Microstructured and tapered fibre devices

Martijn de Sterke, Benjamin Eggleton, Boris Kuhlmey, Eric Magi, Ross McPhedran

Photonic crystal fiber

pcfSem

Photonic crystal fiber or microstructured optical fibres (MOFs) are optical fibres with holes running along their length, have attracted considerable interest in the last ten years for their extraordinary guidance properties. Depending on their geometry, MOFs can guide light through modified total internal reflection, photonic bandgap effects or, when the holes are infiltrated by high index fluids, through antiresonant backscattering from the holes (so called ARROW fibres).

Interesting properties

The different guidance mechanisms give MOF structures the ability to guide light in hollow cores, remain single-moded over an infinite wavelength range, confine light in very small cores with associated non-linear coefficients orders of magnitude higher than in standard fibres or have exceptional group velocity dispersion. Among these properties the latter two are in fact mainly due to the strong refractive index contrast between the silica core and the holes, and narrow silica rods, called microfibres, can exhibit very similar properties. Microfibres typically have diameters of the order of a micrometre, and could be used for microphotonic integration.

Nonlinear properties

pcfSim

Because they can have large non-linear coefficients and almost arbitrary group velocity dispersion, ARROW MOFs are an excellent platform for the demonstration of non-linear processes and soliton physics. Further, the fluid's refractive index in the holes responds differently from the refractive index of the silica background, so that dispersion and confinement properties can be tuned to a large extend by controlling the temperature.

Using temperature gradients, dispersion properties can be varied along the fibre, giving a useful additional degree of freedom for non-linear processes. We are also extending the ARROW picture of the guidance mechanism, with which important physical insight on guidance properties of the overall complex structure can be extracted from the knowledge of resonances of single inclusions. We have started using the ARROW model to design novel MOF devices, but the extended ARROW picture is not restricted to MOFs and is also useful for the understanding of planar photonic crystal structures.

Fibre Tapers

taperCoil

Through tapering, even conventional fibres can get access to strongly modified waveguiding properties. The tapering of microstructured fibres therefore provides a particularly exciting platform for photonic micro-devices, sensing and enhanced nonlinear optics. The fibre taper rig is a computer controlled machine which heats and stretches optical fibre to produce a fibre taper. The taper profiles are tailored by the appropriate choice of flame brushing profile, elongation and rate of elongation. The taper rig is used to modify the physical properties of both conventional as well as microstructured fibers. These include shifting the fundamental band gap of photonic crystal fibre, micro-pipettes for micro-fluidic experiments, nano-wires for photonic circuits and super-continuum generation. We have used our taper rig facility to demonstrate fundamental effects and important new applications in these microstructured fibre tapers.

taper_loop

Recently we have used the taper rig to create localised sensing regions in tapered microstructured fiber photonic wires, in which the guided mode is protected from the external environment, even at 10µm diameter. We have also demonstrated microcoils using such fibre tapers, which can be bent into a loop as tight as 100µm, and yet exhibit low bend-loss (below 0.1 dB). Since the guided mode is embedded within the taper, no resonant effects are observed in the microcoils, contrary to microcoils of conventional step-index fibers with similar dimensions.


  1. Joel Carpenter, Benjamin J. Eggleton, and Jochen Schröder,
    "Polarization-resolved cross-correlated (C2) imaging of a photonic bandgap fiber,"
    Opt. Express 24, 27785-27790 (2016)
  2. Neetesh Singh, Darren D. Hudson, Rongping Wang, Eric C. Mägi, Duk-Yong Choi, Christian Grillet, Barry Luther-Davies, Stephen Madden, and Benjamin J. Eggleton,
    "Positive and negative phototunability of chalcogenide (AMTIR-1) microdisk resonator,"
    Opt. Express 23, 8681-8686 (2015)
  3. D.K.C. Wu, K.J. Lee, V. Pureur, and B.T. Kuhlmey,
    "Performance of Refractive Index Sensors Based On Directional Couplers in Photonic Crystal Fibers,"
    Lightwave Technology, Journal of 31, p. 3500-3510 (2013). doi:10.1109/JLT.2013.2283496

