorisation’ of the measure EK(·) establishes the framework for all the formulae

of this paper, we restate the lemma.

Consider a space (such as our Z) which can be represented as a product C ×D with

C being a locally compact group and D being a topological space. Let F be the class

of functions mapping C → C defined for each a ∈ C by fa(c) = a−1c; c ∈ C. These

functions can also be defined as maps Z → Z via fa(c, d) = (a−1c, d); a, c ∈ C, d ∈ D.
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Lemma: Suppose µ is a measure on (Z,B(Z)) invariant under the action

of functions in F ; that is for U ∈ B(Z), a ∈ C, µ(U) = µ(faU). Then, µ is

a product measure, being defined on product sets U1 × U2 by µ(U1 × U2) =

ρ(U1)ν(U2);U1 ∈ B(C), U2 ∈ B(D), where B(·) denotes Borel sets of said

space. Here ν is some measure on (D,B(D)) and ρ is a Haar measure on

(C,B(C)).

Thus, when the Lemma is applied in the current context, C = Rn × ∂Bn with ρ

being a multiple of Lebesgue measure, whilst D = S with ν being the measure which

determines the sampling of shapes and sizes. ν induces the various distribution functions

GA, GAL, ... and must be sufficiently regular to give finite µA, µL, σA, ... . In one, two

and three dimensions, ρ is respectively λ/2, τ/2π and θ/4π times Lebesgue measure.

Concentrating on R2, (31) becomes

EK(U) =
∫ ∫ ∫

(x,t,s)∈U
(τ/2π) dtdx ν(ds), (32)

an easy form to use in applications. For example, to prove (15), let U be the set of points

z = (x, t, s) ∈ Z such that an object s, placed with centre at x and orientation t, has

centre inside a window W ⊂ R2, area ≤ a and perimeter ≤ `. Thus K(U) equals the

count of such z in the APP and hence equals I(W,a, `). So

EI(W,a, `) =
∫
X

∫
W

∫ 2π

0
(τ/2π) dtdx ν(ds) (33)

where X ∈ B(S) is the subset of shapes and sizes which have areas ≤ a and perimeters

≤ `. Since ν(X) = GAL(a, `), (15) follows from (33).

More substantial calculations rely upon the power of integral geometry for the eval-

uation of the two inner-most integrals in representations like (32),in particular, upon

the fundamental kinematic formulae of Blaschke (1936), Santaló (1953, 1976) and Chern

(1952). We give three examples in detail.

Let U be the set of z = (x, t, s) such that the object s placed with centre at x

and orientation t intersects a window W . Thus K(U) = N(W ). Also entities like

EA(W ),EL(W ) and Eχ(W ) in (2), (5) and (6) have integral representations of the

form4

∫ ∫ ∫
(x,t,s)∈U

(τ/2π) f(x, t, s) dtdx ν(ds)

where f represents (respectively) area, perimeter and Euler characteristic of s ∩W . The

kinematic formulae tell us that for fixed s

4Note that the original paper had a typing error in the formula, using ρ instead of ν.
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∫ ∫
f(x, t, s) dtdx = 2πAAs, (f = area)

= 2π(ALs + LAs), (f = perimeter)

= 2π(Aχs + χAs) + LLs, (f = Euler characteristic)

where the integration is over all positions x and orientations t such that s ∩W 6= φ and

where s has features As, Ls and χs. Thus (2), (5) and (6) follow.

All of the window formulae are derived in this manner, as are ‘extended’ window

formulae like (16) and those ‘Y-type’ formulae. (Indeed versions of the ‘Y-type’ formulae

involving sums of higher moments of the ‘hitting objects’ are available by the same

methods).

There remains the issue of generality of shapes for the valid application of the kine-

matic formulae, and indeed other geometric aspects of this paper. There appear to be

two distinct classes of sets for which the kinematic formulae hold. Both are extremely

rich for practical purposes. One is the ‘convex ring’ (Hadwiger, 1957), the other the sets

of ‘positive reach’ (Federer, 1959). Further extensions to the class of ‘Hausdorff recti-

fiable sets’ have been established by Zähle (1982). See Weil (1983) for a good account

from the specialist geometer’s view. Of course, our exposition also imposes conditions

(like piecewise twice differentiable boundaries) when discussing perimeters, surface areas

and curvatures.

Much of the probabilistic foundation for the random process of objects comes from

the notion of a random set in Rn established by Matheron (1975) and Kendall (1974),

though their approach and emphasis differs from ours. They address basic questions of

measurability and point-set topology and establish the ‘minimal’ class of events on which

a probability measure need be defined for its extension to events of wider interest. This

is an outgrowth from the theory of point processes [Daley & Vere-Jones (1972), Matthes,

Kerstan and Mecke (1978), Ripley (1981), Diggle (1983)] and a prelude to the practice

of image processing (Serra, 1982).

It is noteworthy that we do not study here any features involving the interaction of

two (or more) random objects within W . Naturally, assumptions concerning the second

(or higher) order structure of the ROP are needed in this case. Readers can consult

Streit (1970), Santaló (1976) and Kellerer (1983, 1986), where problems of this type are

discussed in the context of Boolean schemes.

Much of the work on general processes of geometric objects has come from the East

German school, notably the works of Mecke and Stoyan (Mecke, 1981a, 1981b; Stoyan,

1979b, 1981, 1982; Pohlmann, Mecke & Stoyan, 1981; Stoyan & Mecke, 1983; Zähle,

1982 and the book SK&M) and is based on the machinery of ‘marked point processes’,

‘Campbell’s theorem’ and ‘Palm measures’ (Matthes, Kerstan & Mecke, 1978; Mecke,

1967), with less emphasis on the highly intuitive results from integral geometry. Some of

the formulae in this paper can be found in their work, and most could be derived using
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their approach. They also consider extensions to higher dimensions, the consequences

of dropping the isotropic component of the SHIM assumption and statistical estimation

issues.

This paper is based however on my own approach incorporating the ‘lemma on prod-

uct measures’ (Cowan, 1979) with the kinematic formulae and point process theory. (The

general two-dimensional theory of this paper was given in three lectures to an Australian

statistical conference in 1979.) It is a natural approach, one used also by Fava & Santaló

(1978, 1979) in their study of plates and line segments in R3 and general manifolds in

Rn (though their work uses unnecessary assumptions concerning independence of shapes,

sizes, positions, etc.). The parallels between the Mecke/Stoyan methods and mine are

not obvious, though with any two approaches that start with the same premises and

reach results of similar content, analogies will be found.

This paper touches on issues ‘stereological’, the inference of structure from lower

dimensional sections or probes. This is now a large field of study, reviewed by Jensen,

Baddeley, Gundersen and Sundberg (1985). Important recent developments, following

the seminal paper of Davy and Miles (1977), have been in its sampling theory without

statistical models for the arrangement of objects throughout space. Rather the emphasis

is on the choice of sampling technique to best reveal the structure of a given opaque

specimen. Impetus for this work comes largely from the extensive work of R. E. Miles

(e.g. 1977, 1985) but other important developments can be found in Davy (1978), Cruz-

Orive (1980), Gundersen (1986), Baddeley, Gundersen & Cruz-Orive (1986) and Voss

(1982).

I thank Adrian Baddeley and the referees for their helpful comments on earlier drafts.

One referee has also drawn attention to a forthcoming book on ‘coverage’ processes by

P. Hall (1988) and to a recent paper (Weil, 1987). These useful works also cater for a

specialist audience.
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