2019

2018

priming effects of soybean and cottonwood: do they vary with

Information
href="http://dx.doi.org/10.1007/s10021-018-0237-1"[More
Information]

2017

gross nitrogen mineralization and recovery: a [superscript 15]N
study in two contrasting soils. GCB Bioenergy, 9(7), 1196-
1206.
[More Information]

in Biochar's Functionality and Adsorption Behavior for
Phosphate and Ammonium. Environmental Science and
Technology, 51(15), 8359-8367.
[More Information]

Wang, R., Lu, L., Creamer, C., Dijkstra, F., Liu, H., Feng, X.,
Yu, G., Han, X., Jiang, Y. (2017). Alteration of soil carbon and
nitrogen pools and enzyme activities as affected by increased
[More Information]

De Kauwe, M., Medlyn, B., Walker, A., Zaehle, S., Asao, S.,
Guenet, B., Harper, A., Hickler, T., Jain, A., Luo, Y., Dijkstra,
data from the long-term multifactor Prairie Heating and
CO<inf>2</inf> enrichment experiment. Global Change
Biog, 23(9), 3623-3645.
[More Information]

Bakhshandeh, S., Corneo, P., Mariotte, P., Kertesz, M.,
colonization and wheat yield under different fertilizer
treatments. Agriculture, Ecosystems and Environment, 247, 130-
136.
[More Information]

Dijkstra, F., Jenkins, M., De Remy De Courcelles, V., Keitel,
decomposition and nitrogen mineralization sustain rapid growth of
[More Information]

van Groenigen, K., Osenberg, C., Terrer, C., Carrillo, Y.,
Dijkstra, F., Heath, J., Nie, M., Pendall, E., Phillips, R.,
[More Information]

Mia, S., Dijkstra, F., Singh, B. (2017). Long-Term Aging of
Biochar: A Molecular Understanding With Agricultural and
Environmental Implications. In Donald L. Sparks (Eds.),
Advances in Agronomy, (pp. 1-51). Cambridge: Academic
Press.
[More Information]

priming effects of soybean and cottonwood: do they vary with
latitude? Plant and Soil, 420(1-2), 349-360.
[More Information]

Wang, R., Dorodnikov, M., Dijkstra, F., Yang, S., Xu, Z., Li,
H., Jiang, Y. (2017). Sensitivities to nitrogen and water addition
vary among microbial groups within soil aggregates in a
semiarid grassland. Biology and Fertility of Soils, 53(1), 129-
140.
[More Information]

carbon loss regulated by drought intensity and available
substrate: A meta-analysis. Soil Biology and Biochemistry, 112,
[More Information]

N:P flexibility and mycorrhizal symbiosis favour plant
resistance against drought. Journal of Ecology, 105(4), 958-
967.
[More Information]

Variation in specific root length among 23 wheat genotypes
affects leaf (delta)13C and yield. Agriculture, Ecosystems and
Environment, 246, 21-29.
[More Information]

response to warming and cooling in an alpine meadow on the
Tibetan Plateau. Climatic Change, 143(1-2), 129-142.
[More Information]

2016

Luo, W., Dijkstra, F., Bai, E., Feng, J., Lu, X., Wang, C., Wu,
H., Li, M., Han, X., Jiang, Y. (2016). A threshold reveals
decoupled relationship of sulfur with carbon and nitrogen in
soils across arid and semi-arid grasslands in northern China.
Biogeochemistry, 127(1), 141-153.
[More Information]

Hu, Y., Wang, Q., Wang, S., Zhang, Z., Dijkstra, F., Zhang, Z.,
responses of methane uptake to climate warming and cooling of a
Tibetan alpine meadow assessed through a reciprocal
translocation along an elevation gradient. Plant and Soil, 402(1), 263-275.
[More Information]

Biochar Field Study: Greenhouse gas emissions, productivity,
and nutrients in two soils. Agronomy Journal, 108(5), 1805-
1815.
[More Information]

Melnaz, K., Dijkstra, F. (2016). Denitrification and associated
N2O emissions are limited by phosphorus availability in a
grassland soil. Geoderma, 284, 34-41.
[More Information]

Canarini, A., Merchant, A., Dijkstra, F. (2016). Drought effects on Helianthus annuus and Glycine max metabolites: from
phloem to root exudates. Rhizosphere, 2, 85-97.
[More Information]

Dual-labeling with 15N and H218O to investigate water and N uptake of wheat under different water regimes. *Plant and Soil*, 404(1-2), 429-441. [More Information](a)

2015

2014

2010

2009

2008

2007

2006

Dijkstra, F., Hobbie, S., Reich, P. (2006). Soil processes affected by sixteen grassland species grown under different

2005

2004

2003

2002

2001