  4. S. Atakaramians, A. Argyros, S. C. Fleming, and B. T. Kuhlmey,
    "Hollow-core uniaxial metamaterial clad fibers with dispersive metamaterials,"
    J. Opt. Soc. Am. B 30, 851-867 (2013)
  5. A. C. Judge, M. J. Steel, J. E. Sipe, and C. M. de Sterke,
    "Canonical quantization of macroscopic electrodynamics in a linear, inhomogeneous magnetoelectric medium,"
    Physical Review A 87, 033824 (2013)
  6. V. Pureur and B.T. Kuhlmey,
    “Higher-order core-guided modes in two-dimensional photonic bandgap fibers,”
    J. Opt. Soc. Am. B 29, p. 1750-1765 (2012)
  7. S. Atakaramians, A. Argyros, S.C. Fleming, and B.T. Kuhlmey,
    "Hollow-core waveguides with uniaxial metamaterial cladding: modal equations and guidance conditions,"
    J. Opt. Soc. Am. B-Opt. Phys. 29, p. 2462-2477 (2012)
  8. Thomas F. S. Büttner, Darren D. Hudson, Eric C. Mägi, Alvaro Casas Bedoya, Thierry Taunay, and Benjamin J. Eggleton, "Multicore, tapered optical fiber for nonlinear pulse reshaping and saturable absorption," Opt. Lett. 37, 2469-2471 (2012) 
  9. Darren D. Hudson, Stephen A. Dekker, Eric C. Mägi, Alexander C. Judge, Stuart D. Jackson, Enbang Li, J. S. Sanghera, L. B. Shaw, I. D. Aggarwal, and Benjamin J. Eggleton,
    "Octave spanning supercontinuum in an As2S3taper using ultralow pump pulse energy,"
    Opt. Lett. 36, 1122-1124 (2011)
  10. M. Vieweg, T. Gissibl, S. Pricking, B. T. Kuhlmey, D. C. Wu, B. J. Eggleton, and H. Giessen,
    "Ultrafast nonlinear optofluidics in selectively liquid-filled photonic crystal fibers
    Optics Express Vol. 18, pp. 25232-25240 (2010).
  11. Qing Shi and Boris T. Kuhlmey
    "Optimization of photonic bandgap fiber long period grating refractive-index sensors"
    Opt. Commun., doi:10.1016/j.optcom.2009.09.030, (2009)
  12. A. C. Judge, O. Bang, B. J. Eggleton, B. T. Kuhlmey, E. C. Mägi, R. Pant, and C. Martijn de Sterke,
    "Optimization of the soliton self-frequency shift in a tapered photonic crystal fiber,"
    J. Opt. Soc. Am. B 26, 2064-2071 (2009)
  13. Thomas Grujic, Boris T. Kuhlmey, C. Martijn de Sterke, and Chris G. Poulton,
    "Modelling of photonic crystal fiber based on layered inclusions,"
    J. Opt. Soc. Am. B 26, 1852-1861 (2009)
  14. Boris T. Kuhlmey, Stéphane Coen, and Sahand Mahmoodian,
    "Coated photonic bandgap fibres for low-index sensing applications: cutoff analysis"
    Optics Express, Vol. 17, Issue 18, pp. 16306-16321 (2009)
  15. Kuhlmey, B.T.; Eggleton, B.J.; Wu, D.K.C.
    "Fluid-Filled Solid-Core Photonic Bandgap Fibers"
    Lightwave Technology, Journal of , vol.27, no.11, pp.1617-1630, June1, 2009
  16. J. Lázaro, B. Kuhlmey, J. Knight, J. Lopez-Higuera, and B. Eggleton,
    “Ultrasensitive UV-tunable grating in all-solid photonic bandgap fibers,”
    Optics Communications, vol. 282, Jun. 2009, pp. 2358-2361.
  17. Darran K. C. Wu, Boris T. Kuhlmey, and Benjamin J. Eggleton,
    "Ultrasensitive photonic crystal fiber refractive index sensor,"
    Opt. Lett. 34, 322-324 (2009)
  18. R. Goto, S. D. Jackson, S. Fleming, B. T. Kuhlmey, B. J. Eggleton, and K. Himeno,
    "Birefringent all-solid hybrid microstructured fiber,"
    Opt. Express 16, 18752-18763 (2008)
  19. J. Hou, D. Bird, A. George, S. Maier, B.T. Kuhlmey, and J.C. Knight,
    “Metallic mode confinement in microstructured fibres,”
    OPTICS EXPRESS, vol. 16, Apr. 2008, pp. 5983-5990.
  20. B. T. Kuhlmey, F. Luan, L. Fu, D. Yeom, B. J. Eggleton, A. Wang, and J. C. Knight,
    "Experimental reconstruction of bands in solid core photonic bandgap fibres using acoustic gratings,"
    Opt. Express 16, 13845-13856 (2008)
