2018

2017

2016

2015

2013

2012

2011

Klein, C., Karanges, E., Spiro, A., Wong, A., Spencer, J.,

2009

2007

2008

2005

2006

Deprived Rats.

Neuroscience Letters

Suppressed By A Cannabinoid Receptor Antagonist In Non-
High Carbohydrate, High Fat, And Normal Chow Is Equally

5

Consume Alcohol In Rats.

Antagonists Synergistically Reduces The Motivation To
Dose Treatment With Opioid And Cannabinoid Receptor

href="http://dx.doi.org/10.1038/sj.npp.1300347">

More Information

Neuropsychopharmacology, 29(4), 694-704. <a
Symptoms Induced By Mdma ('Ecstasy') In Rats.

Neuropharmacology

Protect Against The 5-Ht Depleting Effects Of Mdma
Cannabinoids Prevent The Acute Hyperthermia And Partially

Cannabinoids Involves In The Feeding Stimulatory Effects Of Delta(9)-tetrahydrocannabinol.

Neuropharmacology, 49(8), 1101-1109.

More Information

Neuropsychopharmacology, 31(1), 1-12.

More Information

Neuropharmacology, 49(8), 1189-1200.

More Information

Morley, K., Arnold, J., McGregor, I. (2005). Serotonin (1A) receptor involvement in acute 3,4-
methylenedioxymethamphetamine (MDMA) facilitation of social interaction in the rat. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29(5), 648-657.

More Information

href="http://dx.doi.org/10.1016/j.neubiorev.2005.05.005">

More Information

href="http://dx.doi.org/10.1016/j.neubiorev.2005.04.018">

More Information

2004

href="http://dx.doi.org/10.1016/j.neuropharm.2004.01.002">

More Information

Thompson, M., Li, K., Clemens, K., Gurtman, C., Hunt, G., Cornish, J., McGregor, I. (2004). Chronic Fluoxetine Treatment Partly Attenuates The Long-Term Anxiety And Depressive Symptoms Induced By Mdma ('Ecstasy') In Rats. Neuropsychopharmacology, 29(4), 694-704.

More Information

href="http://dx.doi.org/10.1007/s00213-003-1694-5">

More Information

href="http://dx.doi.org/10.1016/j.neulet.2003.10.035">

More Information

href="http://dx.doi.org/10.1086/381503">

More Information

href="http://dx.doi.org/10.1210/en.2004-0059">

More Information

href="http://dx.doi.org/10.1016/j.neuropharm.2004.06.002">

More Information

href="http://dx.doi.org/10.1007/s00213-004-1786-x">

More Information

href="http://dx.doi.org/10.1523/JNEUROSCI.0187-04.2004">

More Information

href="http://dx.doi.org/10.1016/j.pbb.2004.08.004">

More Information

href="http://dx.doi.org/10.1016/j.jchromb.2004.01.034">

More Information

href="http://dx.doi.org/10.1016/j.addbeh.2004.06.011">

More Information

href="http://dx.doi.org/10.1016/j.brainres.2004.06.033">

More Information

2003

methylenedioxymethamphetamine self-administration and social effects in rats. European Journal of Pharmacology, 482(1-3), 339-341. <a

2002

2001

