Skip to main content
Unit of study_

AERO1560: Introduction to Aerospace Engineering

2025 unit information

This unit of study introduces students to the role of professional aerospace engineers, along with the development of fundamental engineering knowledge and skills for aerospace vehicle design, analysis performance and operation. Students will learn through experience, to develop professional skills in research, interpretation, communication, and presentation of information relating to aerospace engineering. Expected learning includes: introduction to lateral thinking concepts; glossary of aerospace vehicle components and terminology; an introduction to the multiple disciplines related to aerospace engineering, such as aerodynamics, aircraft and spacecraft performance, mechanics of flight, aerospace structures, materials and propulsion systems; how the various disciplines are integrated into the design and development of flight platform systems; the operating characteristics of modern flight vehicles, their uses and limitations; modern developments and future trends in aerospace; the limitations of the aerospace environment; teamwork; and resource management. Significantly, professional enhancement is introduced through the development of basic hands-on workshop skills. These practical skills enable students to have a better appreciation of the tools that they are expected to apply their engineering knowledge to, during their aerospace engineering profession. Experiential learning is facilitated through developing skills with machine and hand tools; solid modelling; and microcontrollers in a supervised environment, to develop fundamentals of practical aerospace vehicle component design, manufacture, control, servicing, and repair. Manufacturing Technology: An overview of a range of processes related to the design and manufacture of aerospace components is provided through hands-on experience. Manufacturing Technology practical work is undertaken in: (a) Hand tools, Machining, and Fibreglassing - an introduction to basic manufacturing processes used to fabricate aerospace engineering hardware. Safety requirements: All students are required to provide their own personal protective equipment (PPE) and comply with the workshop safety rules provided in class. Students who fail to do this will not be permitted to enter the workshops. In particular, approved industrial footwear must be worn, and long hair must be protected by a hair net. Safety glasses must be worn at all times. (b) Solid Modelling - the use of computer aided design (CAD) tools to model geometry and create engineering drawings of engineering components. (c) Microcontrollers - ubiquitous in modern engineered products - will be introduced through experiential learning with development kits.

Unit details and rules

Managing faculty or University school:

Engineering

Study level Undergraduate
Academic unit Aerospace, Mechanical and Mechatronic
Credit points 6
Prerequisites:
? 
None
Corequisites:
? 
None
Prohibitions:
? 
ENGG1800 or MECH1560 or MTRX1701 or CIVL1900 or CHNG1108 or BMET1960 or ENGG1960 or ELEC1004 or ELEC1005 or ENVE1001
Assumed knowledge:
? 
None

At the completion of this unit, you should be able to:

  • LO1. demonstrate familiarity with the aerospace industry environment
  • LO2. Work in a team in designing, building and testing a simple flight platform to meet some given requirements.
  • LO3. search and discern relevant information
  • LO4. write professional reports and give succinct verbal presentations
  • LO5. demonstrate familiarity with airframe classification and components
  • LO6. apply fundamental engineering skills to aerospace problems
  • LO7. demonstrate familiarity with aerospace engineering laboratory facilities
  • LO8. understand practical modern manufacturing skills and demonstrate familiarity with contemporary tools used in aerospace engineering
  • LO9. demonstrate familiarity with distinct fundamental disciplines within aerospace engineering.

Unit availability

This section lists the session, attendance modes and locations the unit is available in. There is a unit outline for each of the unit availabilities, which gives you information about the unit including assessment details and a schedule of weekly activities.

The outline is published 2 weeks before the first day of teaching. You can look at previous outlines for a guide to the details of a unit.

Session MoA ?  Location Outline ? 
Semester 1 2024
Normal day Camperdown/Darlington, Sydney
Session MoA ?  Location Outline ? 
Semester 1 2025
Normal day Camperdown/Darlington, Sydney
Outline unavailable
Session MoA ?  Location Outline ? 
Semester 1 2020
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Camperdown/Darlington, Sydney
Semester 1 2021
Normal day Remote
Semester 1 2022
Normal day Camperdown/Darlington, Sydney
Semester 1 2022
Normal day Remote
Semester 1 2023
Normal day Camperdown/Darlington, Sydney

Find your current year census dates

Modes of attendance (MoA)

This refers to the Mode of attendance (MoA) for the unit as it appears when you’re selecting your units in Sydney Student. Find more information about modes of attendance on our website.