  21. M. D. Pelusi, F. Luan, E. Magi, M. R. Lamont, D. J. Moss, B. J. Eggleton, J. S. Sanghera, L. B. Shaw, and I. D. Aggarwal,
    "High bit rate all-optical signal processing in a fiber photonic wire,"
    Opt. Express 16, 11506-11512 (2008)
  22. Christian Grillet, Shu Ning Bian, Eric C. Magi, and Benjamin J. Eggleton
    "Fiber taper coupling to chalcogenide microsphere modes"
    Appl. Phys. Lett. 92, 171109 (2008)
  23. D. -I. Yeom, E. C. Mägi, M. R. E. Lamont, M. A. F. Roelens, L. Fu, and B. J. Eggleton
    "Low-threshold supercontinuum generation in highly nonlinear chalcogenide nanowires"
    Opt. Lett. 33, 660-662 (2008)
  24. X. Zhang, R. Wang, F. Cox, B.T. Kuhlmey and M. C. J. Large
    "Selective coating of holes in microstructured optical fiber and its application to in-fiber absorptive polarizer"
    Opt. Express 15, 16270-16278 (2007)
  25. Y.K. Lize, B. T. Kuhlmey and R. Kashyap
    "Broadband Mach-Zehnder interferometer design using microstructured optical fibers for multi-channel DPSK demodulation,"
    Opt. Fiber Technol. 13, 85-90 (2007)
  26. Fu, L.B.; Pelusi, M.D.; Magi, E.C.; Taeed, V.G.; Eggleton, B.J.
    "Broadband all-optical wavelength conversion of 40 Gbit/s signals in nonlinearity enhanced tapered chalcogenide fibre"
    Electronics Letters vol.44, no.1, pp.44-46, January 3 2008
  27. Kuhlmey BT, McPhedran RC
    Photonic crystal fibres with resonant coatings
    PHYSICA B-CONDENSED MATTER 394 (2): 155-158 MAY 15 2007
  28. D. -I. Yeom, J. A. Bolger, G. D. Marshall, D. R. Austin, B. T. Kuhlmey, M.
    J. Withford, C. Martijn de Sterke, and B. J. Eggleton, "Tunable spectral
    enhancement of fiber supercontinuum," Opt. Lett. 32, 1644-1646 (2007)
  29. D. -I. Yeom, P. Steinvurzel, B. J. Eggleton, S. D. Lim, and B. Y. Kim, "
    Tunable acoustic gratings in solid-core photonic bandgap fiber," Opt.
    Express 15, 3513-3518 (2007)
  30. E. C. Mägi, L. B. Fu, H. C. Nguyen, M. R. Lamont, D. I. Yeom, and B. J.
    Eggleton, "Enhanced Kerr nonlinearity in sub-wavelength diameter As2Se3
    chalcogenide fiber tapers," Opt. Express 15, 10324-10329 (2007)
  31. C. Smith, C. Grillet, S. Tomljenovic-Hanic, E.C. Magi, D. Moss, B.J. Eggleton, D. Freeman, S. Madden and B. Luther-Davies
    "Characterisation of chalcogenide 2D photonic crystal waveguides and nanocavities using silica fibre nanowires"
    Physica B: Condensed Matter, Volume 394, Issue 2
  32. M. Sumetsky, Y. Dulashko, P. Domachuk, and B. J. Eggleton
    Thinnest optical waveguide: experimental test
    Opt. Lett. 32, 754-756 (2007)
  33. C. Grillet, C. Monat, C. L. Smith, B. J. Eggleton, D. J. Moss, S. Frédérick, D. Dalacu, P. J. Poole, J. Lapointe, G. Aers, and R. L. Williams
    Nanowire coupling to photonic crystal nanocavities for single photon sources
    Opt. Express 15, 1267-1276 (2007)
  34. B. T. Kuhlmey, K. Pathmanandavel and R. C. McPhedran,
    Multipole analysis of Photonic Crystal Fibers with coated inclusions,
    Optics Express 14 (22) pp.10851-10864 (2006)
  35. S. J. Myers, D. P. Fussell, J. M. Dawes, E. Mägi, R. C. McPhedran, B. J. Eggleton, and C. M. de Sterke
    Manipulation of spontaneous emission in a tapered photonic crystal fibre
    Opt. Express 14, 12439-12444 (2006)
  36. P. Steinvurzel, C. Martijn de Sterke, M. J. Steel, B. T. Kuhlmey, and B. J. Eggleton
    Single scatterer Fano resonances in solid core photonic band gap fibers
    Opt. Express 14, 8797-8811 (2006)
  37. B. T. Kuhlmey, H. C. Nguyen, M. J. Steel, and B. J. Eggleton
    Confinement loss in adiabatic photonic crystal fiber tapers
    J. Opt. Soc. Am. B 23, 1965-1974 (2006)
  38. P. Steinvurzel, C.M. de Sterke, B.J. Eggleton, B.T. Kuhlmey and M.J. Steel
    Mode field distributions in solid core photonic bandgap fibers
    Optics Communications, Volume 263, Issue 2, , 15 July 2006, Pages 207-213
  39. Iredale, T.B.; Steinvurzel, P.; Eggleton, B.J.
    Electric-arc-induced long-period gratings in fluid-filled photonic bandgap fibre
    Electronics Letters , vol.42, no.13pp. 739- 740, June 22, 2006
  40. P. Steinvurzel, E. D. Moore, E. C. Mägi, and B. J. Eggleton
    Tuning properties of long period gratings in photonic bandgap fibers
    Opt. Lett. 31, 2103-2105 (2006)
  41. P. Steinvurzel, E. D. Moore, E. C. Mägi, B. T. Kuhlmey, and B. J. Eggleton
    Long period grating resonances in photonic bandgap fiber
    Opt. Express 14, 3007-3014 (2006)
  42. C. Grillet, C. Smith, D. Freeman, S. Madden, B. Luther-Davies, E. Magi, D. Moss, and B. Eggleton
    Efficient coupling to chalcogenide glass photonic crystal waveguides via silica optical fiber nanowires
    Opt. Express 14, 1070-1078 (2006)
  43. White TP, de Sterke CM, McPhedran RC and Botten LC
    Highly-efficient Wide-angle Transmission into Uniform Rod-type Photonic Crstals
    Applied Physics Letters, 87 111107-1-3 (2005)
  44. Moss, D.J.; Miao, Y.; Ta'eed, V.; Magi, E.C.; Eggleton, B.J.
    Coupling to high-index waveguides via tapered microstructured optical fibre
    Electronics Letters, Vol.41, Issue 17, Pg 23-24, 18 August 2005
  45. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, B. J. Eggleton
    Tapered photonic crystal fibres: properties, characterisation and applications
    Applied Physics B: Lasers and Optics, Volume 81, Issue 2 - 3, Jul 2005, Pages 377 - 387
  46. Moss, D.J.; Miao, Y.; Ta'eed, V.; Magi, E.C.; Eggleton, B.J.
    Coupling to high-index waveguides via tapered microstructured optical fibre
    Electronics Letters, Vol.41, Issue 17, Pg 23-24, 18 August 2005
  47. H. C. Nguyen, B. T. Kuhlmey, E. C. Mägi, M. J. Steel, P. Domachuk, C. L. Smith, B. J. Eggleton
    Tapered photonic crystal fibres: properties, characterisation and applications
    Applied Physics B: Lasers and Optics, Volume 81, Issue 2 - 3, Jul 2005, Pages 377 - 387
  48. Domachuk P, Chapman A, Magi E, Steel MJ, Nguyen HC, Eggleton BJ
    Transverse characterization of high air-fill fraction tapered photonic crystal fiber
    APPLIED OPTICS 44 (19): 3885-3892 JUL 1 2005
  49. Fu LB, Marshall GD, Bolger JA, Steinvurzel P, Magi EC, Withford MJ, Eggleton BJ
    Femtosecond laser writing Bragg gratings in pure silica photonic crystal fibres
    ELECTRONICS LETTERS 41 (11): 638-640 MAY 26 2005
  50. Steinvurzel P, Eggleton BJ, de Sterke CM, Steel MJ
    Continuously tunable bandpass filtering using high-index inclusion microstructured optical fibre
    Electronics Letters 41 (8), 463-464 (2005)
  51. Steel MJ, Eggleton BJ, Domachuk P, Nguyen H
    Software speeds measurement and modeling of air-silica photonic crystals
    Photonics Spectra, 39 (3), 88+ MAR 2005
  52. S. Wilcox, L.C. Botten, R.C. McPhedran, C.G. Poulton, and C. Martijn de Sterke
    Exact modelling of defect modes in photonic crystals
    Phys. Rev. E 71 056606:1-11 (2005)
  53. Libin Fu, Ian C.M. Littler, Joe T. Mok & Benjamin Eggleton
    Matched photonic bandgap fibre and fibre Bragg grating dispersion for all in-fibre stretch pulse amplification
    Electronics Letters 41, 306-307 (2005)
  54. Fuerbach, P. Steinvurzel, J.A. Bolger, A. Nulsen, B.J. Eggleton
    Nonlinear propagation effects in anti-resonant high-index inclusion photonic crystal fibers
    Optics Letters 30, 830-832 (2005)
  55. Fuerbach, P. Steinvurzel, J.A. Bolger, B.J. Eggleton
    Nonlinear pulse propagation at zero dispersion wavelength in anti-resonant photonic crystal fibers
    Optics Express 13, 2977-2987 (2005)
  56. Campbell S, McPhedran RC, de Sterke CM, Botten LC
    Differential multipole method for microstructured optical fibers
    Journal of the Optical Society of America B - Optical Physics, 21 (11): 1919-1928 NOV 2004
  57. Nguyen HC, Kuhlmey BT, Steel MJ, Smith CL, Magi EC, McPhedran RC, Eggleton BJ
    Leakage of the fundamental mode in photonic crystal fiber tapers
    Optics Letters 30 (10): 1123-1125 May 15 2005
  58. Wilcox S, Botten LC, de Sterke CM, Kuhlmey BT, McPhedran RC, Fussell DP, Tomljenovic-Hanic S
    Long wavelength behavior of the fundamental mode in microstructured optical fibers
    Optics Express 13 (6): 1978-1984 Mar 21 2005
  59. Gilles Renversez, Frédéric Bordas, Boris T. Kuhlmey
    Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size
    Optics Letters, Vol. 30 (11) 1264 (2005)
  60. E. C. Mägi, H. C. Nguyen, and B. J. Eggleton
    Air-hole collapse and mode transitions in microstructured fiber photonic wires
    Optics Express 13, 453-459 (2005)
  61. P. Steinvurzel, B. T. Kuhlmey, T. P. White, M. J. Steel, C. M. de Sterke, and B. J. Eggleton
    Long wavelength anti-resonant guidance in high index inclusion microstructured fibers
    Optics Express 12, 5424-5433 (2004)
  62. E.C. Magi, P. Steinvurzel, and B.J. Eggleton
    Transverse characterization of tapered photonic crystal fibers
    Journal of Applied Physics, 96 (7) 3976-3982 (2004)
  63. Nguyen, H.C. Domachuk, P. Steel, M.J. Eggleton, B.J.
    Experimental and Finite-Difference Time-Domain Technique Characterisation of Transverse In-Line Photonic Crystal Fiber
    Photonics Technology Letters, IEEE, 16 (8), 1852-1854 (2004)
  64. Domachuk, P. Nguyen, H.C. Eggleton, B.J.
    Transverse Probed Microfluidic Switchable Photonic Crystal Fiber Devices
    Photonics Technology Letters, IEEE, 16 (8), 1900-1902 (2004)
  65. Yannick K. Lizé, Eric C. Mägi, Vahid G. Ta'eed, Jeremy A. Bolger, Paul Steinvurzel, and Benjamin J. Eggleton
    Microstructured optical fiber photonic wires with subwavelength core diameter
    Optics Express, 12 (14), 3209 - 3217 (2004)
  66. Steel MJ
    Reflection symmetry and mode transversality in microstructured fibers
    Optics Express 12 (8): 1497-1509 APR 19 2004
  67. H. C. Nguyen, P. Domachuk, B. J. Eggleton, M. J. Steel, M. Straub, M. Gu, and M. Sumetsky
    A new slant on photonic crystal fibers
    Optics Express 12, 1528-1539 (2004)
  68. Litchinitser NM, Dunn SC, Steinvurzel PE, B. J. Eggleton, M de Sterke, Ross McPhedran
    Application of an ARROW model for designing tunable photonic devices
    Optics Express 12 (8): 1540-1550 APR 19 2004.
  69. Kuhlmey BT, McPhedran RC, de Sterke CM
    Bloch method for the analysis of modes in microstructured optical fibers
    Optics Express 12 (8): 1769-1774 APR 19 2004.
  70. Kerbage C, Eggleton BJ
    Manipulating light by microfluidic motion in microstructured optical fibers
    Optical Fiber Technology 10 (2): 133-149 APR 2004.
  71. Domachuk P, Nguyen HC, Eggleton BJ, et al.
    Microfluidic tunable photonic band-gap device
    Applied Physics Letters 84 (11): 1838-1840 MAR 15 2004.
  72. Magi EC, Steinvurzel P, Eggleton BJ
    Tapered photonic crystal fibers
    Optics Express 12 (5): 776-784 MAR 8 2004
  73. Domachuk P, Eggleton BJ
    Photonics - Shrinking optical fibres
    Nature MATERIALS 3 (2): 85-86 FEB 2004
  74. Litchinitser NM, Dunn SC, Usner B, et al.
    Resonances in microstructured optical waveguides
    Optics Express 11 (10): 1243-1251 MAY 19 2003